You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2981 lines
82KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} option of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}:@var{packing_format}".
  85. @var{sample_format} specifies the sample format, and can be a string or
  86. the corresponding numeric value defined in @file{libavutil/samplefmt.h}.
  87. @var{channel_layout} specifies the channel layout, and can be a string
  88. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  89. @var{packing_format} specifies the type of packing in output, can be one
  90. of "planar" or "packed", or the corresponding numeric values "0" or "1".
  91. The special parameter "auto", signifies that the filter will
  92. automatically select the output format depending on the output filter.
  93. Some examples follow.
  94. @itemize
  95. @item
  96. Convert input to unsigned 8-bit, stereo, packed:
  97. @example
  98. aconvert=u8:stereo:packed
  99. @end example
  100. @item
  101. Convert input to unsigned 8-bit, automatically select out channel layout
  102. and packing format:
  103. @example
  104. aconvert=u8:auto:auto
  105. @end example
  106. @end itemize
  107. @section aformat
  108. Convert the input audio to one of the specified formats. The framework will
  109. negotiate the most appropriate format to minimize conversions.
  110. The filter accepts three lists of formats, separated by ":", in the form:
  111. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  112. Elements in each list are separated by "," which has to be escaped in the
  113. filtergraph specification.
  114. The special parameter "all", in place of a list of elements, signifies all
  115. supported formats.
  116. Some examples follow:
  117. @example
  118. aformat=u8\\,s16:mono:packed
  119. aformat=s16:mono\\,stereo:all
  120. @end example
  121. @section anull
  122. Pass the audio source unchanged to the output.
  123. @section aresample
  124. Resample the input audio to the specified sample rate.
  125. The filter accepts exactly one parameter, the output sample rate. If not
  126. specified then the filter will automatically convert between its input
  127. and output sample rates.
  128. For example, to resample the input audio to 44100Hz:
  129. @example
  130. aresample=44100
  131. @end example
  132. @section ashowinfo
  133. Show a line containing various information for each input audio frame.
  134. The input audio is not modified.
  135. The shown line contains a sequence of key/value pairs of the form
  136. @var{key}:@var{value}.
  137. A description of each shown parameter follows:
  138. @table @option
  139. @item n
  140. sequential number of the input frame, starting from 0
  141. @item pts
  142. presentation TimeStamp of the input frame, expressed as a number of
  143. time base units. The time base unit depends on the filter input pad, and
  144. is usually 1/@var{sample_rate}.
  145. @item pts_time
  146. presentation TimeStamp of the input frame, expressed as a number of
  147. seconds
  148. @item pos
  149. position of the frame in the input stream, -1 if this information in
  150. unavailable and/or meaningless (for example in case of synthetic audio)
  151. @item fmt
  152. sample format name
  153. @item chlayout
  154. channel layout description
  155. @item nb_samples
  156. number of samples (per each channel) contained in the filtered frame
  157. @item rate
  158. sample rate for the audio frame
  159. @item planar
  160. if the packing format is planar, 0 if packed
  161. @item checksum
  162. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  163. @item plane_checksum
  164. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  165. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  166. @var{c6} @var{c7}]"
  167. @end table
  168. @section earwax
  169. Make audio easier to listen to on headphones.
  170. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  171. so that when listened to on headphones the stereo image is moved from
  172. inside your head (standard for headphones) to outside and in front of
  173. the listener (standard for speakers).
  174. Ported from SoX.
  175. @section pan
  176. Mix channels with specific gain levels. The filter accepts the output
  177. channel layout followed by a set of channels definitions.
  178. The filter accepts parameters of the form:
  179. "@var{l}:@var{outdef}:@var{outdef}:..."
  180. @table @option
  181. @item l
  182. output channel layout or number of channels
  183. @item outdef
  184. output channel specification, of the form:
  185. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  186. @item out_name
  187. output channel to define, either a channel name (FL, FR, etc.) or a channel
  188. number (c0, c1, etc.)
  189. @item gain
  190. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  191. @item in_name
  192. input channel to use, see out_name for details; it is not possible to mix
  193. named and numbered input channels
  194. @end table
  195. If the `=' in a channel specification is replaced by `<', then the gains for
  196. that specification will be renormalized so that the total is 1, thus
  197. avoiding clipping noise.
  198. For example, if you want to down-mix from stereo to mono, but with a bigger
  199. factor for the left channel:
  200. @example
  201. pan=1:c0=0.9*c0+0.1*c1
  202. @end example
  203. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  204. 7-channels surround:
  205. @example
  206. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  207. @end example
  208. Note that @file{ffmpeg} integrates a default down-mix (and up-mix) system
  209. that should be preferred (see "-ac" option) unless you have very specific
  210. needs.
  211. @section volume
  212. Adjust the input audio volume.
  213. The filter accepts exactly one parameter @var{vol}, which expresses
  214. how the audio volume will be increased or decreased.
  215. Output values are clipped to the maximum value.
  216. If @var{vol} is expressed as a decimal number, and the output audio
  217. volume is given by the relation:
  218. @example
  219. @var{output_volume} = @var{vol} * @var{input_volume}
  220. @end example
  221. If @var{vol} is expressed as a decimal number followed by the string
  222. "dB", the value represents the requested change in decibels of the
  223. input audio power, and the output audio volume is given by the
  224. relation:
  225. @example
  226. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  227. @end example
  228. Otherwise @var{vol} is considered an expression and its evaluated
  229. value is used for computing the output audio volume according to the
  230. first relation.
  231. Default value for @var{vol} is 1.0.
  232. @subsection Examples
  233. @itemize
  234. @item
  235. Half the input audio volume:
  236. @example
  237. volume=0.5
  238. @end example
  239. The above example is equivalent to:
  240. @example
  241. volume=1/2
  242. @end example
  243. @item
  244. Decrease input audio power by 12 decibels:
  245. @example
  246. volume=-12dB
  247. @end example
  248. @end itemize
  249. @c man end AUDIO FILTERS
  250. @chapter Audio Sources
  251. @c man begin AUDIO SOURCES
  252. Below is a description of the currently available audio sources.
  253. @section abuffer
  254. Buffer audio frames, and make them available to the filter chain.
  255. This source is mainly intended for a programmatic use, in particular
  256. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  257. It accepts the following mandatory parameters:
  258. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  259. @table @option
  260. @item sample_rate
  261. The sample rate of the incoming audio buffers.
  262. @item sample_fmt
  263. The sample format of the incoming audio buffers.
  264. Either a sample format name or its corresponging integer representation from
  265. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  266. @item channel_layout
  267. The channel layout of the incoming audio buffers.
  268. Either a channel layout name from channel_layout_map in
  269. @file{libavutil/audioconvert.c} or its corresponding integer representation
  270. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  271. @item packing
  272. Either "packed" or "planar", or their integer representation: 0 or 1
  273. respectively.
  274. @end table
  275. For example:
  276. @example
  277. abuffer=44100:s16:stereo:planar
  278. @end example
  279. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  280. Since the sample format with name "s16" corresponds to the number
  281. 1 and the "stereo" channel layout corresponds to the value 3, this is
  282. equivalent to:
  283. @example
  284. abuffer=44100:1:3:1
  285. @end example
  286. @section aevalsrc
  287. Generate an audio signal specified by an expression.
  288. This source accepts in input one or more expressions (one for each
  289. channel), which are evaluated and used to generate a corresponding
  290. audio signal.
  291. It accepts the syntax: @var{exprs}[::@var{options}].
  292. @var{exprs} is a list of expressions separated by ":", one for each
  293. separate channel. The output channel layout depends on the number of
  294. provided expressions, up to 8 channels are supported.
  295. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  296. separated by ":".
  297. The description of the accepted options follows.
  298. @table @option
  299. @item duration, d
  300. Set the minimum duration of the sourced audio. See the function
  301. @code{av_parse_time()} for the accepted format.
  302. Note that the resulting duration may be greater than the specified
  303. duration, as the generated audio is always cut at the end of a
  304. complete frame.
  305. If not specified, or the expressed duration is negative, the audio is
  306. supposed to be generated forever.
  307. @item nb_samples, n
  308. Set the number of samples per channel per each output frame,
  309. default to 1024.
  310. @item sample_rate, s
  311. Specify the sample rate, default to 44100.
  312. @end table
  313. Each expression in @var{exprs} can contain the following constants:
  314. @table @option
  315. @item n
  316. number of the evaluated sample, starting from 0
  317. @item t
  318. time of the evaluated sample expressed in seconds, starting from 0
  319. @item s
  320. sample rate
  321. @end table
  322. @subsection Examples
  323. @itemize
  324. @item
  325. Generate silence:
  326. @example
  327. aevalsrc=0
  328. @end example
  329. @item
  330. Generate a sin signal with frequency of 440 Hz, set sample rate to
  331. 8000 Hz:
  332. @example
  333. aevalsrc="sin(440*2*PI*t)::s=8000"
  334. @end example
  335. @item
  336. Generate white noise:
  337. @example
  338. aevalsrc="-2+random(0)"
  339. @end example
  340. @item
  341. Generate an amplitude modulated signal:
  342. @example
  343. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  344. @end example
  345. @item
  346. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  347. @example
  348. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  349. @end example
  350. @end itemize
  351. @section amovie
  352. Read an audio stream from a movie container.
  353. It accepts the syntax: @var{movie_name}[:@var{options}] where
  354. @var{movie_name} is the name of the resource to read (not necessarily
  355. a file but also a device or a stream accessed through some protocol),
  356. and @var{options} is an optional sequence of @var{key}=@var{value}
  357. pairs, separated by ":".
  358. The description of the accepted options follows.
  359. @table @option
  360. @item format_name, f
  361. Specify the format assumed for the movie to read, and can be either
  362. the name of a container or an input device. If not specified the
  363. format is guessed from @var{movie_name} or by probing.
