You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2174 lines
77KB

  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
  25. */
  26. #include <inttypes.h>
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "unary.h"
  30. #include "mpeg4audio.h"
  31. #include "bytestream.h"
  32. #include "bgmc.h"
  33. #include "bswapdsp.h"
  34. #include "internal.h"
  35. #include "mlz.h"
  36. #include "libavutil/samplefmt.h"
  37. #include "libavutil/crc.h"
  38. #include "libavutil/softfloat_ieee754.h"
  39. #include "libavutil/intfloat.h"
  40. #include "libavutil/intreadwrite.h"
  41. #include <stdint.h>
  42. /** Rice parameters and corresponding index offsets for decoding the
  43. * indices of scaled PARCOR values. The table chosen is set globally
  44. * by the encoder and stored in ALSSpecificConfig.
  45. */
  46. static const int8_t parcor_rice_table[3][20][2] = {
  47. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  48. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  49. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  50. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  51. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  52. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  53. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  54. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  55. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  56. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  57. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  58. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  59. };
  60. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  61. * To be indexed by the Rice coded indices.
  62. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  63. * Actual values are divided by 32 in order to be stored in 16 bits.
  64. */
  65. static const int16_t parcor_scaled_values[] = {
  66. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  67. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  68. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  69. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  70. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  71. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  72. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  73. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  74. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  75. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  76. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  77. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  78. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  79. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  80. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  81. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  82. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  83. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  84. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  85. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  86. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  87. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  88. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  89. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  90. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  91. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  92. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  93. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  94. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  95. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  96. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  97. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  98. };
  99. /** Gain values of p(0) for long-term prediction.
  100. * To be indexed by the Rice coded indices.
  101. */
  102. static const uint8_t ltp_gain_values [4][4] = {
  103. { 0, 8, 16, 24},
  104. {32, 40, 48, 56},
  105. {64, 70, 76, 82},
  106. {88, 92, 96, 100}
  107. };
  108. /** Inter-channel weighting factors for multi-channel correlation.
  109. * To be indexed by the Rice coded indices.
  110. */
  111. static const int16_t mcc_weightings[] = {
  112. 204, 192, 179, 166, 153, 140, 128, 115,
  113. 102, 89, 76, 64, 51, 38, 25, 12,
  114. 0, -12, -25, -38, -51, -64, -76, -89,
  115. -102, -115, -128, -140, -153, -166, -179, -192
  116. };
  117. /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  118. */
  119. static const uint8_t tail_code[16][6] = {
  120. { 74, 44, 25, 13, 7, 3},
  121. { 68, 42, 24, 13, 7, 3},
  122. { 58, 39, 23, 13, 7, 3},
  123. {126, 70, 37, 19, 10, 5},
  124. {132, 70, 37, 20, 10, 5},
  125. {124, 70, 38, 20, 10, 5},
  126. {120, 69, 37, 20, 11, 5},
  127. {116, 67, 37, 20, 11, 5},
  128. {108, 66, 36, 20, 10, 5},
  129. {102, 62, 36, 20, 10, 5},
  130. { 88, 58, 34, 19, 10, 5},
  131. {162, 89, 49, 25, 13, 7},
  132. {156, 87, 49, 26, 14, 7},
  133. {150, 86, 47, 26, 14, 7},
  134. {142, 84, 47, 26, 14, 7},
  135. {131, 79, 46, 26, 14, 7}
  136. };
  137. enum RA_Flag {
  138. RA_FLAG_NONE,
  139. RA_FLAG_FRAMES,
  140. RA_FLAG_HEADER
  141. };
  142. typedef struct ALSSpecificConfig {
  143. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  144. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  145. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  146. int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
  147. int frame_length; ///< frame length for each frame (last frame may differ)
  148. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  149. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  150. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  151. int coef_table; ///< table index of Rice code parameters
  152. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  153. int max_order; ///< maximum prediction order (0..1023)
  154. int block_switching; ///< number of block switching levels
  155. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  156. int sb_part; ///< sub-block partition
  157. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  158. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  159. int chan_config; ///< indicates that a chan_config_info field is present
  160. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  161. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  162. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  163. int *chan_pos; ///< original channel positions
  164. int crc_enabled; ///< enable Cyclic Redundancy Checksum
  165. } ALSSpecificConfig;
  166. typedef struct ALSChannelData {
  167. int stop_flag;
  168. int master_channel;
  169. int time_diff_flag;
  170. int time_diff_sign;
  171. int time_diff_index;
  172. int weighting[6];
  173. } ALSChannelData;
  174. typedef struct ALSDecContext {
  175. AVCodecContext *avctx;
  176. ALSSpecificConfig sconf;
  177. GetBitContext gb;
  178. BswapDSPContext bdsp;
  179. const AVCRC *crc_table;
  180. uint32_t crc_org; ///< CRC value of the original input data
  181. uint32_t crc; ///< CRC value calculated from decoded data
  182. unsigned int cur_frame_length; ///< length of the current frame to decode
  183. unsigned int frame_id; ///< the frame ID / number of the current frame
  184. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  185. unsigned int cs_switch; ///< if true, channel rearrangement is done
  186. unsigned int num_blocks; ///< number of blocks used in the current frame
  187. unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
  188. uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
  189. int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
  190. int ltp_lag_length; ///< number of bits used for ltp lag value
  191. int *const_block; ///< contains const_block flags for all channels
  192. unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
  193. unsigned int *opt_order; ///< contains opt_order flags for all channels
  194. int *store_prev_samples; ///< contains store_prev_samples flags for all channels
  195. int *use_ltp; ///< contains use_ltp flags for all channels
  196. int *ltp_lag; ///< contains ltp lag values for all channels
  197. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  198. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  199. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  200. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  201. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  202. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  203. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  204. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  205. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  206. int *reverted_channels; ///< stores a flag for each reverted channel
  207. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  208. int32_t **raw_samples; ///< decoded raw samples for each channel
  209. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  210. uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
  211. MLZ* mlz; ///< masked lz decompression structure
  212. SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels
  213. int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels
  214. int *shift_value; ///< value by which the binary point is to be shifted for all channels
  215. int *last_shift_value; ///< contains last shift value for all channels
  216. int **raw_mantissa; ///< decoded mantissa bits of the difference signal
  217. unsigned char *larray; ///< buffer to store the output of masked lz decompression
  218. int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples
  219. } ALSDecContext;
  220. typedef struct ALSBlockData {
  221. unsigned int block_length; ///< number of samples within the block
  222. unsigned int ra_block; ///< if true, this is a random access block
  223. int *const_block; ///< if true, this is a constant value block
  224. int js_blocks; ///< true if this block contains a difference signal
  225. unsigned int *shift_lsbs; ///< shift of values for this block
  226. unsigned int *opt_order; ///< prediction order of this block
  227. int *store_prev_samples;///< if true, carryover samples have to be stored
  228. int *use_ltp; ///< if true, long-term prediction is used
  229. int *ltp_lag; ///< lag value for long-term prediction
  230. int *ltp_gain; ///< gain values for ltp 5-tap filter
  231. int32_t *quant_cof; ///< quantized parcor coefficients
  232. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  233. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  234. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  235. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  236. } ALSBlockData;
  237. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  238. {
  239. #ifdef DEBUG
  240. AVCodecContext *avctx = ctx->avctx;
  241. ALSSpecificConfig *sconf = &ctx->sconf;
  242. ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
  243. ff_dlog(avctx, "floating = %i\n", sconf->floating);
  244. ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
  245. ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
  246. ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
  247. ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
  248. ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
  249. ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  250. ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
  251. ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
  252. ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
  253. ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
  254. ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  255. ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
  256. ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
  257. ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
  258. ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
  259. ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  260. #endif
  261. }
  262. /** Read an ALSSpecificConfig from a buffer into the output struct.
  263. */
  264. static av_cold int read_specific_config(ALSDecContext *ctx)
  265. {
  266. GetBitContext gb;
  267. uint64_t ht_size;
  268. int i, config_offset;
  269. MPEG4AudioConfig m4ac = {0};
  270. ALSSpecificConfig *sconf = &ctx->sconf;
  271. AVCodecContext *avctx = ctx->avctx;
  272. uint32_t als_id, header_size, trailer_size;
  273. int ret;
  274. if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
  275. return ret;
  276. config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
  277. avctx->extradata_size * 8, 1);
  278. if (config_offset < 0)
  279. return AVERROR_INVALIDDATA;
  280. skip_bits_long(&gb, config_offset);
  281. if (get_bits_left(&gb) < (30 << 3))
  282. return AVERROR_INVALIDDATA;
  283. // read the fixed items
  284. als_id = get_bits_long(&gb, 32);
  285. avctx->sample_rate = m4ac.sample_rate;
  286. skip_bits_long(&gb, 32); // sample rate already known
  287. sconf->samples = get_bits_long(&gb, 32);
  288. avctx->channels = m4ac.channels;
  289. skip_bits(&gb, 16); // number of channels already known
  290. skip_bits(&gb, 3); // skip file_type
  291. sconf->resolution = get_bits(&gb, 3);
  292. sconf->floating = get_bits1(&gb);
  293. sconf->msb_first = get_bits1(&gb);
  294. sconf->frame_length = get_bits(&gb, 16) + 1;
  295. sconf->ra_distance = get_bits(&gb, 8);
  296. sconf->ra_flag = get_bits(&gb, 2);
  297. sconf->adapt_order = get_bits1(&gb);
  298. sconf->coef_table = get_bits(&gb, 2);
  299. sconf->long_term_prediction = get_bits1(&gb);
  300. sconf->max_order = get_bits(&gb, 10);
  301. sconf->block_switching = get_bits(&gb, 2);
  302. sconf->bgmc = get_bits1(&gb);
  303. sconf->sb_part = get_bits1(&gb);
  304. sconf->joint_stereo = get_bits1(&gb);
  305. sconf->mc_coding = get_bits1(&gb);
  306. sconf->chan_config = get_bits1(&gb);
  307. sconf->chan_sort = get_bits1(&gb);
  308. sconf->crc_enabled = get_bits1(&gb);
  309. sconf->rlslms = get_bits1(&gb);
  310. skip_bits(&gb, 5); // skip 5 reserved bits
  311. skip_bits1(&gb); // skip aux_data_enabled
  312. // check for ALSSpecificConfig struct
  313. if (als_id != MKBETAG('A','L','S','\0'))
  314. return AVERROR_INVALIDDATA;
  315. if (avctx->channels > FF_SANE_NB_CHANNELS) {
  316. avpriv_request_sample(avctx, "Huge number of channels\n");
  317. return AVERROR_PATCHWELCOME;
  318. }
  319. ctx->cur_frame_length = sconf->frame_length;
  320. // read channel config
  321. if (sconf->chan_config)
  322. sconf->chan_config_info = get_bits(&gb, 16);
  323. // TODO: use this to set avctx->channel_layout
  324. // read channel sorting
  325. if (sconf->chan_sort && avctx->channels > 1) {
  326. int chan_pos_bits = av_ceil_log2(avctx->channels);
  327. int bits_needed = avctx->channels * chan_pos_bits + 7;
  328. if (get_bits_left(&gb) < bits_needed)
  329. return AVERROR_INVALIDDATA;
  330. if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
  331. return AVERROR(ENOMEM);
  332. ctx->cs_switch = 1;
  333. for (i = 0; i < avctx->channels; i++) {
  334. sconf->chan_pos[i] = -1;
  335. }
  336. for (i = 0; i < avctx->channels; i++) {
  337. int idx;
  338. idx = get_bits(&gb, chan_pos_bits);
  339. if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
  340. av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
  341. ctx->cs_switch = 0;
  342. break;
  343. }
  344. sconf->chan_pos[idx] = i;
  345. }
  346. align_get_bits(&gb);
  347. }
  348. // read fixed header and trailer sizes,
  349. // if size = 0xFFFFFFFF then there is no data field!
  350. if (get_bits_left(&gb) < 64)
  351. return AVERROR_INVALIDDATA;
  352. header_size = get_bits_long(&gb, 32);
  353. trailer_size = get_bits_long(&gb, 32);
  354. if (header_size == 0xFFFFFFFF)
  355. header_size = 0;
  356. if (trailer_size == 0xFFFFFFFF)
  357. trailer_size = 0;
  358. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  359. // skip the header and trailer data
  360. if (get_bits_left(&gb) < ht_size)
  361. return AVERROR_INVALIDDATA;
  362. if (ht_size > INT32_MAX)
  363. return AVERROR_PATCHWELCOME;
  364. skip_bits_long(&gb, ht_size);
  365. // initialize CRC calculation
  366. if (sconf->crc_enabled) {
  367. if (get_bits_left(&gb) < 32)
  368. return AVERROR_INVALIDDATA;
  369. if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
  370. ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
  371. ctx->crc = 0xFFFFFFFF;
  372. ctx->crc_org = ~get_bits_long(&gb, 32);
  373. } else
  374. skip_bits_long(&gb, 32);
  375. }
  376. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  377. dprint_specific_config(ctx);
  378. return 0;
  379. }
  380. /** Check the ALSSpecificConfig for unsupported features.
  381. */
  382. static int check_specific_config(ALSDecContext *ctx)
  383. {
  384. ALSSpecificConfig *sconf = &ctx->sconf;
  385. int error = 0;
  386. // report unsupported feature and set error value
  387. #define MISSING_ERR(cond, str, errval) \
  388. { \
  389. if (cond) { \
  390. avpriv_report_missing_feature(ctx->avctx, \
  391. str); \
  392. error = errval; \
  393. } \
  394. }
  395. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
  396. return error;
  397. }
  398. /** Parse the bs_info field to extract the block partitioning used in
  399. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  400. */
  401. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  402. unsigned int div, unsigned int **div_blocks,
  403. unsigned int *num_blocks)
  404. {
  405. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  406. // if the level is valid and the investigated bit n is set
  407. // then recursively check both children at bits (2n+1) and (2n+2)
  408. n *= 2;
  409. div += 1;
  410. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  411. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  412. } else {
  413. // else the bit is not set or the last level has been reached
  414. // (bit implicitly not set)
  415. **div_blocks = div;
  416. (*div_blocks)++;
  417. (*num_blocks)++;
  418. }
  419. }
  420. /** Read and decode a Rice codeword.
  421. */
  422. static int32_t decode_rice(GetBitContext *gb, unsigned int k)
  423. {
  424. int max = get_bits_left(gb) - k;
  425. unsigned q = get_unary(gb, 0, max);
  426. int r = k ? get_bits1(gb) : !(q & 1);
  427. if (k > 1) {
  428. q <<= (k - 1);
  429. q += get_bits_long(gb, k - 1);
  430. } else if (!k) {
  431. q >>= 1;
  432. }
  433. return r ? q : ~q;
  434. }
  435. /** Convert PARCOR coefficient k to direct filter coefficient.
  436. */
  437. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  438. {
  439. int i, j;
  440. for (i = 0, j = k - 1; i < j; i++, j--) {
  441. unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  442. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  443. cof[i] += tmp1;
  444. }
  445. if (i == j)
  446. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  447. cof[k] = par[k];
  448. }
  449. /** Read block switching field if necessary and set actual block sizes.
  450. * Also assure that the block sizes of the last frame correspond to the
  451. * actual number of samples.
  452. */
  453. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  454. uint32_t *bs_info)
  455. {
  456. ALSSpecificConfig *sconf = &ctx->sconf;
  457. GetBitContext *gb = &ctx->gb;
  458. unsigned int *ptr_div_blocks = div_blocks;
  459. unsigned int b;
  460. if (sconf->block_switching) {
  461. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  462. *bs_info = get_bits_long(gb, bs_info_len);
  463. *bs_info <<= (32 - bs_info_len);
  464. }
  465. ctx->num_blocks = 0;
  466. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  467. // The last frame may have an overdetermined block structure given in
  468. // the bitstream. In that case the defined block structure would need
  469. // more samples than available to be consistent.