  364. @item seek_point, sp
  365. Specify the seek point in seconds, the frames will be output
  366. starting from this seek point, the parameter is evaluated with
  367. @code{av_strtod} so the numerical value may be suffixed by an IS
  368. postfix. Default value is "0".
  369. @item stream_index, si
  370. Specify the index of the audio stream to read. If the value is -1,
  371. the best suited audio stream will be automatically selected. Default
  372. value is "-1".
  373. @end table
  374. @section anullsrc
  375. Null audio source, return unprocessed audio frames. It is mainly useful
  376. as a template and to be employed in analysis / debugging tools, or as
  377. the source for filters which ignore the input data (for example the sox
  378. synth filter).
  379. It accepts an optional sequence of @var{key}=@var{value} pairs,
  380. separated by ":".
  381. The description of the accepted options follows.
  382. @table @option
  383. @item sample_rate, s
  384. Specify the sample rate, and defaults to 44100.
  385. @item channel_layout, cl
  386. Specify the channel layout, and can be either an integer or a string
  387. representing a channel layout. The default value of @var{channel_layout}
  388. is "stereo".
  389. Check the channel_layout_map definition in
  390. @file{libavcodec/audioconvert.c} for the mapping between strings and
  391. channel layout values.
  392. @item nb_samples, n
  393. Set the number of samples per requested frames.
  394. @end table
  395. Follow some examples:
  396. @example
  397. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  398. anullsrc=r=48000:cl=4
  399. # same as
  400. anullsrc=r=48000:cl=mono
  401. @end example
  402. @c man end AUDIO SOURCES
  403. @chapter Audio Sinks
  404. @c man begin AUDIO SINKS
  405. Below is a description of the currently available audio sinks.
  406. @section abuffersink
  407. Buffer audio frames, and make them available to the end of filter chain.
  408. This sink is mainly intended for programmatic use, in particular
  409. through the interface defined in @file{libavfilter/buffersink.h}.
  410. It requires a pointer to an AVABufferSinkContext structure, which
  411. defines the incoming buffers' formats, to be passed as the opaque
  412. parameter to @code{avfilter_init_filter} for initialization.
  413. @section anullsink
  414. Null audio sink, do absolutely nothing with the input audio. It is
  415. mainly useful as a template and to be employed in analysis / debugging
  416. tools.
  417. @c man end AUDIO SINKS
  418. @chapter Video Filters
  419. @c man begin VIDEO FILTERS
  420. When you configure your FFmpeg build, you can disable any of the
  421. existing filters using --disable-filters.
  422. The configure output will show the video filters included in your
  423. build.
  424. Below is a description of the currently available video filters.
  425. @section ass
  426. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  427. using the libass library.
  428. To enable compilation of this filter you need to configure FFmpeg with
  429. @code{--enable-libass}.
  430. This filter accepts in input the name of the ass file to render.
  431. For example, to render the file @file{sub.ass} on top of the input
  432. video, use the command:
  433. @example
  434. ass=sub.ass
  435. @end example
  436. @section blackframe
  437. Detect frames that are (almost) completely black. Can be useful to
  438. detect chapter transitions or commercials. Output lines consist of
  439. the frame number of the detected frame, the percentage of blackness,
  440. the position in the file if known or -1 and the timestamp in seconds.
  441. In order to display the output lines, you need to set the loglevel at
  442. least to the AV_LOG_INFO value.
  443. The filter accepts the syntax:
  444. @example
  445. blackframe[=@var{amount}:[@var{threshold}]]
  446. @end example
  447. @var{amount} is the percentage of the pixels that have to be below the
  448. threshold, and defaults to 98.
  449. @var{threshold} is the threshold below which a pixel value is
  450. considered black, and defaults to 32.
  451. @section boxblur
  452. Apply boxblur algorithm to the input video.
  453. This filter accepts the parameters:
  454. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  455. Chroma and alpha parameters are optional, if not specified they default
  456. to the corresponding values set for @var{luma_radius} and
  457. @var{luma_power}.
  458. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  459. the radius in pixels of the box used for blurring the corresponding
  460. input plane. They are expressions, and can contain the following
  461. constants:
  462. @table @option
  463. @item w, h
  464. the input width and height in pixels
  465. @item cw, ch
  466. the input chroma image width and height in pixels
  467. @item hsub, vsub
  468. horizontal and vertical chroma subsample values. For example for the
  469. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  470. @end table
  471. The radius must be a non-negative number, and must not be greater than
  472. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  473. and of @code{min(cw,ch)/2} for the chroma planes.
  474. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  475. how many times the boxblur filter is applied to the corresponding
  476. plane.
  477. Some examples follow:
  478. @itemize
  479. @item
  480. Apply a boxblur filter with luma, chroma, and alpha radius
  481. set to 2:
  482. @example
  483. boxblur=2:1
  484. @end example
  485. @item
  486. Set luma radius to 2, alpha and chroma radius to 0
  487. @example
  488. boxblur=2:1:0:0:0:0
  489. @end example
  490. @item
  491. Set luma and chroma radius to a fraction of the video dimension
  492. @example
  493. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  494. @end example
  495. @end itemize
  496. @section copy
  497. Copy the input source unchanged to the output. Mainly useful for
  498. testing purposes.
  499. @section crop
  500. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  501. The parameters are expressions containing the following constants:
  502. @table @option
  503. @item x, y
  504. the computed values for @var{x} and @var{y}. They are evaluated for
  505. each new frame.
  506. @item in_w, in_h
  507. the input width and height
  508. @item iw, ih
  509. same as @var{in_w} and @var{in_h}
  510. @item out_w, out_h
  511. the output (cropped) width and height
  512. @item ow, oh
  513. same as @var{out_w} and @var{out_h}
  514. @item a
  515. same as @var{iw} / @var{ih}
  516. @item sar
  517. input sample aspect ratio
  518. @item dar
  519. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  520. @item hsub, vsub
  521. horizontal and vertical chroma subsample values. For example for the
  522. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  523. @item n
  524. the number of input frame, starting from 0
  525. @item pos
  526. the position in the file of the input frame, NAN if unknown
  527. @item t
  528. timestamp expressed in seconds, NAN if the input timestamp is unknown
  529. @end table
  530. The @var{out_w} and @var{out_h} parameters specify the expressions for
  531. the width and height of the output (cropped) video. They are
  532. evaluated just at the configuration of the filter.
  533. The default value of @var{out_w} is "in_w", and the default value of
  534. @var{out_h} is "in_h".
  535. The expression for @var{out_w} may depend on the value of @var{out_h},
  536. and the expression for @var{out_h} may depend on @var{out_w}, but they
  537. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  538. evaluated after @var{out_w} and @var{out_h}.
  539. The @var{x} and @var{y} parameters specify the expressions for the
  540. position of the top-left corner of the output (non-cropped) area. They
  541. are evaluated for each frame. If the evaluated value is not valid, it
  542. is approximated to the nearest valid value.
  543. The default value of @var{x} is "(in_w-out_w)/2", and the default
  544. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  545. the center of the input image.
  546. The expression for @var{x} may depend on @var{y}, and the expression
  547. for @var{y} may depend on @var{x}.
  548. Follow some examples:
  549. @example
  550. # crop the central input area with size 100x100
  551. crop=100:100
  552. # crop the central input area with size 2/3 of the input video
  553. "crop=2/3*in_w:2/3*in_h"
  554. # crop the input video central square
  555. crop=in_h
  556. # delimit the rectangle with the top-left corner placed at position
  557. # 100:100 and the right-bottom corner corresponding to the right-bottom
  558. # corner of the input image.
  559. crop=in_w-100:in_h-100:100:100
  560. # crop 10 pixels from the left and right borders, and 20 pixels from
  561. # the top and bottom borders
  562. "crop=in_w-2*10:in_h-2*20"
  563. # keep only the bottom right quarter of the input image
  564. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  565. # crop height for getting Greek harmony
  566. "crop=in_w:1/PHI*in_w"
  567. # trembling effect
  568. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  569. # erratic camera effect depending on timestamp
  570. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  571. # set x depending on the value of y
  572. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  573. @end example
  574. @section cropdetect
  575. Auto-detect crop size.
  576. Calculate necessary cropping parameters and prints the recommended
  577. parameters through the logging system. The detected dimensions
  578. correspond to the non-black area of the input video.
  579. It accepts the syntax:
  580. @example
  581. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  582. @end example
  583. @table @option
  584. @item limit
  585. Threshold, which can be optionally specified from nothing (0) to
  586. everything (255), defaults to 24.
  587. @item round
  588. Value which the width/height should be divisible by, defaults to
  589. 16. The offset is automatically adjusted to center the video. Use 2 to
  590. get only even dimensions (needed for 4:2:2 video). 16 is best when
  591. encoding to most video codecs.
  592. @item reset
  593. Counter that determines after how many frames cropdetect will reset
  594. the previously detected largest video area and start over to detect
  595. the current optimal crop area. Defaults to 0.
  596. This can be useful when channel logos distort the video area. 0
  597. indicates never reset and return the largest area encountered during
  598. playback.
  599. @end table
  600. @section delogo
  601. Suppress a TV station logo by a simple interpolation of the surrounding
  602. pixels. Just set a rectangle covering the logo and watch it disappear
  603. (and sometimes something even uglier appear - your mileage may vary).
  604. The filter accepts parameters as a string of the form
  605. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  606. @var{key}=@var{value} pairs, separated by ":".
  607. The description of the accepted parameters follows.
  608. @table @option
  609. @item x, y
  610. Specify the top left corner coordinates of the logo. They must be
  611. specified.
  612. @item w, h
  613. Specify the width and height of the logo to clear. They must be
  614. specified.