  470. // The block structure is actually used but the block sizes are adapted
  471. // to fit the actual number of available samples.
  472. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  473. // This results in the actual block sizes: 2 2 1 0.
  474. // This is not specified in 14496-3 but actually done by the reference
  475. // codec RM22 revision 2.
  476. // This appears to happen in case of an odd number of samples in the last
  477. // frame which is actually not allowed by the block length switching part
  478. // of 14496-3.
  479. // The ALS conformance files feature an odd number of samples in the last
  480. // frame.
  481. for (b = 0; b < ctx->num_blocks; b++)
  482. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  483. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  484. unsigned int remaining = ctx->cur_frame_length;
  485. for (b = 0; b < ctx->num_blocks; b++) {
  486. if (remaining <= div_blocks[b]) {
  487. div_blocks[b] = remaining;
  488. ctx->num_blocks = b + 1;
  489. break;
  490. }
  491. remaining -= div_blocks[b];
  492. }
  493. }
  494. }
  495. /** Read the block data for a constant block
  496. */
  497. static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  498. {
  499. ALSSpecificConfig *sconf = &ctx->sconf;
  500. AVCodecContext *avctx = ctx->avctx;
  501. GetBitContext *gb = &ctx->gb;
  502. if (bd->block_length <= 0)
  503. return AVERROR_INVALIDDATA;
  504. *bd->raw_samples = 0;
  505. *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
  506. bd->js_blocks = get_bits1(gb);
  507. // skip 5 reserved bits
  508. skip_bits(gb, 5);
  509. if (*bd->const_block) {
  510. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  511. *bd->raw_samples = get_sbits_long(gb, const_val_bits);
  512. }
  513. // ensure constant block decoding by reusing this field
  514. *bd->const_block = 1;
  515. return 0;
  516. }
  517. /** Decode the block data for a constant block
  518. */
  519. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  520. {
  521. int smp = bd->block_length - 1;
  522. int32_t val = *bd->raw_samples;
  523. int32_t *dst = bd->raw_samples + 1;
  524. // write raw samples into buffer
  525. for (; smp; smp--)
  526. *dst++ = val;
  527. }
  528. /** Read the block data for a non-constant block
  529. */
  530. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  531. {
  532. ALSSpecificConfig *sconf = &ctx->sconf;
  533. AVCodecContext *avctx = ctx->avctx;
  534. GetBitContext *gb = &ctx->gb;
  535. unsigned int k;
  536. unsigned int s[8];
  537. unsigned int sx[8];
  538. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  539. unsigned int start = 0;
  540. unsigned int opt_order;
  541. int sb;
  542. int32_t *quant_cof = bd->quant_cof;
  543. int32_t *current_res;
  544. // ensure variable block decoding by reusing this field
  545. *bd->const_block = 0;
  546. *bd->opt_order = 1;
  547. bd->js_blocks = get_bits1(gb);
  548. opt_order = *bd->opt_order;
  549. // determine the number of subblocks for entropy decoding
  550. if (!sconf->bgmc && !sconf->sb_part) {
  551. log2_sub_blocks = 0;
  552. } else {
  553. if (sconf->bgmc && sconf->sb_part)
  554. log2_sub_blocks = get_bits(gb, 2);
  555. else
  556. log2_sub_blocks = 2 * get_bits1(gb);
  557. }
  558. sub_blocks = 1 << log2_sub_blocks;
  559. // do not continue in case of a damaged stream since
  560. // block_length must be evenly divisible by sub_blocks
  561. if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
  562. av_log(avctx, AV_LOG_WARNING,
  563. "Block length is not evenly divisible by the number of subblocks.\n");
  564. return AVERROR_INVALIDDATA;
  565. }
  566. sb_length = bd->block_length >> log2_sub_blocks;
  567. if (sconf->bgmc) {
  568. s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
  569. for (k = 1; k < sub_blocks; k++)
  570. s[k] = s[k - 1] + decode_rice(gb, 2);
  571. for (k = 0; k < sub_blocks; k++) {
  572. sx[k] = s[k] & 0x0F;
  573. s [k] >>= 4;
  574. }
  575. } else {
  576. s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
  577. for (k = 1; k < sub_blocks; k++)
  578. s[k] = s[k - 1] + decode_rice(gb, 0);
  579. }
  580. for (k = 1; k < sub_blocks; k++)
  581. if (s[k] > 32) {
  582. av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
  583. return AVERROR_INVALIDDATA;
  584. }
  585. if (get_bits1(gb))
  586. *bd->shift_lsbs = get_bits(gb, 4) + 1;
  587. *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
  588. if (!sconf->rlslms) {
  589. if (sconf->adapt_order && sconf->max_order) {
  590. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  591. 2, sconf->max_order + 1));
  592. *bd->opt_order = get_bits(gb, opt_order_length);
  593. if (*bd->opt_order > sconf->max_order) {
  594. *bd->opt_order = sconf->max_order;
  595. av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
  596. return AVERROR_INVALIDDATA;
  597. }
  598. } else {
  599. *bd->opt_order = sconf->max_order;
  600. }
  601. if (*bd->opt_order > bd->block_length) {
  602. *bd->opt_order = bd->block_length;
  603. av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
  604. return AVERROR_INVALIDDATA;
  605. }
  606. opt_order = *bd->opt_order;
  607. if (opt_order) {
  608. int add_base;
  609. if (sconf->coef_table == 3) {
  610. add_base = 0x7F;
  611. // read coefficient 0
  612. quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
  613. // read coefficient 1
  614. if (opt_order > 1)
  615. quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
  616. // read coefficients 2 to opt_order
  617. for (k = 2; k < opt_order; k++)
  618. quant_cof[k] = get_bits(gb, 7);
  619. } else {
  620. int k_max;
  621. add_base = 1;
  622. // read coefficient 0 to 19
  623. k_max = FFMIN(opt_order, 20);
  624. for (k = 0; k < k_max; k++) {
  625. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  626. int offset = parcor_rice_table[sconf->coef_table][k][0];
  627. quant_cof[k] = decode_rice(gb, rice_param) + offset;
  628. if (quant_cof[k] < -64 || quant_cof[k] > 63) {
  629. av_log(avctx, AV_LOG_ERROR,
  630. "quant_cof %"PRId32" is out of range.\n",
  631. quant_cof[k]);
  632. return AVERROR_INVALIDDATA;
  633. }
  634. }
  635. // read coefficients 20 to 126
  636. k_max = FFMIN(opt_order, 127);
  637. for (; k < k_max; k++)
  638. quant_cof[k] = decode_rice(gb, 2) + (k & 1);
  639. // read coefficients 127 to opt_order
  640. for (; k < opt_order; k++)
  641. quant_cof[k] = decode_rice(gb, 1);
  642. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  643. if (opt_order > 1)
  644. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  645. }
  646. for (k = 2; k < opt_order; k++)
  647. quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
  648. }
  649. }
  650. // read LTP gain and lag values
  651. if (sconf->long_term_prediction) {
  652. *bd->use_ltp = get_bits1(gb);
  653. if (*bd->use_ltp) {
  654. int r, c;
  655. bd->ltp_gain[0] = decode_rice(gb, 1) * 8;
  656. bd->ltp_gain[1] = decode_rice(gb, 2) * 8;
  657. r = get_unary(gb, 0, 4);
  658. c = get_bits(gb, 2);
  659. if (r >= 4) {
  660. av_log(avctx, AV_LOG_ERROR, "r overflow\n");
  661. return AVERROR_INVALIDDATA;
  662. }
  663. bd->ltp_gain[2] = ltp_gain_values[r][c];
  664. bd->ltp_gain[3] = decode_rice(gb, 2) * 8;
  665. bd->ltp_gain[4] = decode_rice(gb, 1) * 8;
  666. *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
  667. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  668. }
  669. }
  670. // read first value and residuals in case of a random access block
  671. if (bd->ra_block) {
  672. start = FFMIN(opt_order, 3);
  673. av_assert0(sb_length <= sconf->frame_length);
  674. if (sb_length <= start) {
  675. // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
  676. av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
  677. return AVERROR_PATCHWELCOME;
  678. }
  679. if (opt_order)
  680. bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
  681. if (opt_order > 1)
  682. bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
  683. if (opt_order > 2)
  684. bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
  685. }
  686. // read all residuals
  687. if (sconf->bgmc) {
  688. int delta[8];
  689. unsigned int k [8];
  690. unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
  691. // read most significant bits
  692. unsigned int high;
  693. unsigned int low;
  694. unsigned int value;
  695. int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
  696. if (ret < 0)
  697. return ret;
  698. current_res = bd->raw_samples + start;
  699. for (sb = 0; sb < sub_blocks; sb++) {
  700. unsigned int sb_len = sb_length - (sb ? 0 : start);
  701. k [sb] = s[sb] > b ? s[sb] - b : 0;
  702. delta[sb] = 5 - s[sb] + k[sb];
  703. ff_bgmc_decode(gb, sb_len, current_res,
  704. delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
  705. current_res += sb_len;
  706. }
  707. ff_bgmc_decode_end(gb);
  708. // read least significant bits and tails
  709. current_res = bd->raw_samples + start;
  710. for (sb = 0; sb < sub_blocks; sb++, start = 0) {
  711. unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
  712. unsigned int cur_k = k[sb];
  713. unsigned int cur_s = s[sb];
  714. for (; start < sb_length; start++) {
  715. int32_t res = *current_res;
  716. if (res == cur_tail_code) {
  717. unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
  718. << (5 - delta[sb]);
  719. res = decode_rice(gb, cur_s);
  720. if (res >= 0) {
  721. res += (max_msb ) << cur_k;
  722. } else {
  723. res -= (max_msb - 1) << cur_k;
  724. }
  725. } else {
  726. if (res > cur_tail_code)
  727. res--;
  728. if (res & 1)
  729. res = -res;
  730. res >>= 1;
  731. if (cur_k) {
  732. res <<= cur_k;
  733. res |= get_bits_long(gb, cur_k);
  734. }
  735. }
  736. *current_res++ = res;
  737. }
  738. }
  739. } else {
  740. current_res = bd->raw_samples + start;
  741. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  742. for (; start < sb_length; start++)
  743. *current_res++ = decode_rice(gb, s[sb]);
  744. }
  745. return 0;
  746. }
  747. /** Decode the block data for a non-constant block
  748. */
  749. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  750. {
  751. ALSSpecificConfig *sconf = &ctx->sconf;
  752. unsigned int block_length = bd->block_length;
  753. unsigned int smp = 0;
  754. unsigned int k;
  755. int opt_order = *bd->opt_order;
  756. int sb;
  757. int64_t y;
  758. int32_t *quant_cof = bd->quant_cof;
  759. int32_t *lpc_cof = bd->lpc_cof;
  760. int32_t *raw_samples = bd->raw_samples;
  761. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  762. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  763. // reverse long-term prediction
  764. if (*bd->use_ltp) {
  765. int ltp_smp;
  766. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  767. int center = ltp_smp - *bd->ltp_lag;
  768. int begin = FFMAX(0, center - 2);
  769. int end = center + 3;
  770. int tab = 5 - (end - begin);
  771. int base;
  772. y = 1 << 6;
  773. for (base = begin; base < end; base++, tab++)
  774. y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
  775. raw_samples[ltp_smp] += y >> 7;
  776. }
  777. }
  778. // reconstruct all samples from residuals
  779. if (bd->ra_block) {
  780. for (smp = 0; smp < opt_order; smp++) {
  781. y = 1 << 19;
  782. for (sb = 0; sb < smp; sb++)
  783. y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  784. *raw_samples++ -= y >> 20;
  785. parcor_to_lpc(smp, quant_cof, lpc_cof);
  786. }
  787. } else {
  788. for (k = 0; k < opt_order; k++)
  789. parcor_to_lpc(k, quant_cof, lpc_cof);
  790. // store previous samples in case that they have to be altered
  791. if (*bd->store_prev_samples)
  792. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  793. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  794. // reconstruct difference signal for prediction (joint-stereo)
  795. if (bd->js_blocks && bd->raw_other) {
  796. uint32_t *left, *right;
  797. if (bd->raw_other > raw_samples) { // D = R - L
  798. left = raw_samples;
  799. right = bd->raw_other;
  800. } else { // D = R - L
  801. left = bd->raw_other;
  802. right = raw_samples;
  803. }
  804. for (sb = -1; sb >= -sconf->max_order; sb--)
  805. raw_samples[sb] = right[sb] - left[sb];
  806. }
  807. // reconstruct shifted signal
  808. if (*bd->shift_lsbs)
  809. for (sb = -1; sb >= -sconf->max_order; sb--)
  810. raw_samples[sb] >>= *bd->shift_lsbs;
  811. }
  812. // reverse linear prediction coefficients for efficiency
  813. lpc_cof = lpc_cof + opt_order;
  814. for (sb = 0; sb < opt_order; sb++)
  815. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  816. // reconstruct raw samples
  817. raw_samples = bd->raw_samples + smp;
  818. lpc_cof = lpc_cof_reversed + opt_order;
  819. for (; raw_samples < raw_samples_end; raw_samples++) {
  820. y = 1 << 19;
  821. for (sb = -opt_order; sb < 0; sb++)
  822. y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
  823. *raw_samples -= y >> 20;
  824. }
  825. raw_samples = bd->raw_samples;
  826. // restore previous samples in case that they have been altered
  827. if (*bd->store_prev_samples)
  828. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  829. sizeof(*raw_samples) * sconf->max_order);
  830. return 0;
  831. }
  832. /** Read the block data.
  833. */
  834. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  835. {
  836. int ret;
  837. GetBitContext *gb = &ctx->gb;
  838. ALSSpecificConfig *sconf = &ctx->sconf;
  839. *bd->shift_lsbs = 0;
  840. // read block type flag and read the samples accordingly
  841. if (get_bits1(gb)) {
  842. ret = read_var_block_data(ctx, bd);
  843. } else {
  844. ret = read_const_block_data(ctx, bd);
  845. }
  846. if (!sconf->mc_coding || ctx->js_switch)
  847. align_get_bits(gb);
  848. return ret;
  849. }
  850. /** Decode the block data.
  851. */
  852. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  853. {
  854. unsigned int smp;
  855. int ret = 0;
  856. // read block type flag and read the samples accordingly
  857. if (*bd->const_block)
  858. decode_const_block_data(ctx, bd);
  859. else
  860. ret = decode_var_block_data(ctx, bd); // always return 0
  861. if (ret < 0)
  862. return ret;
  863. // TODO: read RLSLMS extension data
  864. if (*bd->shift_lsbs)
  865. for (smp = 0; smp < bd->block_length; smp++)
  866. bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
  867. return 0;
  868. }
  869. /** Read and decode block data successively.
  870. */
  871. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  872. {
  873. int ret;
  874. if ((ret = read_block(ctx, bd)) < 0)
  875. return ret;
  876. return decode_block(ctx, bd);
  877. }
  878. /** Compute the number of samples left to decode for the current frame and
  879. * sets these samples to zero.
  880. */
  881. static void zero_remaining(unsigned int b, unsigned int b_max,
  882. const unsigned int *div_blocks, int32_t *buf)
  883. {
  884. unsigned int count = 0;
  885. while (b < b_max)
  886. count += div_blocks[b++];
  887. if (count)
  888. memset(buf, 0, sizeof(*buf) * count);
  889. }
  890. /** Decode blocks independently.