  615. @item band, t
  616. Specify the thickness of the fuzzy edge of the rectangle (added to
  617. @var{w} and @var{h}). The default value is 4.
  618. @item show
  619. When set to 1, a green rectangle is drawn on the screen to simplify
  620. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  621. @var{band} is set to 4. The default value is 0.
  622. @end table
  623. Some examples follow.
  624. @itemize
  625. @item
  626. Set a rectangle covering the area with top left corner coordinates 0,0
  627. and size 100x77, setting a band of size 10:
  628. @example
  629. delogo=0:0:100:77:10
  630. @end example
  631. @item
  632. As the previous example, but use named options:
  633. @example
  634. delogo=x=0:y=0:w=100:h=77:band=10
  635. @end example
  636. @end itemize
  637. @section deshake
  638. Attempt to fix small changes in horizontal and/or vertical shift. This
  639. filter helps remove camera shake from hand-holding a camera, bumping a
  640. tripod, moving on a vehicle, etc.
  641. The filter accepts parameters as a string of the form
  642. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  643. A description of the accepted parameters follows.
  644. @table @option
  645. @item x, y, w, h
  646. Specify a rectangular area where to limit the search for motion
  647. vectors.
  648. If desired the search for motion vectors can be limited to a
  649. rectangular area of the frame defined by its top left corner, width
  650. and height. These parameters have the same meaning as the drawbox
  651. filter which can be used to visualise the position of the bounding
  652. box.
  653. This is useful when simultaneous movement of subjects within the frame
  654. might be confused for camera motion by the motion vector search.
  655. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  656. then the full frame is used. This allows later options to be set
  657. without specifying the bounding box for the motion vector search.
  658. Default - search the whole frame.
  659. @item rx, ry
  660. Specify the maximum extent of movement in x and y directions in the
  661. range 0-64 pixels. Default 16.
  662. @item edge
  663. Specify how to generate pixels to fill blanks at the edge of the
  664. frame. An integer from 0 to 3 as follows:
  665. @table @option
  666. @item 0
  667. Fill zeroes at blank locations
  668. @item 1
  669. Original image at blank locations
  670. @item 2
  671. Extruded edge value at blank locations
  672. @item 3
  673. Mirrored edge at blank locations
  674. @end table
  675. The default setting is mirror edge at blank locations.
  676. @item blocksize
  677. Specify the blocksize to use for motion search. Range 4-128 pixels,
  678. default 8.
  679. @item contrast
  680. Specify the contrast threshold for blocks. Only blocks with more than
  681. the specified contrast (difference between darkest and lightest
  682. pixels) will be considered. Range 1-255, default 125.
  683. @item search
  684. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  685. search. Default - exhaustive search.
  686. @item filename
  687. If set then a detailed log of the motion search is written to the
  688. specified file.
  689. @end table
  690. @section drawbox
  691. Draw a colored box on the input image.
  692. It accepts the syntax:
  693. @example
  694. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  695. @end example
  696. @table @option
  697. @item x, y
  698. Specify the top left corner coordinates of the box. Default to 0.
  699. @item width, height
  700. Specify the width and height of the box, if 0 they are interpreted as
  701. the input width and height. Default to 0.
  702. @item color
  703. Specify the color of the box to write, it can be the name of a color
  704. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  705. @end table
  706. Follow some examples:
  707. @example
  708. # draw a black box around the edge of the input image
  709. drawbox
  710. # draw a box with color red and an opacity of 50%
  711. drawbox=10:20:200:60:red@@0.5"
  712. @end example
  713. @section drawtext
  714. Draw text string or text from specified file on top of video using the
  715. libfreetype library.
  716. To enable compilation of this filter you need to configure FFmpeg with
  717. @code{--enable-libfreetype}.
  718. The filter also recognizes strftime() sequences in the provided text
  719. and expands them accordingly. Check the documentation of strftime().
  720. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  721. separated by ":".
  722. The description of the accepted parameters follows.
  723. @table @option
  724. @item fontfile
  725. The font file to be used for drawing text. Path must be included.
  726. This parameter is mandatory.
  727. @item text
  728. The text string to be drawn. The text must be a sequence of UTF-8
  729. encoded characters.
  730. This parameter is mandatory if no file is specified with the parameter
  731. @var{textfile}.
  732. @item textfile
  733. A text file containing text to be drawn. The text must be a sequence
  734. of UTF-8 encoded characters.
  735. This parameter is mandatory if no text string is specified with the
  736. parameter @var{text}.
  737. If both text and textfile are specified, an error is thrown.
  738. @item x, y
  739. The expressions which specify the offsets where text will be drawn
  740. within the video frame. They are relative to the top/left border of the
  741. output image.
  742. The default value of @var{x} and @var{y} is "0".
  743. See below for the list of accepted constants.
  744. @item fontsize
  745. The font size to be used for drawing text.
  746. The default value of @var{fontsize} is 16.
  747. @item fontcolor
  748. The color to be used for drawing fonts.
  749. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  750. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  751. The default value of @var{fontcolor} is "black".
  752. @item boxcolor
  753. The color to be used for drawing box around text.
  754. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  755. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  756. The default value of @var{boxcolor} is "white".
  757. @item box
  758. Used to draw a box around text using background color.
  759. Value should be either 1 (enable) or 0 (disable).
  760. The default value of @var{box} is 0.
  761. @item shadowx, shadowy
  762. The x and y offsets for the text shadow position with respect to the
  763. position of the text. They can be either positive or negative
  764. values. Default value for both is "0".
  765. @item shadowcolor
  766. The color to be used for drawing a shadow behind the drawn text. It
  767. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  768. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  769. The default value of @var{shadowcolor} is "black".
  770. @item ft_load_flags
  771. Flags to be used for loading the fonts.
  772. The flags map the corresponding flags supported by libfreetype, and are
  773. a combination of the following values:
  774. @table @var
  775. @item default
  776. @item no_scale
  777. @item no_hinting
  778. @item render
  779. @item no_bitmap
  780. @item vertical_layout
  781. @item force_autohint
  782. @item crop_bitmap
  783. @item pedantic
  784. @item ignore_global_advance_width
  785. @item no_recurse
  786. @item ignore_transform
  787. @item monochrome
  788. @item linear_design
  789. @item no_autohint
  790. @item end table
  791. @end table
  792. Default value is "render".
  793. For more information consult the documentation for the FT_LOAD_*
  794. libfreetype flags.
  795. @item tabsize
  796. The size in number of spaces to use for rendering the tab.
  797. Default value is 4.
  798. @end table
  799. The parameters for @var{x} and @var{y} are expressions containing the
  800. following constants:
  801. @table @option
  802. @item W, H
  803. the input width and height
  804. @item tw, text_w
  805. the width of the rendered text
  806. @item th, text_h
  807. the height of the rendered text
  808. @item lh, line_h
  809. the height of each text line
  810. @item sar
  811. input sample aspect ratio
  812. @item dar
  813. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  814. @item hsub, vsub
  815. horizontal and vertical chroma subsample values. For example for the
  816. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  817. @item max_glyph_w
  818. maximum glyph width, that is the maximum width for all the glyphs
  819. contained in the rendered text
  820. @item max_glyph_h
  821. maximum glyph height, that is the maximum height for all the glyphs
  822. contained in the rendered text, it is equivalent to @var{ascent} -
  823. @var{descent}.
  824. @item max_glyph_a, ascent
  825. the maximum distance from the baseline to the highest/upper grid
  826. coordinate used to place a glyph outline point, for all the rendered
  827. glyphs.
  828. It is a positive value, due to the grid's orientation with the Y axis
  829. upwards.
  830. @item max_glyph_d, descent
  831. the maximum distance from the baseline to the lowest grid coordinate
  832. used to place a glyph outline point, for all the rendered glyphs.
  833. This is a negative value, due to the grid's orientation, with the Y axis
  834. upwards.
  835. @item n
  836. the number of input frame, starting from 0
  837. @item t
  838. timestamp expressed in seconds, NAN if the input timestamp is unknown
  839. @end table
  840. Some examples follow.
  841. @itemize
  842. @item
  843. Draw "Test Text" with font FreeSerif, using the default values for the
  844. optional parameters.
  845. @example
  846. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  847. @end example
  848. @item
  849. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  850. and y=50 (counting from the top-left corner of the screen), text is
  851. yellow with a red box around it. Both the text and the box have an
  852. opacity of 20%.
  853. @example
  854. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  855. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  856. @end example
  857. Note that the double quotes are not necessary if spaces are not used
  858. within the parameter list.
  859. @item
  860. Show the text at the center of the video frame:
  861. @example
  862. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  863. @end example
  864. @item
  865. Show a text line sliding from right to left in the last row of the video
  866. frame. The file @file{LONG_LINE} is assumed to contain a single line
  867. with no newlines.
  868. @example
  869. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  870. @end example
  871. @item
  872. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  873. @example
  874. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  875. @end example
  876. @item
  877. Draw a single green letter "g", at the center of the input video.
  878. The glyph baseline is placed at half screen height.
  879. @example
  880. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  881. @end example
  882. @end itemize
  883. For more information about libfreetype, check:
  884. @url{http://www.freetype.org/}.
  885. @section fade
  886. Apply fade-in/out effect to input video.
  887. It accepts the parameters:
  888. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  889. @var{type} specifies if the effect type, can be either "in" for
  890. fade-in, or "out" for a fade-out effect.
  891. @var{start_frame} specifies the number of the start frame for starting
  892. to apply the fade effect.
  893. @var{nb_frames} specifies the number of frames for which the fade
  894. effect has to last. At the end of the fade-in effect the output video
  895. will have the same intensity as the input video, at the end of the
  896. fade-out transition the output video will be completely black.
  897. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  898. separated by ":". The description of the accepted options follows.