  891. */
  892. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  893. unsigned int c, const unsigned int *div_blocks,
  894. unsigned int *js_blocks)
  895. {
  896. int ret;
  897. unsigned int b;
  898. ALSBlockData bd = { 0 };
  899. bd.ra_block = ra_frame;
  900. bd.const_block = ctx->const_block;
  901. bd.shift_lsbs = ctx->shift_lsbs;
  902. bd.opt_order = ctx->opt_order;
  903. bd.store_prev_samples = ctx->store_prev_samples;
  904. bd.use_ltp = ctx->use_ltp;
  905. bd.ltp_lag = ctx->ltp_lag;
  906. bd.ltp_gain = ctx->ltp_gain[0];
  907. bd.quant_cof = ctx->quant_cof[0];
  908. bd.lpc_cof = ctx->lpc_cof[0];
  909. bd.prev_raw_samples = ctx->prev_raw_samples;
  910. bd.raw_samples = ctx->raw_samples[c];
  911. for (b = 0; b < ctx->num_blocks; b++) {
  912. bd.block_length = div_blocks[b];
  913. if ((ret = read_decode_block(ctx, &bd)) < 0) {
  914. // damaged block, write zero for the rest of the frame
  915. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  916. return ret;
  917. }
  918. bd.raw_samples += div_blocks[b];
  919. bd.ra_block = 0;
  920. }
  921. return 0;
  922. }
  923. /** Decode blocks dependently.
  924. */
  925. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  926. unsigned int c, const unsigned int *div_blocks,
  927. unsigned int *js_blocks)
  928. {
  929. ALSSpecificConfig *sconf = &ctx->sconf;
  930. unsigned int offset = 0;
  931. unsigned int b;
  932. int ret;
  933. ALSBlockData bd[2] = { { 0 } };
  934. bd[0].ra_block = ra_frame;
  935. bd[0].const_block = ctx->const_block;
  936. bd[0].shift_lsbs = ctx->shift_lsbs;
  937. bd[0].opt_order = ctx->opt_order;
  938. bd[0].store_prev_samples = ctx->store_prev_samples;
  939. bd[0].use_ltp = ctx->use_ltp;
  940. bd[0].ltp_lag = ctx->ltp_lag;
  941. bd[0].ltp_gain = ctx->ltp_gain[0];
  942. bd[0].quant_cof = ctx->quant_cof[0];
  943. bd[0].lpc_cof = ctx->lpc_cof[0];
  944. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  945. bd[0].js_blocks = *js_blocks;
  946. bd[1].ra_block = ra_frame;
  947. bd[1].const_block = ctx->const_block;
  948. bd[1].shift_lsbs = ctx->shift_lsbs;
  949. bd[1].opt_order = ctx->opt_order;
  950. bd[1].store_prev_samples = ctx->store_prev_samples;
  951. bd[1].use_ltp = ctx->use_ltp;
  952. bd[1].ltp_lag = ctx->ltp_lag;
  953. bd[1].ltp_gain = ctx->ltp_gain[0];
  954. bd[1].quant_cof = ctx->quant_cof[0];
  955. bd[1].lpc_cof = ctx->lpc_cof[0];
  956. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  957. bd[1].js_blocks = *(js_blocks + 1);
  958. // decode all blocks
  959. for (b = 0; b < ctx->num_blocks; b++) {
  960. unsigned int s;
  961. bd[0].block_length = div_blocks[b];
  962. bd[1].block_length = div_blocks[b];
  963. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  964. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  965. bd[0].raw_other = bd[1].raw_samples;
  966. bd[1].raw_other = bd[0].raw_samples;
  967. if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
  968. (ret = read_decode_block(ctx, &bd[1])) < 0)
  969. goto fail;
  970. // reconstruct joint-stereo blocks
  971. if (bd[0].js_blocks) {
  972. if (bd[1].js_blocks)
  973. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
  974. for (s = 0; s < div_blocks[b]; s++)
  975. bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
  976. } else if (bd[1].js_blocks) {
  977. for (s = 0; s < div_blocks[b]; s++)
  978. bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
  979. }
  980. offset += div_blocks[b];
  981. bd[0].ra_block = 0;
  982. bd[1].ra_block = 0;
  983. }
  984. // store carryover raw samples,
  985. // the others channel raw samples are stored by the calling function.
  986. memmove(ctx->raw_samples[c] - sconf->max_order,
  987. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  988. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  989. return 0;
  990. fail:
  991. // damaged block, write zero for the rest of the frame
  992. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  993. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  994. return ret;
  995. }
  996. static inline int als_weighting(GetBitContext *gb, int k, int off)
  997. {
  998. int idx = av_clip(decode_rice(gb, k) + off,
  999. 0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
  1000. return mcc_weightings[idx];
  1001. }
  1002. /** Read the channel data.
  1003. */
  1004. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  1005. {
  1006. GetBitContext *gb = &ctx->gb;
  1007. ALSChannelData *current = cd;
  1008. unsigned int channels = ctx->avctx->channels;
  1009. int entries = 0;
  1010. while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
  1011. current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
  1012. if (current->master_channel >= channels) {
  1013. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
  1014. return AVERROR_INVALIDDATA;
  1015. }
  1016. if (current->master_channel != c) {
  1017. current->time_diff_flag = get_bits1(gb);
  1018. current->weighting[0] = als_weighting(gb, 1, 16);
  1019. current->weighting[1] = als_weighting(gb, 2, 14);
  1020. current->weighting[2] = als_weighting(gb, 1, 16);
  1021. if (current->time_diff_flag) {
  1022. current->weighting[3] = als_weighting(gb, 1, 16);
  1023. current->weighting[4] = als_weighting(gb, 1, 16);
  1024. current->weighting[5] = als_weighting(gb, 1, 16);
  1025. current->time_diff_sign = get_bits1(gb);
  1026. current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
  1027. }
  1028. }
  1029. current++;
  1030. entries++;
  1031. }
  1032. if (entries == channels) {
  1033. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
  1034. return AVERROR_INVALIDDATA;
  1035. }
  1036. align_get_bits(gb);
  1037. return 0;
  1038. }
  1039. /** Recursively reverts the inter-channel correlation for a block.
  1040. */
  1041. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  1042. ALSChannelData **cd, int *reverted,
  1043. unsigned int offset, int c)
  1044. {
  1045. ALSChannelData *ch = cd[c];
  1046. unsigned int dep = 0;
  1047. unsigned int channels = ctx->avctx->channels;
  1048. unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
  1049. if (reverted[c])
  1050. return 0;
  1051. reverted[c] = 1;
  1052. while (dep < channels && !ch[dep].stop_flag) {
  1053. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  1054. ch[dep].master_channel);
  1055. dep++;
  1056. }
  1057. if (dep == channels) {
  1058. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
  1059. return AVERROR_INVALIDDATA;
  1060. }
  1061. bd->const_block = ctx->const_block + c;
  1062. bd->shift_lsbs = ctx->shift_lsbs + c;
  1063. bd->opt_order = ctx->opt_order + c;
  1064. bd->store_prev_samples = ctx->store_prev_samples + c;
  1065. bd->use_ltp = ctx->use_ltp + c;
  1066. bd->ltp_lag = ctx->ltp_lag + c;
  1067. bd->ltp_gain = ctx->ltp_gain[c];
  1068. bd->lpc_cof = ctx->lpc_cof[c];
  1069. bd->quant_cof = ctx->quant_cof[c];
  1070. bd->raw_samples = ctx->raw_samples[c] + offset;
  1071. for (dep = 0; !ch[dep].stop_flag; dep++) {
  1072. ptrdiff_t smp;
  1073. ptrdiff_t begin = 1;
  1074. ptrdiff_t end = bd->block_length - 1;
  1075. int64_t y;
  1076. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  1077. if (ch[dep].master_channel == c)
  1078. continue;
  1079. if (ch[dep].time_diff_flag) {
  1080. int t = ch[dep].time_diff_index;
  1081. if (ch[dep].time_diff_sign) {
  1082. t = -t;
  1083. if (begin < t) {
  1084. av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
  1085. return AVERROR_INVALIDDATA;
  1086. }
  1087. begin -= t;
  1088. } else {
  1089. if (end < t) {
  1090. av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
  1091. return AVERROR_INVALIDDATA;
  1092. }
  1093. end -= t;
  1094. }
  1095. if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
  1096. FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
  1097. av_log(ctx->avctx, AV_LOG_ERROR,
  1098. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1099. master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
  1100. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1101. return AVERROR_INVALIDDATA;
  1102. }
  1103. for (smp = begin; smp < end; smp++) {
  1104. y = (1 << 6) +
  1105. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  1106. MUL64(ch[dep].weighting[1], master[smp ]) +
  1107. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  1108. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  1109. MUL64(ch[dep].weighting[4], master[smp + t]) +
  1110. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  1111. bd->raw_samples[smp] += y >> 7;
  1112. }
  1113. } else {
  1114. if (begin - 1 < ctx->raw_buffer - master ||
  1115. end + 1 > ctx->raw_buffer + channels * channel_size - master) {
  1116. av_log(ctx->avctx, AV_LOG_ERROR,
  1117. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1118. master + begin - 1, master + end + 1,
  1119. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1120. return AVERROR_INVALIDDATA;
  1121. }
  1122. for (smp = begin; smp < end; smp++) {
  1123. y = (1 << 6) +
  1124. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  1125. MUL64(ch[dep].weighting[1], master[smp ]) +
  1126. MUL64(ch[dep].weighting[2], master[smp + 1]);
  1127. bd->raw_samples[smp] += y >> 7;
  1128. }
  1129. }
  1130. }
  1131. return 0;
  1132. }
  1133. /** multiply two softfloats and handle the rounding off
  1134. */
  1135. static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
  1136. uint64_t mantissa_temp;
  1137. uint64_t mask_64;
  1138. int cutoff_bit_count;
  1139. unsigned char last_2_bits;
  1140. unsigned int mantissa;
  1141. int32_t sign;
  1142. uint32_t return_val = 0;
  1143. int bit_count = 48;
  1144. sign = a.sign ^ b.sign;
  1145. // Multiply mantissa bits in a 64-bit register
  1146. mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
  1147. mask_64 = (uint64_t)0x1 << 47;
  1148. if (!mantissa_temp)
  1149. return FLOAT_0;
  1150. // Count the valid bit count
  1151. while (!(mantissa_temp & mask_64) && mask_64) {
  1152. bit_count--;
  1153. mask_64 >>= 1;
  1154. }
  1155. // Round off
  1156. cutoff_bit_count = bit_count - 24;
  1157. if (cutoff_bit_count > 0) {
  1158. last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
  1159. if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
  1160. // Need to round up
  1161. mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
  1162. }
  1163. }
  1164. if (cutoff_bit_count >= 0) {
  1165. mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
  1166. } else {
  1167. mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
  1168. }
  1169. // Need one more shift?
  1170. if (mantissa & 0x01000000ul) {
  1171. bit_count++;
  1172. mantissa >>= 1;
  1173. }
  1174. if (!sign) {
  1175. return_val = 0x80000000U;
  1176. }
  1177. return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
  1178. return_val |= mantissa;
  1179. return av_bits2sf_ieee754(return_val);
  1180. }
  1181. /** Read and decode the floating point sample data
  1182. */
  1183. static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
  1184. AVCodecContext *avctx = ctx->avctx;
  1185. GetBitContext *gb = &ctx->gb;
  1186. SoftFloat_IEEE754 *acf = ctx->acf;
  1187. int *shift_value = ctx->shift_value;
  1188. int *last_shift_value = ctx->last_shift_value;
  1189. int *last_acf_mantissa = ctx->last_acf_mantissa;
  1190. int **raw_mantissa = ctx->raw_mantissa;
  1191. int *nbits = ctx->nbits;
  1192. unsigned char *larray = ctx->larray;
  1193. int frame_length = ctx->cur_frame_length;
  1194. SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
  1195. unsigned int partA_flag;
  1196. unsigned int highest_byte;
  1197. unsigned int shift_amp;
  1198. uint32_t tmp_32;
  1199. int use_acf;
  1200. int nchars;
  1201. int i;
  1202. int c;
  1203. long k;
  1204. long nbits_aligned;
  1205. unsigned long acc;
  1206. unsigned long j;
  1207. uint32_t sign;
  1208. uint32_t e;
  1209. uint32_t mantissa;
  1210. skip_bits_long(gb, 32); //num_bytes_diff_float
  1211. use_acf = get_bits1(gb);
  1212. if (ra_frame) {
  1213. memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
  1214. memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) );
  1215. ff_mlz_flush_dict(ctx->mlz);
  1216. }
  1217. for (c = 0; c < avctx->channels; ++c) {
  1218. if (use_acf) {
  1219. //acf_flag
  1220. if (get_bits1(gb)) {
  1221. tmp_32 = get_bits(gb, 23);
  1222. last_acf_mantissa[c] = tmp_32;
  1223. } else {
  1224. tmp_32 = last_acf_mantissa[c];
  1225. }
  1226. acf[c] = av_bits2sf_ieee754(tmp_32);
  1227. } else {
  1228. acf[c] = FLOAT_1;
  1229. }
  1230. highest_byte = get_bits(gb, 2);
  1231. partA_flag = get_bits1(gb);
  1232. shift_amp = get_bits1(gb);
  1233. if (shift_amp) {
  1234. shift_value[c] = get_bits(gb, 8);
  1235. last_shift_value[c] = shift_value[c];
  1236. } else {
  1237. shift_value[c] = last_shift_value[c];
  1238. }
  1239. if (partA_flag) {
  1240. if (!get_bits1(gb)) { //uncompressed
  1241. for (i = 0; i < frame_length; ++i) {
  1242. if (ctx->raw_samples[c][i] == 0) {
  1243. ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
  1244. }
  1245. }
  1246. } else { //compressed
  1247. nchars = 0;
  1248. for (i = 0; i < frame_length; ++i) {
  1249. if (ctx->raw_samples[c][i] == 0) {
  1250. nchars += 4;
  1251. }
  1252. }
  1253. tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
  1254. if(tmp_32 != nchars) {
  1255. av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%d, %d).\n", tmp_32, nchars);
  1256. return AVERROR_INVALIDDATA;
  1257. }
  1258. for (i = 0; i < frame_length; ++i) {
  1259. ctx->raw_mantissa[c][i] = AV_RB32(larray);
  1260. }
  1261. }
  1262. }
  1263. //decode part B
  1264. if (highest_byte) {
  1265. for (i = 0; i < frame_length; ++i) {
  1266. if (ctx->raw_samples[c][i] != 0) {
  1267. //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
  1268. if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
  1269. nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
  1270. } else {
  1271. nbits[i] = 23;
  1272. }
  1273. nbits[i] = FFMIN(nbits[i], highest_byte*8);
  1274. }
  1275. }
  1276. if (!get_bits1(gb)) { //uncompressed
  1277. for (i = 0; i < frame_length; ++i) {
  1278. if (ctx->raw_samples[c][i] != 0) {
  1279. raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
  1280. }
  1281. }
  1282. } else { //compressed
  1283. nchars = 0;
  1284. for (i = 0; i < frame_length; ++i) {
  1285. if (ctx->raw_samples[c][i]) {
  1286. nchars += (int) nbits[i] / 8;
  1287. if (nbits[i] & 7) {
  1288. ++nchars;
  1289. }
  1290. }
  1291. }
  1292. tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
  1293. if(tmp_32 != nchars) {
  1294. av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%d, %d).\n", tmp_32, nchars);
  1295. return AVERROR_INVALIDDATA;
  1296. }
  1297. j = 0;
  1298. for (i = 0; i < frame_length; ++i) {
  1299. if (ctx->raw_samples[c][i]) {
  1300. if (nbits[i] & 7) {
  1301. nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
  1302. } else {
  1303. nbits_aligned = nbits[i];
  1304. }
  1305. acc = 0;
  1306. for (k = 0; k < nbits_aligned/8; ++k) {
  1307. acc = (acc << 8) + larray[j++];
  1308. }
  1309. acc >>= (nbits_aligned - nbits[i]);
  1310. raw_mantissa[c][i] = acc;
  1311. }
  1312. }
  1313. }
  1314. }
  1315. for (i = 0; i < frame_length; ++i) {
  1316. SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
  1317. pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
  1318. if (ctx->raw_samples[c][i] != 0) {
  1319. if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
  1320. pcm_sf = multiply(acf[c], pcm_sf);
  1321. }
  1322. sign = pcm_sf.sign;
  1323. e = pcm_sf.exp;
  1324. mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
  1325. while(mantissa >= 0x1000000) {
  1326. e++;
  1327. mantissa >>= 1;
  1328. }
  1329. if (mantissa) e += (shift_value[c] - 127);
  1330. mantissa &= 0x007fffffUL;
  1331. tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
  1332. ctx->raw_samples[c][i] = tmp_32;
  1333. } else {
  1334. ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
  1335. }
  1336. }
  1337. align_get_bits(gb);
  1338. }
  1339. return 0;
  1340. }
  1341. /** Read the frame data.