  899. @table @option
  900. @item type, t
  901. See @var{type}.
  902. @item start_frame, s
  903. See @var{start_frame}.
  904. @item nb_frames, n
  905. See @var{nb_frames}.
  906. @item alpha
  907. If set to 1, fade only alpha channel, if one exists on the input.
  908. Default value is 0.
  909. @end table
  910. A few usage examples follow, usable too as test scenarios.
  911. @example
  912. # fade in first 30 frames of video
  913. fade=in:0:30
  914. # fade out last 45 frames of a 200-frame video
  915. fade=out:155:45
  916. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  917. fade=in:0:25, fade=out:975:25
  918. # make first 5 frames black, then fade in from frame 5-24
  919. fade=in:5:20
  920. # fade in alpha over first 25 frames of video
  921. fade=in:0:25:alpha=1
  922. @end example
  923. @section fieldorder
  924. Transform the field order of the input video.
  925. It accepts one parameter which specifies the required field order that
  926. the input interlaced video will be transformed to. The parameter can
  927. assume one of the following values:
  928. @table @option
  929. @item 0 or bff
  930. output bottom field first
  931. @item 1 or tff
  932. output top field first
  933. @end table
  934. Default value is "tff".
  935. Transformation is achieved by shifting the picture content up or down
  936. by one line, and filling the remaining line with appropriate picture content.
  937. This method is consistent with most broadcast field order converters.
  938. If the input video is not flagged as being interlaced, or it is already
  939. flagged as being of the required output field order then this filter does
  940. not alter the incoming video.
  941. This filter is very useful when converting to or from PAL DV material,
  942. which is bottom field first.
  943. For example:
  944. @example
  945. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  946. @end example
  947. @section fifo
  948. Buffer input images and send them when they are requested.
  949. This filter is mainly useful when auto-inserted by the libavfilter
  950. framework.
  951. The filter does not take parameters.
  952. @section format
  953. Convert the input video to one of the specified pixel formats.
  954. Libavfilter will try to pick one that is supported for the input to
  955. the next filter.
  956. The filter accepts a list of pixel format names, separated by ":",
  957. for example "yuv420p:monow:rgb24".
  958. Some examples follow:
  959. @example
  960. # convert the input video to the format "yuv420p"
  961. format=yuv420p
  962. # convert the input video to any of the formats in the list
  963. format=yuv420p:yuv444p:yuv410p
  964. @end example
  965. @anchor{frei0r}
  966. @section frei0r
  967. Apply a frei0r effect to the input video.
  968. To enable compilation of this filter you need to install the frei0r
  969. header and configure FFmpeg with --enable-frei0r.
  970. The filter supports the syntax:
  971. @example
  972. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  973. @end example
  974. @var{filter_name} is the name to the frei0r effect to load. If the
  975. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  976. is searched in each one of the directories specified by the colon
  977. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  978. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  979. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  980. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  981. for the frei0r effect.
  982. A frei0r effect parameter can be a boolean (whose values are specified
  983. with "y" and "n"), a double, a color (specified by the syntax
  984. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  985. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  986. description), a position (specified by the syntax @var{X}/@var{Y},
  987. @var{X} and @var{Y} being float numbers) and a string.
  988. The number and kind of parameters depend on the loaded effect. If an
  989. effect parameter is not specified the default value is set.
  990. Some examples follow:
  991. @example
  992. # apply the distort0r effect, set the first two double parameters
  993. frei0r=distort0r:0.5:0.01
  994. # apply the colordistance effect, takes a color as first parameter
  995. frei0r=colordistance:0.2/0.3/0.4
  996. frei0r=colordistance:violet
  997. frei0r=colordistance:0x112233
  998. # apply the perspective effect, specify the top left and top right
  999. # image positions
  1000. frei0r=perspective:0.2/0.2:0.8/0.2
  1001. @end example
  1002. For more information see:
  1003. @url{http://piksel.org/frei0r}
  1004. @section gradfun
  1005. Fix the banding artifacts that are sometimes introduced into nearly flat
  1006. regions by truncation to 8bit color depth.
  1007. Interpolate the gradients that should go where the bands are, and
  1008. dither them.
  1009. This filter is designed for playback only. Do not use it prior to
  1010. lossy compression, because compression tends to lose the dither and
  1011. bring back the bands.
  1012. The filter takes two optional parameters, separated by ':':
  1013. @var{strength}:@var{radius}
  1014. @var{strength} is the maximum amount by which the filter will change
  1015. any one pixel. Also the threshold for detecting nearly flat
  1016. regions. Acceptable values range from .51 to 255, default value is
  1017. 1.2, out-of-range values will be clipped to the valid range.
  1018. @var{radius} is the neighborhood to fit the gradient to. A larger
  1019. radius makes for smoother gradients, but also prevents the filter from
  1020. modifying the pixels near detailed regions. Acceptable values are
  1021. 8-32, default value is 16, out-of-range values will be clipped to the
  1022. valid range.
  1023. @example
  1024. # default parameters
  1025. gradfun=1.2:16
  1026. # omitting radius
  1027. gradfun=1.2
  1028. @end example
  1029. @section hflip
  1030. Flip the input video horizontally.
  1031. For example to horizontally flip the input video with @command{ffmpeg}:
  1032. @example
  1033. ffmpeg -i in.avi -vf "hflip" out.avi
  1034. @end example
  1035. @section hqdn3d
  1036. High precision/quality 3d denoise filter. This filter aims to reduce
  1037. image noise producing smooth images and making still images really
  1038. still. It should enhance compressibility.
  1039. It accepts the following optional parameters:
  1040. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1041. @table @option
  1042. @item luma_spatial
  1043. a non-negative float number which specifies spatial luma strength,
  1044. defaults to 4.0
  1045. @item chroma_spatial
  1046. a non-negative float number which specifies spatial chroma strength,
  1047. defaults to 3.0*@var{luma_spatial}/4.0
  1048. @item luma_tmp
  1049. a float number which specifies luma temporal strength, defaults to
  1050. 6.0*@var{luma_spatial}/4.0
  1051. @item chroma_tmp
  1052. a float number which specifies chroma temporal strength, defaults to
  1053. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1054. @end table
  1055. @section lut, lutrgb, lutyuv
  1056. Compute a look-up table for binding each pixel component input value
  1057. to an output value, and apply it to input video.
  1058. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1059. to an RGB input video.
  1060. These filters accept in input a ":"-separated list of options, which
  1061. specify the expressions used for computing the lookup table for the
  1062. corresponding pixel component values.
  1063. The @var{lut} filter requires either YUV or RGB pixel formats in
  1064. input, and accepts the options:
  1065. @table @option
  1066. @item c0
  1067. first pixel component
  1068. @item c1
  1069. second pixel component
  1070. @item c2
  1071. third pixel component
  1072. @item c3
  1073. fourth pixel component, corresponds to the alpha component
  1074. @end table
  1075. The exact component associated to each option depends on the format in
  1076. input.
  1077. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1078. accepts the options:
  1079. @table @option
  1080. @item r
  1081. red component
  1082. @item g
  1083. green component
  1084. @item b
  1085. blue component
  1086. @item a
  1087. alpha component
  1088. @end table
  1089. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1090. accepts the options:
  1091. @table @option
  1092. @item y
  1093. Y/luminance component
  1094. @item u
  1095. U/Cb component
  1096. @item v
  1097. V/Cr component
  1098. @item a
  1099. alpha component
  1100. @end table
  1101. The expressions can contain the following constants and functions:
  1102. @table @option
  1103. @item w, h
  1104. the input width and height
  1105. @item val
  1106. input value for the pixel component
  1107. @item clipval
  1108. the input value clipped in the @var{minval}-@var{maxval} range
  1109. @item maxval
  1110. maximum value for the pixel component
  1111. @item minval
  1112. minimum value for the pixel component
  1113. @item negval
  1114. the negated value for the pixel component value clipped in the
  1115. @var{minval}-@var{maxval} range , it corresponds to the expression
  1116. "maxval-clipval+minval"
  1117. @item clip(val)
  1118. the computed value in @var{val} clipped in the
  1119. @var{minval}-@var{maxval} range
  1120. @item gammaval(gamma)
  1121. the computed gamma correction value of the pixel component value
  1122. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1123. expression
  1124. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1125. @end table
  1126. All expressions default to "val".
  1127. Some examples follow:
  1128. @example
  1129. # negate input video
  1130. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1131. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1132. # the above is the same as
  1133. lutrgb="r=negval:g=negval:b=negval"
  1134. lutyuv="y=negval:u=negval:v=negval"
  1135. # negate luminance
  1136. lutyuv=y=negval
  1137. # remove chroma components, turns the video into a graytone image
  1138. lutyuv="u=128:v=128"
  1139. # apply a luma burning effect
  1140. lutyuv="y=2*val"
  1141. # remove green and blue components
  1142. lutrgb="g=0:b=0"
  1143. # set a constant alpha channel value on input
  1144. format=rgba,lutrgb=a="maxval-minval/2"
  1145. # correct luminance gamma by a 0.5 factor
  1146. lutyuv=y=gammaval(0.5)
  1147. @end example
  1148. @section mp
  1149. Apply an MPlayer filter to the input video.
  1150. This filter provides a wrapper around most of the filters of
  1151. MPlayer/MEncoder.
  1152. This wrapper is considered experimental. Some of the wrapped filters
  1153. may not work properly and we may drop support for them, as they will
  1154. be implemented natively into FFmpeg. Thus you should avoid
  1155. depending on them when writing portable scripts.
  1156. The filters accepts the parameters:
  1157. @var{filter_name}[:=]@var{filter_params}
  1158. @var{filter_name} is the name of a supported MPlayer filter,
  1159. @var{filter_params} is a string containing the parameters accepted by
  1160. the named filter.
  1161. The list of the currently supported filters follows:
  1162. @table @var
  1163. @item 2xsai
  1164. @item decimate
  1165. @item denoise3d
  1166. @item detc
  1167. @item dint
  1168. @item divtc
  1169. @item down3dright
  1170. @item dsize
  1171. @item eq2
  1172. @item eq
  1173. @item field
  1174. @item fil
  1175. @item fixpts
  1176. @item framestep
  1177. @item fspp
  1178. @item geq
  1179. @item harddup
  1180. @item hqdn3d
  1181. @item hue
  1182. @item il
  1183. @item ilpack
  1184. @item ivtc
  1185. @item kerndeint
  1186. @item mcdeint
  1187. @item mirror
  1188. @item noise
  1189. @item ow
  1190. @item palette
  1191. @item perspective
  1192. @item phase
  1193. @item pp7
  1194. @item pullup
  1195. @item qp
  1196. @item rectangle
  1197. @item remove-logo
  1198. @item rotate
  1199. @item sab
  1200. @item screenshot
  1201. @item smartblur
  1202. @item softpulldown
  1203. @item softskip
  1204. @item spp
  1205. @item swapuv
  1206. @item telecine
  1207. @item tile
  1208. @item tinterlace
  1209. @item unsharp
  1210. @item uspp
  1211. @item yuvcsp
  1212. @item yvu9
  1213. @end table
  1214. The parameter syntax and behavior for the listed filters are the same
  1215. of the corresponding MPlayer filters. For detailed instructions check
  1216. the "VIDEO FILTERS" section in the MPlayer manual.
  1217. Some examples follow:
  1218. @example
  1219. # remove a logo by interpolating the surrounding pixels
  1220. mp=delogo=200:200:80:20:1
  1221. # adjust gamma, brightness, contrast
  1222. mp=eq2=1.0:2:0.5
  1223. # tweak hue and saturation
  1224. mp=hue=100:-10
  1225. @end example
  1226. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1227. @section negate
  1228. Negate input video.
  1229. This filter accepts an integer in input, if non-zero it negates the
  1230. alpha component (if available). The default value in input is 0.
  1231. @section noformat
  1232. Force libavfilter not to use any of the specified pixel formats for the
  1233. input to the next filter.
  1234. The filter accepts a list of pixel format names, separated by ":",
  1235. for example "yuv420p:monow:rgb24".
  1236. Some examples follow:
  1237. @example
  1238. # force libavfilter to use a format different from "yuv420p" for the
  1239. # input to the vflip filter
  1240. noformat=yuv420p,vflip
  1241. # convert the input video to any of the formats not contained in the list
  1242. noformat=yuv420p:yuv444p:yuv410p
  1243. @end example
  1244. @section null
  1245. Pass the video source unchanged to the output.
  1246. @section ocv
  1247. Apply video transform using libopencv.
  1248. To enable this filter install libopencv library and headers and
  1249. configure FFmpeg with --enable-libopencv.
  1250. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1251. @var{filter_name} is the name of the libopencv filter to apply.
  1252. @var{filter_params} specifies the parameters to pass to the libopencv
  1253. filter. If not specified the default values are assumed.
  1254. Refer to the official libopencv documentation for more precise
  1255. information:
  1256. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1257. Follows the list of supported libopencv filters.
  1258. @anchor{dilate}
  1259. @subsection dilate
  1260. Dilate an image by using a specific structuring element.
  1261. This filter corresponds to the libopencv function @code{cvDilate}.
  1262. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1263. @var{struct_el} represents a structuring element, and has the syntax:
  1264. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1265. @var{cols} and @var{rows} represent the number of columns and rows of
  1266. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1267. point, and @var{shape} the shape for the structuring element, and
  1268. can be one of the values "rect", "cross", "ellipse", "custom".
  1269. If the value for @var{shape} is "custom", it must be followed by a
  1270. string of the form "=@var{filename}". The file with name
  1271. @var{filename} is assumed to represent a binary image, with each
  1272. printable character corresponding to a bright pixel. When a custom
  1273. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1274. or columns and rows of the read file are assumed instead.
  1275. The default value for @var{struct_el} is "3x3+0x0/rect".
  1276. @var{nb_iterations} specifies the number of times the transform is
  1277. applied to the image, and defaults to 1.
  1278. Follow some example:
  1279. @example
  1280. # use the default values
  1281. ocv=dilate
  1282. # dilate using a structuring element with a 5x5 cross, iterate two times
  1283. ocv=dilate=5x5+2x2/cross:2
  1284. # read the shape from the file diamond.shape, iterate two times
  1285. # the file diamond.shape may contain a pattern of characters like this:
  1286. # *
  1287. # ***
  1288. # *****
  1289. # ***
  1290. # *
  1291. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1292. ocv=0x0+2x2/custom=diamond.shape:2
  1293. @end example
  1294. @subsection erode
  1295. Erode an image by using a specific structuring element.
  1296. This filter corresponds to the libopencv function @code{cvErode}.
  1297. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1298. with the same syntax and semantics as the @ref{dilate} filter.
  1299. @subsection smooth
  1300. Smooth the input video.
  1301. The filter takes the following parameters:
  1302. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1303. @var{type} is the type of smooth filter to apply, and can be one of
  1304. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1305. "bilateral". The default value is "gaussian".
  1306. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1307. parameters whose meanings depend on smooth type. @var{param1} and
  1308. @var{param2} accept integer positive values or 0, @var{param3} and
  1309. @var{param4} accept float values.
  1310. The default value for @var{param1} is 3, the default value for the
  1311. other parameters is 0.
  1312. These parameters correspond to the parameters assigned to the
  1313. libopencv function @code{cvSmooth}.
  1314. @anchor{overlay}
  1315. @section overlay
  1316. Overlay one video on top of another.
  1317. It takes two inputs and one output, the first input is the "main"
  1318. video on which the second input is overlayed.
  1319. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1320. @var{x} is the x coordinate of the overlayed video on the main video,
  1321. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1322. the following parameters:
  1323. @table @option
  1324. @item main_w, main_h
  1325. main input width and height
  1326. @item W, H
  1327. same as @var{main_w} and @var{main_h}
  1328. @item overlay_w, overlay_h
  1329. overlay input width and height
  1330. @item w, h
  1331. same as @var{overlay_w} and @var{overlay_h}
  1332. @end table
  1333. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1334. separated by ":".
  1335. The description of the accepted options follows.
  1336. @table @option
  1337. @item rgb
  1338. If set to 1, force the filter to accept inputs in the RGB
  1339. color space. Default value is 0.
  1340. @end table
  1341. Be aware that frames are taken from each input video in timestamp
  1342. order, hence, if their initial timestamps differ, it is a a good idea
  1343. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1344. have them begin in the same zero timestamp, as it does the example for
  1345. the @var{movie} filter.
  1346. Follow some examples:
  1347. @example
  1348. # draw the overlay at 10 pixels from the bottom right
  1349. # corner of the main video.
  1350. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1351. # insert a transparent PNG logo in the bottom left corner of the input
  1352. movie=logo.png [logo];
  1353. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1354. # insert 2 different transparent PNG logos (second logo on bottom
  1355. # right corner):
  1356. movie=logo1.png [logo1];
  1357. movie=logo2.png [logo2];
  1358. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1359. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1360. # add a transparent color layer on top of the main video,
  1361. # WxH specifies the size of the main input to the overlay filter
  1362. color=red@.3:WxH [over]; [in][over] overlay [out]
  1363. @end example
  1364. You can chain together more overlays but the efficiency of such
  1365. approach is yet to be tested.
  1366. @section pad
  1367. Add paddings to the input image, and places the original input at the
  1368. given coordinates @var{x}, @var{y}.
  1369. It accepts the following parameters:
  1370. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1371. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1372. expressions containing the following constants:
  1373. @table @option
  1374. @item in_w, in_h
  1375. the input video width and height
  1376. @item iw, ih
  1377. same as @var{in_w} and @var{in_h}
  1378. @item out_w, out_h
  1379. the output width and height, that is the size of the padded area as
  1380. specified by the @var{width} and @var{height} expressions
  1381. @item ow, oh
  1382. same as @var{out_w} and @var{out_h}
  1383. @item x, y
  1384. x and y offsets as specified by the @var{x} and @var{y}
  1385. expressions, or NAN if not yet specified
  1386. @item a
  1387. same as @var{iw} / @var{ih}
  1388. @item sar
  1389. input sample aspect ratio
  1390. @item dar
  1391. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1392. @item hsub, vsub
  1393. horizontal and vertical chroma subsample values. For example for the
  1394. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1395. @end table
  1396. Follows the description of the accepted parameters.
  1397. @table @option
  1398. @item width, height
  1399. Specify the size of the output image with the paddings added. If the
  1400. value for @var{width} or @var{height} is 0, the corresponding input size
  1401. is used for the output.
  1402. The @var{width} expression can reference the value set by the
  1403. @var{height} expression, and vice versa.
  1404. The default value of @var{width} and @var{height} is 0.
  1405. @item x, y
  1406. Specify the offsets where to place the input image in the padded area
  1407. with respect to the top/left border of the output image.
  1408. The @var{x} expression can reference the value set by the @var{y}
  1409. expression, and vice versa.
  1410. The default value of @var{x} and @var{y} is 0.
  1411. @item color
  1412. Specify the color of the padded area, it can be the name of a color
  1413. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1414. The default value of @var{color} is "black".
  1415. @end table
  1416. Some examples follow:
  1417. @example
  1418. # Add paddings with color "violet" to the input video. Output video
  1419. # size is 640x480, the top-left corner of the input video is placed at
  1420. # column 0, row 40.