  1342. */
  1343. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  1344. {
  1345. ALSSpecificConfig *sconf = &ctx->sconf;
  1346. AVCodecContext *avctx = ctx->avctx;
  1347. GetBitContext *gb = &ctx->gb;
  1348. unsigned int div_blocks[32]; ///< block sizes.
  1349. unsigned int c;
  1350. unsigned int js_blocks[2];
  1351. uint32_t bs_info = 0;
  1352. int ret;
  1353. // skip the size of the ra unit if present in the frame
  1354. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  1355. skip_bits_long(gb, 32);
  1356. if (sconf->mc_coding && sconf->joint_stereo) {
  1357. ctx->js_switch = get_bits1(gb);
  1358. align_get_bits(gb);
  1359. }
  1360. if (!sconf->mc_coding || ctx->js_switch) {
  1361. int independent_bs = !sconf->joint_stereo;
  1362. for (c = 0; c < avctx->channels; c++) {
  1363. js_blocks[0] = 0;
  1364. js_blocks[1] = 0;
  1365. get_block_sizes(ctx, div_blocks, &bs_info);
  1366. // if joint_stereo and block_switching is set, independent decoding
  1367. // is signaled via the first bit of bs_info
  1368. if (sconf->joint_stereo && sconf->block_switching)
  1369. if (bs_info >> 31)
  1370. independent_bs = 2;
  1371. // if this is the last channel, it has to be decoded independently
  1372. if (c == avctx->channels - 1)
  1373. independent_bs = 1;
  1374. if (independent_bs) {
  1375. ret = decode_blocks_ind(ctx, ra_frame, c,
  1376. div_blocks, js_blocks);
  1377. if (ret < 0)
  1378. return ret;
  1379. independent_bs--;
  1380. } else {
  1381. ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
  1382. if (ret < 0)
  1383. return ret;
  1384. c++;
  1385. }
  1386. // store carryover raw samples
  1387. memmove(ctx->raw_samples[c] - sconf->max_order,
  1388. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1389. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1390. }
  1391. } else { // multi-channel coding
  1392. ALSBlockData bd = { 0 };
  1393. int b, ret;
  1394. int *reverted_channels = ctx->reverted_channels;
  1395. unsigned int offset = 0;
  1396. for (c = 0; c < avctx->channels; c++)
  1397. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  1398. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
  1399. return AVERROR_INVALIDDATA;
  1400. }
  1401. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  1402. bd.ra_block = ra_frame;
  1403. bd.prev_raw_samples = ctx->prev_raw_samples;
  1404. get_block_sizes(ctx, div_blocks, &bs_info);
  1405. for (b = 0; b < ctx->num_blocks; b++) {
  1406. bd.block_length = div_blocks[b];
  1407. if (bd.block_length <= 0) {
  1408. av_log(ctx->avctx, AV_LOG_WARNING,
  1409. "Invalid block length %u in channel data!\n",
  1410. bd.block_length);
  1411. continue;
  1412. }
  1413. for (c = 0; c < avctx->channels; c++) {
  1414. bd.const_block = ctx->const_block + c;
  1415. bd.shift_lsbs = ctx->shift_lsbs + c;
  1416. bd.opt_order = ctx->opt_order + c;
  1417. bd.store_prev_samples = ctx->store_prev_samples + c;
  1418. bd.use_ltp = ctx->use_ltp + c;
  1419. bd.ltp_lag = ctx->ltp_lag + c;
  1420. bd.ltp_gain = ctx->ltp_gain[c];
  1421. bd.lpc_cof = ctx->lpc_cof[c];
  1422. bd.quant_cof = ctx->quant_cof[c];
  1423. bd.raw_samples = ctx->raw_samples[c] + offset;
  1424. bd.raw_other = NULL;
  1425. if ((ret = read_block(ctx, &bd)) < 0)
  1426. return ret;
  1427. if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
  1428. return ret;
  1429. }
  1430. for (c = 0; c < avctx->channels; c++) {
  1431. ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
  1432. reverted_channels, offset, c);
  1433. if (ret < 0)
  1434. return ret;
  1435. }
  1436. for (c = 0; c < avctx->channels; c++) {
  1437. bd.const_block = ctx->const_block + c;
  1438. bd.shift_lsbs = ctx->shift_lsbs + c;
  1439. bd.opt_order = ctx->opt_order + c;
  1440. bd.store_prev_samples = ctx->store_prev_samples + c;
  1441. bd.use_ltp = ctx->use_ltp + c;
  1442. bd.ltp_lag = ctx->ltp_lag + c;
  1443. bd.ltp_gain = ctx->ltp_gain[c];
  1444. bd.lpc_cof = ctx->lpc_cof[c];
  1445. bd.quant_cof = ctx->quant_cof[c];
  1446. bd.raw_samples = ctx->raw_samples[c] + offset;
  1447. if ((ret = decode_block(ctx, &bd)) < 0)
  1448. return ret;
  1449. }
  1450. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1451. offset += div_blocks[b];
  1452. bd.ra_block = 0;
  1453. }
  1454. // store carryover raw samples
  1455. for (c = 0; c < avctx->channels; c++)
  1456. memmove(ctx->raw_samples[c] - sconf->max_order,
  1457. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1458. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1459. }
  1460. if (sconf->floating) {
  1461. read_diff_float_data(ctx, ra_frame);
  1462. }
  1463. if (get_bits_left(gb) < 0) {
  1464. av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
  1465. return AVERROR_INVALIDDATA;
  1466. }
  1467. return 0;
  1468. }
  1469. /** Decode an ALS frame.
  1470. */
  1471. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
  1472. AVPacket *avpkt)
  1473. {
  1474. ALSDecContext *ctx = avctx->priv_data;
  1475. AVFrame *frame = data;
  1476. ALSSpecificConfig *sconf = &ctx->sconf;
  1477. const uint8_t *buffer = avpkt->data;
  1478. int buffer_size = avpkt->size;
  1479. int invalid_frame, ret;
  1480. unsigned int c, sample, ra_frame, bytes_read, shift;
  1481. if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
  1482. return ret;
  1483. // In the case that the distance between random access frames is set to zero
  1484. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1485. // For the first frame, if prediction is used, all samples used from the
  1486. // previous frame are assumed to be zero.