  1421. pad=640:480:0:40:violet
  1422. # pad the input to get an output with dimensions increased bt 3/2,
  1423. # and put the input video at the center of the padded area
  1424. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1425. # pad the input to get a squared output with size equal to the maximum
  1426. # value between the input width and height, and put the input video at
  1427. # the center of the padded area
  1428. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1429. # pad the input to get a final w/h ratio of 16:9
  1430. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1431. # for anamorphic video, in order to set the output display aspect ratio,
  1432. # it is necessary to use sar in the expression, according to the relation:
  1433. # (ih * X / ih) * sar = output_dar
  1434. # X = output_dar / sar
  1435. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1436. # double output size and put the input video in the bottom-right
  1437. # corner of the output padded area
  1438. pad="2*iw:2*ih:ow-iw:oh-ih"
  1439. @end example
  1440. @section pixdesctest
  1441. Pixel format descriptor test filter, mainly useful for internal
  1442. testing. The output video should be equal to the input video.
  1443. For example:
  1444. @example
  1445. format=monow, pixdesctest
  1446. @end example
  1447. can be used to test the monowhite pixel format descriptor definition.
  1448. @section scale
  1449. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1450. The parameters @var{width} and @var{height} are expressions containing
  1451. the following constants:
  1452. @table @option
  1453. @item in_w, in_h
  1454. the input width and height
  1455. @item iw, ih
  1456. same as @var{in_w} and @var{in_h}
  1457. @item out_w, out_h
  1458. the output (cropped) width and height
  1459. @item ow, oh
  1460. same as @var{out_w} and @var{out_h}
  1461. @item a
  1462. same as @var{iw} / @var{ih}
  1463. @item sar
  1464. input sample aspect ratio
  1465. @item dar
  1466. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1467. @item sar
  1468. input sample aspect ratio
  1469. @item hsub, vsub
  1470. horizontal and vertical chroma subsample values. For example for the
  1471. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1472. @end table
  1473. If the input image format is different from the format requested by
  1474. the next filter, the scale filter will convert the input to the
  1475. requested format.
  1476. If the value for @var{width} or @var{height} is 0, the respective input
  1477. size is used for the output.
  1478. If the value for @var{width} or @var{height} is -1, the scale filter will
  1479. use, for the respective output size, a value that maintains the aspect
  1480. ratio of the input image.
  1481. The default value of @var{width} and @var{height} is 0.
  1482. Valid values for the optional parameter @var{interl} are:
  1483. @table @option
  1484. @item 1
  1485. force interlaced aware scaling
  1486. @item -1
  1487. select interlaced aware scaling depending on whether the source frames
  1488. are flagged as interlaced or not
  1489. @end table
  1490. Some examples follow:
  1491. @example
  1492. # scale the input video to a size of 200x100.
  1493. scale=200:100
  1494. # scale the input to 2x
  1495. scale=2*iw:2*ih
  1496. # the above is the same as
  1497. scale=2*in_w:2*in_h
  1498. # scale the input to half size
  1499. scale=iw/2:ih/2
  1500. # increase the width, and set the height to the same size
  1501. scale=3/2*iw:ow
  1502. # seek for Greek harmony
  1503. scale=iw:1/PHI*iw
  1504. scale=ih*PHI:ih
  1505. # increase the height, and set the width to 3/2 of the height
  1506. scale=3/2*oh:3/5*ih
  1507. # increase the size, but make the size a multiple of the chroma
  1508. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1509. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1510. scale='min(500\, iw*3/2):-1'
  1511. @end example
  1512. @section select
  1513. Select frames to pass in output.
  1514. It accepts in input an expression, which is evaluated for each input
  1515. frame. If the expression is evaluated to a non-zero value, the frame
  1516. is selected and passed to the output, otherwise it is discarded.
  1517. The expression can contain the following constants:
  1518. @table @option
  1519. @item n
  1520. the sequential number of the filtered frame, starting from 0
  1521. @item selected_n
  1522. the sequential number of the selected frame, starting from 0
  1523. @item prev_selected_n
  1524. the sequential number of the last selected frame, NAN if undefined
  1525. @item TB
  1526. timebase of the input timestamps
  1527. @item pts
  1528. the PTS (Presentation TimeStamp) of the filtered video frame,
  1529. expressed in @var{TB} units, NAN if undefined
  1530. @item t
  1531. the PTS (Presentation TimeStamp) of the filtered video frame,
  1532. expressed in seconds, NAN if undefined
  1533. @item prev_pts
  1534. the PTS of the previously filtered video frame, NAN if undefined
  1535. @item prev_selected_pts
  1536. the PTS of the last previously filtered video frame, NAN if undefined
  1537. @item prev_selected_t
  1538. the PTS of the last previously selected video frame, NAN if undefined
  1539. @item start_pts
  1540. the PTS of the first video frame in the video, NAN if undefined
  1541. @item start_t
  1542. the time of the first video frame in the video, NAN if undefined
  1543. @item pict_type
  1544. the type of the filtered frame, can assume one of the following
  1545. values:
  1546. @table @option
  1547. @item I
  1548. @item P
  1549. @item B
  1550. @item S
  1551. @item SI
  1552. @item SP
  1553. @item BI
  1554. @end table
  1555. @item interlace_type
  1556. the frame interlace type, can assume one of the following values:
  1557. @table @option
  1558. @item PROGRESSIVE
  1559. the frame is progressive (not interlaced)
  1560. @item TOPFIRST
  1561. the frame is top-field-first
  1562. @item BOTTOMFIRST
  1563. the frame is bottom-field-first
  1564. @end table
  1565. @item key
  1566. 1 if the filtered frame is a key-frame, 0 otherwise
  1567. @item pos
  1568. the position in the file of the filtered frame, -1 if the information
  1569. is not available (e.g. for synthetic video)
  1570. @end table
  1571. The default value of the select expression is "1".
  1572. Some examples follow:
  1573. @example
  1574. # select all frames in input
  1575. select
  1576. # the above is the same as:
  1577. select=1
  1578. # skip all frames:
  1579. select=0
  1580. # select only I-frames
  1581. select='eq(pict_type\,I)'
  1582. # select one frame every 100
  1583. select='not(mod(n\,100))'
  1584. # select only frames contained in the 10-20 time interval
  1585. select='gte(t\,10)*lte(t\,20)'
  1586. # select only I frames contained in the 10-20 time interval
  1587. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1588. # select frames with a minimum distance of 10 seconds
  1589. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1590. @end example
  1591. @anchor{setdar}
  1592. @section setdar
  1593. Set the Display Aspect Ratio for the filter output video.
  1594. This is done by changing the specified Sample (aka Pixel) Aspect
  1595. Ratio, according to the following equation:
  1596. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1597. Keep in mind that this filter does not modify the pixel dimensions of
  1598. the video frame. Also the display aspect ratio set by this filter may
  1599. be changed by later filters in the filterchain, e.g. in case of
  1600. scaling or if another "setdar" or a "setsar" filter is applied.
  1601. The filter accepts a parameter string which represents the wanted
  1602. display aspect ratio.
  1603. The parameter can be a floating point number string, or an expression
  1604. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1605. numerator and denominator of the aspect ratio.
  1606. If the parameter is not specified, it is assumed the value "0:1".
  1607. For example to change the display aspect ratio to 16:9, specify:
  1608. @example
  1609. setdar=16:9
  1610. # the above is equivalent to
  1611. setdar=1.77777
  1612. @end example
  1613. See also the @ref{setsar} filter documentation.
  1614. @section setpts
  1615. Change the PTS (presentation timestamp) of the input video frames.
  1616. Accept in input an expression evaluated through the eval API, which
  1617. can contain the following constants:
  1618. @table @option
  1619. @item PTS
  1620. the presentation timestamp in input
  1621. @item N
  1622. the count of the input frame, starting from 0.
  1623. @item STARTPTS
  1624. the PTS of the first video frame
  1625. @item INTERLACED
  1626. tell if the current frame is interlaced
  1627. @item POS
  1628. original position in the file of the frame, or undefined if undefined
  1629. for the current frame
  1630. @item PREV_INPTS
  1631. previous input PTS
  1632. @item PREV_OUTPTS
  1633. previous output PTS
  1634. @end table
  1635. Some examples follow:
  1636. @example
  1637. # start counting PTS from zero
  1638. setpts=PTS-STARTPTS
  1639. # fast motion
  1640. setpts=0.5*PTS
  1641. # slow motion
  1642. setpts=2.0*PTS
  1643. # fixed rate 25 fps
  1644. setpts=N/(25*TB)
  1645. # fixed rate 25 fps with some jitter
  1646. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1647. @end example
  1648. @anchor{setsar}
  1649. @section setsar
  1650. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1651. Note that as a consequence of the application of this filter, the
  1652. output display aspect ratio will change according to the following
  1653. equation:
  1654. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1655. Keep in mind that the sample aspect ratio set by this filter may be
  1656. changed by later filters in the filterchain, e.g. if another "setsar"
  1657. or a "setdar" filter is applied.
  1658. The filter accepts a parameter string which represents the wanted
  1659. sample aspect ratio.
  1660. The parameter can be a floating point number string, or an expression
  1661. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1662. numerator and denominator of the aspect ratio.
  1663. If the parameter is not specified, it is assumed the value "0:1".
  1664. For example to change the sample aspect ratio to 10:11, specify:
  1665. @example
  1666. setsar=10:11
  1667. @end example
  1668. @section settb
  1669. Set the timebase to use for the output frames timestamps.
  1670. It is mainly useful for testing timebase configuration.
  1671. It accepts in input an arithmetic expression representing a rational.
  1672. The expression can contain the constants "AVTB" (the
  1673. default timebase), and "intb" (the input timebase).
  1674. The default value for the input is "intb".
  1675. Follow some examples.
  1676. @example
  1677. # set the timebase to 1/25
  1678. settb=1/25
  1679. # set the timebase to 1/10
  1680. settb=0.1
  1681. #set the timebase to 1001/1000
  1682. settb=1+0.001
  1683. #set the timebase to 2*intb
  1684. settb=2*intb
  1685. #set the default timebase value
  1686. settb=AVTB
  1687. @end example
  1688. @section showinfo
  1689. Show a line containing various information for each input video frame.
  1690. The input video is not modified.
  1691. The shown line contains a sequence of key/value pairs of the form
  1692. @var{key}:@var{value}.
  1693. A description of each shown parameter follows:
  1694. @table @option
  1695. @item n
  1696. sequential number of the input frame, starting from 0
  1697. @item pts
  1698. Presentation TimeStamp of the input frame, expressed as a number of
  1699. time base units. The time base unit depends on the filter input pad.
  1700. @item pts_time
  1701. Presentation TimeStamp of the input frame, expressed as a number of
  1702. seconds
  1703. @item pos
  1704. position of the frame in the input stream, -1 if this information in
  1705. unavailable and/or meaningless (for example in case of synthetic video)
  1706. @item fmt
  1707. pixel format name
  1708. @item sar
  1709. sample aspect ratio of the input frame, expressed in the form
  1710. @var{num}/@var{den}
  1711. @item s
  1712. size of the input frame, expressed in the form
  1713. @var{width}x@var{height}
  1714. @item i
  1715. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1716. for bottom field first)
  1717. @item iskey
  1718. 1 if the frame is a key frame, 0 otherwise
  1719. @item type
  1720. picture type of the input frame ("I" for an I-frame, "P" for a
  1721. P-frame, "B" for a B-frame, "?" for unknown type).
  1722. Check also the documentation of the @code{AVPictureType} enum and of
  1723. the @code{av_get_picture_type_char} function defined in
  1724. @file{libavutil/avutil.h}.
  1725. @item checksum
  1726. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1727. @item plane_checksum
  1728. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1729. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1730. @end table
  1731. @section slicify
  1732. Pass the images of input video on to next video filter as multiple
  1733. slices.
  1734. @example
  1735. ffmpeg -i in.avi -vf "slicify=32" out.avi
  1736. @end example
  1737. The filter accepts the slice height as parameter. If the parameter is
  1738. not specified it will use the default value of 16.
  1739. Adding this in the beginning of filter chains should make filtering
  1740. faster due to better use of the memory cache.
  1741. @section split
  1742. Pass on the input video to two outputs. Both outputs are identical to
  1743. the input video.
  1744. For example:
  1745. @example
  1746. [in] split [splitout1][splitout2];
  1747. [splitout1] crop=100:100:0:0 [cropout];
  1748. [splitout2] pad=200:200:100:100 [padout];
  1749. @end example
  1750. will create two separate outputs from the same input, one cropped and
  1751. one padded.
  1752. @section transpose
  1753. Transpose rows with columns in the input video and optionally flip it.
  1754. It accepts a parameter representing an integer, which can assume the
  1755. values:
  1756. @table @samp
  1757. @item 0
  1758. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1759. @example
  1760. L.R L.l
  1761. . . -> . .
  1762. l.r R.r
  1763. @end example
  1764. @item 1
  1765. Rotate by 90 degrees clockwise, that is:
  1766. @example
  1767. L.R l.L
  1768. . . -> . .
  1769. l.r r.R
  1770. @end example
  1771. @item 2
  1772. Rotate by 90 degrees counterclockwise, that is:
  1773. @example
  1774. L.R R.r
  1775. . . -> . .
  1776. l.r L.l
  1777. @end example
  1778. @item 3
  1779. Rotate by 90 degrees clockwise and vertically flip, that is:
  1780. @example
  1781. L.R r.R
  1782. . . -> . .
  1783. l.r l.L
  1784. @end example
  1785. @end table
  1786. @section unsharp
  1787. Sharpen or blur the input video.
  1788. It accepts the following parameters:
  1789. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1790. Negative values for the amount will blur the input video, while positive
  1791. values will sharpen. All parameters are optional and default to the
  1792. equivalent of the string '5:5:1.0:5:5:0.0'.
  1793. @table @option
  1794. @item luma_msize_x
  1795. Set the luma matrix horizontal size. It can be an integer between 3
  1796. and 13, default value is 5.
  1797. @item luma_msize_y
  1798. Set the luma matrix vertical size. It can be an integer between 3
  1799. and 13, default value is 5.
  1800. @item luma_amount
  1801. Set the luma effect strength. It can be a float number between -2.0
  1802. and 5.0, default value is 1.0.
  1803. @item chroma_msize_x
  1804. Set the chroma matrix horizontal size. It can be an integer between 3
  1805. and 13, default value is 5.
  1806. @item chroma_msize_y
  1807. Set the chroma matrix vertical size. It can be an integer between 3
  1808. and 13, default value is 5.
  1809. @item chroma_amount
  1810. Set the chroma effect strength. It can be a float number between -2.0
  1811. and 5.0, default value is 0.0.
  1812. @end table
  1813. @example
  1814. # Strong luma sharpen effect parameters
  1815. unsharp=7:7:2.5
  1816. # Strong blur of both luma and chroma parameters
  1817. unsharp=7:7:-2:7:7:-2
  1818. # Use the default values with @command{ffmpeg}
  1819. ffmpeg -i in.avi -vf "unsharp" out.mp4
  1820. @end example
  1821. @section vflip
  1822. Flip the input video vertically.
  1823. @example
  1824. ffmpeg -i in.avi -vf "vflip" out.avi
  1825. @end example
  1826. @section yadif
  1827. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1828. filter").
  1829. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1830. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1831. following values:
  1832. @table @option
  1833. @item 0
  1834. output 1 frame for each frame
  1835. @item 1
  1836. output 1 frame for each field
  1837. @item 2
  1838. like 0 but skips spatial interlacing check
  1839. @item 3
  1840. like 1 but skips spatial interlacing check
  1841. @end table
  1842. Default value is 0.
  1843. @var{parity} specifies the picture field parity assumed for the input
  1844. interlaced video, accepts one of the following values:
  1845. @table @option
  1846. @item 0
  1847. assume top field first
  1848. @item 1
  1849. assume bottom field first
  1850. @item -1
  1851. enable automatic detection
  1852. @end table
  1853. Default value is -1.
  1854. If interlacing is unknown or decoder does not export this information,
  1855. top field first will be assumed.
  1856. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1857. and only deinterlace frames marked as interlaced
  1858. @table @option
  1859. @item 0
  1860. deinterlace all frames
  1861. @item 1
  1862. only deinterlace frames marked as interlaced
  1863. @end table
  1864. Default value is 0.
  1865. @c man end VIDEO FILTERS
  1866. @chapter Video Sources
  1867. @c man begin VIDEO SOURCES
  1868. Below is a description of the currently available video sources.
  1869. @section buffer
  1870. Buffer video frames, and make them available to the filter chain.
  1871. This source is mainly intended for a programmatic use, in particular
  1872. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1873. It accepts the following parameters:
  1874. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  1875. All the parameters but @var{scale_params} need to be explicitly
  1876. defined.
  1877. Follows the list of the accepted parameters.
  1878. @table @option
  1879. @item width, height
  1880. Specify the width and height of the buffered video frames.
  1881. @item pix_fmt_string
  1882. A string representing the pixel format of the buffered video frames.
  1883. It may be a number corresponding to a pixel format, or a pixel format
  1884. name.
  1885. @item timebase_num, timebase_den
  1886. Specify numerator and denomitor of the timebase assumed by the
  1887. timestamps of the buffered frames.
  1888. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1889. Specify numerator and denominator of the sample aspect ratio assumed
  1890. by the video frames.
  1891. @item scale_params
  1892. Specify the optional parameters to be used for the scale filter which
  1893. is automatically inserted when an input change is detected in the
  1894. input size or format.
  1895. @end table
  1896. For example:
  1897. @example
  1898. buffer=320:240:yuv410p:1:24:1:1
  1899. @end example
  1900. will instruct the source to accept video frames with size 320x240 and
  1901. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1902. square pixels (1:1 sample aspect ratio).
  1903. Since the pixel format with name "yuv410p" corresponds to the number 6
  1904. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1905. this example corresponds to:
  1906. @example
  1907. buffer=320:240:6:1:24:1:1
  1908. @end example
  1909. @section color
  1910. Provide an uniformly colored input.
  1911. It accepts the following parameters:
  1912. @var{color}:@var{frame_size}:@var{frame_rate}
  1913. Follows the description of the accepted parameters.
  1914. @table @option
  1915. @item color
  1916. Specify the color of the source. It can be the name of a color (case
  1917. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1918. alpha specifier. The default value is "black".
  1919. @item frame_size
  1920. Specify the size of the sourced video, it may be a string of the form
  1921. @var{width}x@var{height}, or the name of a size abbreviation. The
  1922. default value is "320x240".
  1923. @item frame_rate
  1924. Specify the frame rate of the sourced video, as the number of frames
  1925. generated per second. It has to be a string in the format
  1926. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1927. number or a valid video frame rate abbreviation. The default value is
  1928. "25".
  1929. @end table
  1930. For example the following graph description will generate a red source
  1931. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1932. frames per second, which will be overlayed over the source connected
  1933. to the pad with identifier "in".
  1934. @example
  1935. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1936. @end example
  1937. @section movie
  1938. Read a video stream from a movie container.
  1939. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1940. @var{movie_name} is the name of the resource to read (not necessarily
  1941. a file but also a device or a stream accessed through some protocol),
  1942. and @var{options} is an optional sequence of @var{key}=@var{value}
  1943. pairs, separated by ":".
  1944. The description of the accepted options follows.
  1945. @table @option
  1946. @item format_name, f
  1947. Specifies the format assumed for the movie to read, and can be either
  1948. the name of a container or an input device. If not specified the
  1949. format is guessed from @var{movie_name} or by probing.
  1950. @item seek_point, sp
  1951. Specifies the seek point in seconds, the frames will be output
  1952. starting from this seek point, the parameter is evaluated with
  1953. @code{av_strtod} so the numerical value may be suffixed by an IS
  1954. postfix. Default value is "0".
  1955. @item stream_index, si
  1956. Specifies the index of the video stream to read. If the value is -1,
  1957. the best suited video stream will be automatically selected. Default
  1958. value is "-1".
  1959. @end table
  1960. This filter allows to overlay a second video on top of main input of
  1961. a filtergraph as shown in this graph:
  1962. @example
  1963. input -----------> deltapts0 --> overlay --> output
  1964. ^
  1965. |
  1966. movie --> scale--> deltapts1 -------+
  1967. @end example
  1968. Some examples follow:
  1969. @example
  1970. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1971. # on top of the input labelled as "in".
  1972. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1973. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1974. # read from a video4linux2 device, and overlay it on top of the input
  1975. # labelled as "in"
  1976. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1977. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1978. @end example
  1979. @section mptestsrc
  1980. Generate various test patterns, as generated by the MPlayer test filter.
  1981. The size of the generated video is fixed, and is 256x256.
  1982. This source is useful in particular for testing encoding features.
  1983. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  1984. separated by ":". The description of the accepted options follows.
  1985. @table @option
  1986. @item rate, r
  1987. Specify the frame rate of the sourced video, as the number of frames
  1988. generated per second. It has to be a string in the format
  1989. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1990. number or a valid video frame rate abbreviation. The default value is
  1991. "25".
  1992. @item duration, d
  1993. Set the video duration of the sourced video. The accepted syntax is:
  1994. @example
  1995. [-]HH[:MM[:SS[.m...]]]
  1996. [-]S+[.m...]
  1997. @end example
  1998. See also the function @code{av_parse_time()}.
  1999. If not specified, or the expressed duration is negative, the video is
  2000. supposed to be generated forever.
  2001. @item test, t
  2002. Set the number or the name of the test to perform. Supported tests are:
  2003. @table @option
  2004. @item dc_luma
  2005. @item dc_chroma
  2006. @item freq_luma
  2007. @item freq_chroma
  2008. @item amp_luma
  2009. @item amp_chroma
  2010. @item cbp
  2011. @item mv
  2012. @item ring1
  2013. @item ring2
  2014. @item all
  2015. @end table
  2016. Default value is "all", which will cycle through the list of all tests.
  2017. @end table
  2018. For example the following:
  2019. @example
  2020. testsrc=t=dc_luma
  2021. @end example
  2022. will generate a "dc_luma" test pattern.
  2023. @section frei0r_src
  2024. Provide a frei0r source.
  2025. To enable compilation of this filter you need to install the frei0r
  2026. header and configure FFmpeg with --enable-frei0r.
  2027. The source supports the syntax:
  2028. @example
  2029. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2030. @end example
  2031. @var{size} is the size of the video to generate, may be a string of the
  2032. form @var{width}x@var{height} or a frame size abbreviation.
  2033. @var{rate} is the rate of the video to generate, may be a string of
  2034. the form @var{num}/@var{den} or a frame rate abbreviation.
  2035. @var{src_name} is the name to the frei0r source to load. For more
  2036. information regarding frei0r and how to set the parameters read the
  2037. section @ref{frei0r} in the description of the video filters.
  2038. Some examples follow:
  2039. @example
  2040. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2041. # which is overlayed on the overlay filter main input
  2042. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2043. @end example
  2044. @section life
  2045. Generate a life pattern.
  2046. This source is based on a generalization of John Conway's life game.
  2047. The sourced input represents a life grid, each pixel represents a cell
  2048. which can be in one of two possible states, alive or dead. Every cell
  2049. interacts with its eight neighbours, which are the cells that are
  2050. horizontally, vertically, or diagonally adjacent.
  2051. At each interaction the grid evolves according to the adopted rule,
  2052. which specifies the number of neighbor alive cells which will make a
  2053. cell stay alive or born. The @option{rule} option allows to specify
  2054. the rule to adopt.
  2055. This source accepts a list of options in the form of
  2056. @var{key}=@var{value} pairs separated by ":". A description of the
  2057. accepted options follows.
  2058. @table @option
  2059. @item filename, f
  2060. Set the file from which to read the initial grid state. In the file,
  2061. each non-whitespace character is considered an alive cell, and newline
  2062. is used to delimit the end of each row.
  2063. If this option is not specified, the initial grid is generated
  2064. randomly.
  2065. @item rate, r
  2066. Set the video rate, that is the number of frames generated per second.
  2067. Default is 25.
  2068. @item random_fill_ratio, ratio
  2069. Set the random fill ratio for the initial random grid. It is a
  2070. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2071. It is ignored when a file is specified.
  2072. @item random_seed, seed
  2073. Set the seed for filling the initial random grid, must be an integer
  2074. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2075. set to -1, the filter will try to use a good random seed on a best
  2076. effort basis.
  2077. @item rule
  2078. Set the life rule.
  2079. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2080. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2081. @var{NS} specifies the number of alive neighbor cells which make a
  2082. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2083. which make a dead cell to become alive (i.e. to "born").
  2084. "s" and "b" can be used in place of "S" and "B", respectively.
  2085. Alternatively a rule can be specified by an 18-bits integer. The 9
  2086. high order bits are used to encode the next cell state if it is alive
  2087. for each number of neighbor alive cells, the low order bits specify
  2088. the rule for "borning" new cells. Higher order bits encode for an
  2089. higher number of neighbor cells.
  2090. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2091. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2092. Default value is "S23/B3", which is the original Conway's game of life
  2093. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2094. cells, and will born a new cell if there are three alive cells around
  2095. a dead cell.
  2096. @item size, s
  2097. Set the size of the output video.
  2098. If @option{filename} is specified, the size is set by default to the
  2099. same size of the input file. If @option{size} is set, it must contain
  2100. the size specified in the input file, and the initial grid defined in
  2101. that file is centered in the larger resulting area.
  2102. If a filename is not specified, the size value defaults to "320x240"
  2103. (used for a randomly generated initial grid).
  2104. @item stitch
  2105. If set to 1, stitch the left and right grid edges together, and the
  2106. top and bottom edges also. Defaults to 1.
  2107. @end table
  2108. @subsection Examples
  2109. @itemize
  2110. @item
  2111. Read a grid from @file{pattern}, and center it on a grid of size
  2112. 300x300 pixels:
  2113. @example
  2114. life=f=pattern:s=300x300
  2115. @end example
  2116. @item
  2117. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2118. @example
  2119. life=ratio=2/3:s=200x200
  2120. @end example
  2121. @item
  2122. Specify a custom rule for evolving a randomly generated grid:
  2123. @example
  2124. life=rule=S14/B34
  2125. @end example
  2126. @end itemize
  2127. @section nullsrc, rgbtestsrc, testsrc
  2128. The @code{nullsrc} source returns unprocessed video frames. It is
  2129. mainly useful to be employed in analysis / debugging tools, or as the
  2130. source for filters which ignore the input data.
  2131. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2132. detecting RGB vs BGR issues. You should see a red, green and blue
  2133. stripe from top to bottom.
  2134. The @code{testsrc} source generates a test video pattern, showing a
  2135. color pattern, a scrolling gradient and a timestamp. This is mainly
  2136. intended for testing purposes.
  2137. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2138. separated by ":". The description of the accepted options follows.
  2139. @table @option
  2140. @item size, s
  2141. Specify the size of the sourced video, it may be a string of the form
  2142. @var{width}x@var{height}, or the name of a size abbreviation. The
  2143. default value is "320x240".
  2144. @item rate, r
  2145. Specify the frame rate of the sourced video, as the number of frames
  2146. generated per second. It has to be a string in the format
  2147. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2148. number or a valid video frame rate abbreviation. The default value is
  2149. "25".
  2150. @item sar
  2151. Set the sample aspect ratio of the sourced video.
  2152. @item duration
  2153. Set the video duration of the sourced video. The accepted syntax is:
  2154. @example
  2155. [-]HH[:MM[:SS[.m...]]]
  2156. [-]S+[.m...]
  2157. @end example
  2158. See also the function @code{av_parse_time()}.
  2159. If not specified, or the expressed duration is negative, the video is
  2160. supposed to be generated forever.
  2161. @end table
  2162. For example the following:
  2163. @example
  2164. testsrc=duration=5.3:size=qcif:rate=10
  2165. @end example
  2166. will generate a video with a duration of 5.3 seconds, with size
  2167. 176x144 and a frame rate of 10 frames per second.
  2168. If the input content is to be ignored, @code{nullsrc} can be used. The
  2169. following command generates noise in the luminance plane by employing
  2170. the @code{mp=geq} filter:
  2171. @example
  2172. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2173. @end example
  2174. @c man end VIDEO SOURCES
  2175. @chapter Video Sinks
  2176. @c man begin VIDEO SINKS
  2177. Below is a description of the currently available video sinks.
  2178. @section buffersink
  2179. Buffer video frames, and make them available to the end of the filter
  2180. graph.
  2181. This sink is mainly intended for a programmatic use, in particular
  2182. through the interface defined in @file{libavfilter/buffersink.h}.
  2183. It does not require a string parameter in input, but you need to
  2184. specify a pointer to a list of supported pixel formats terminated by
  2185. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2186. when initializing this sink.
  2187. @section nullsink
  2188. Null video sink, do absolutely nothing with the input video. It is
  2189. mainly useful as a template and to be employed in analysis / debugging
  2190. tools.
  2191. @c man end VIDEO SINKS