  1487. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1488. // the last frame to decode might have a different length
  1489. if (sconf->samples != 0xFFFFFFFF)
  1490. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1491. sconf->frame_length);
  1492. else
  1493. ctx->cur_frame_length = sconf->frame_length;
  1494. // decode the frame data
  1495. if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
  1496. av_log(ctx->avctx, AV_LOG_WARNING,
  1497. "Reading frame data failed. Skipping RA unit.\n");
  1498. ctx->frame_id++;
  1499. /* get output buffer */
  1500. frame->nb_samples = ctx->cur_frame_length;
  1501. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  1502. return ret;
  1503. // transform decoded frame into output format
  1504. #define INTERLEAVE_OUTPUT(bps) \
  1505. { \
  1506. int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
  1507. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1508. if (!ctx->cs_switch) { \
  1509. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1510. for (c = 0; c < avctx->channels; c++) \
  1511. *dest++ = ctx->raw_samples[c][sample] * (1U << shift); \
  1512. } else { \
  1513. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1514. for (c = 0; c < avctx->channels; c++) \
  1515. *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] * (1U << shift); \
  1516. } \
  1517. }
  1518. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1519. INTERLEAVE_OUTPUT(16)
  1520. } else {
  1521. INTERLEAVE_OUTPUT(32)
  1522. }
  1523. // update CRC
  1524. if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1525. int swap = HAVE_BIGENDIAN != sconf->msb_first;
  1526. if (ctx->avctx->bits_per_raw_sample == 24) {
  1527. int32_t *src = (int32_t *)frame->data[0];
  1528. for (sample = 0;
  1529. sample < ctx->cur_frame_length * avctx->channels;
  1530. sample++) {
  1531. int32_t v;
  1532. if (swap)
  1533. v = av_bswap32(src[sample]);
  1534. else
  1535. v = src[sample];
  1536. if (!HAVE_BIGENDIAN)
  1537. v >>= 8;
  1538. ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
  1539. }
  1540. } else {
  1541. uint8_t *crc_source;
  1542. if (swap) {
  1543. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1544. int16_t *src = (int16_t*) frame->data[0];
  1545. int16_t *dest = (int16_t*) ctx->crc_buffer;
  1546. for (sample = 0;
  1547. sample < ctx->cur_frame_length * avctx->channels;
  1548. sample++)
  1549. *dest++ = av_bswap16(src[sample]);
  1550. } else {
  1551. ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
  1552. (uint32_t *) frame->data[0],
  1553. ctx->cur_frame_length * avctx->channels);
  1554. }
  1555. crc_source = ctx->crc_buffer;
  1556. } else {
  1557. crc_source = frame->data[0];
  1558. }
  1559. ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
  1560. ctx->cur_frame_length * avctx->channels *
  1561. av_get_bytes_per_sample(avctx->sample_fmt));
  1562. }
  1563. // check CRC sums if this is the last frame
  1564. if (ctx->cur_frame_length != sconf->frame_length &&
  1565. ctx->crc_org != ctx->crc) {
  1566. av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
  1567. if (avctx->err_recognition & AV_EF_EXPLODE)
  1568. return AVERROR_INVALIDDATA;
  1569. }
  1570. }
  1571. *got_frame_ptr = 1;
  1572. bytes_read = invalid_frame ? buffer_size :
  1573. (get_bits_count(&ctx->gb) + 7) >> 3;
  1574. return bytes_read;
  1575. }
  1576. /** Uninitialize the ALS decoder.
  1577. */
  1578. static av_cold int decode_end(AVCodecContext *avctx)
  1579. {
  1580. ALSDecContext *ctx = avctx->priv_data;
  1581. int i;
  1582. av_freep(&ctx->sconf.chan_pos);
  1583. ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1584. av_freep(&ctx->const_block);
  1585. av_freep(&ctx->shift_lsbs);
  1586. av_freep(&ctx->opt_order);
  1587. av_freep(&ctx->store_prev_samples);
  1588. av_freep(&ctx->use_ltp);
  1589. av_freep(&ctx->ltp_lag);
  1590. av_freep(&ctx->ltp_gain);
  1591. av_freep(&ctx->ltp_gain_buffer);
  1592. av_freep(&ctx->quant_cof);
  1593. av_freep(&ctx->lpc_cof);
  1594. av_freep(&ctx->quant_cof_buffer);
  1595. av_freep(&ctx->lpc_cof_buffer);
  1596. av_freep(&ctx->lpc_cof_reversed_buffer);
  1597. av_freep(&ctx->prev_raw_samples);
  1598. av_freep(&ctx->raw_samples);
  1599. av_freep(&ctx->raw_buffer);
  1600. av_freep(&ctx->chan_data);
  1601. av_freep(&ctx->chan_data_buffer);
  1602. av_freep(&ctx->reverted_channels);
  1603. av_freep(&ctx->crc_buffer);
  1604. if (ctx->mlz) {
  1605. av_freep(&ctx->mlz->dict);
  1606. av_freep(&ctx->mlz);
  1607. }
  1608. av_freep(&ctx->acf);
  1609. av_freep(&ctx->last_acf_mantissa);
  1610. av_freep(&ctx->shift_value);
  1611. av_freep(&ctx->last_shift_value);
  1612. if (ctx->raw_mantissa) {
  1613. for (i = 0; i < avctx->channels; i++) {
  1614. av_freep(&ctx->raw_mantissa[i]);
  1615. }
  1616. av_freep(&ctx->raw_mantissa);
  1617. }
  1618. av_freep(&ctx->larray);
  1619. av_freep(&ctx->nbits);
  1620. return 0;
  1621. }
  1622. /** Initialize the ALS decoder.
  1623. */
  1624. static av_cold int decode_init(AVCodecContext *avctx)
  1625. {
  1626. unsigned int c;
  1627. unsigned int channel_size;
  1628. int num_buffers, ret;
  1629. ALSDecContext *ctx = avctx->priv_data;
  1630. ALSSpecificConfig *sconf = &ctx->sconf;
  1631. ctx->avctx = avctx;
  1632. if (!avctx->extradata) {
  1633. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
  1634. return AVERROR_INVALIDDATA;
  1635. }
  1636. if ((ret = read_specific_config(ctx)) < 0) {
  1637. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
  1638. goto fail;
  1639. }
  1640. if ((ret = check_specific_config(ctx)) < 0) {
  1641. goto fail;
  1642. }
  1643. if (sconf->bgmc) {
  1644. ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1645. if (ret < 0)
  1646. goto fail;
  1647. }
  1648. if (sconf->floating) {
  1649. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1650. avctx->bits_per_raw_sample = 32;
  1651. } else {
  1652. avctx->sample_fmt = sconf->resolution > 1
  1653. ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
  1654. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1655. if (avctx->bits_per_raw_sample > 32) {
  1656. av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
  1657. avctx->bits_per_raw_sample);
  1658. ret = AVERROR_INVALIDDATA;
  1659. goto fail;
  1660. }
  1661. }
  1662. // set maximum Rice parameter for progressive decoding based on resolution
  1663. // This is not specified in 14496-3 but actually done by the reference
  1664. // codec RM22 revision 2.
  1665. ctx->s_max = sconf->resolution > 1 ? 31 : 15;
  1666. // set lag value for long-term prediction
  1667. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1668. (avctx->sample_rate >= 192000);
  1669. // allocate quantized parcor coefficient buffer
  1670. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1671. if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
  1672. return AVERROR_INVALIDDATA;
  1673. ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
  1674. ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
  1675. ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
  1676. sizeof(*ctx->quant_cof_buffer));
  1677. ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
  1678. sizeof(*ctx->lpc_cof_buffer));
  1679. ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
  1680. sizeof(*ctx->lpc_cof_buffer));
  1681. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1682. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1683. !ctx->lpc_cof_reversed_buffer) {
  1684. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1685. ret = AVERROR(ENOMEM);
  1686. goto fail;
  1687. }
  1688. // assign quantized parcor coefficient buffers
  1689. for (c = 0; c < num_buffers; c++) {
  1690. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1691. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1692. }
  1693. // allocate and assign lag and gain data buffer for ltp mode
  1694. ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
  1695. ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
  1696. ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
  1697. ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
  1698. ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
  1699. ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
  1700. ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
  1701. ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
  1702. if (!ctx->const_block || !ctx->shift_lsbs ||
  1703. !ctx->opt_order || !ctx->store_prev_samples ||
  1704. !ctx->use_ltp || !ctx->ltp_lag ||
  1705. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1706. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1707. ret = AVERROR(ENOMEM);
  1708. goto fail;
  1709. }
  1710. for (c = 0; c < num_buffers; c++)
  1711. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1712. // allocate and assign channel data buffer for mcc mode
  1713. if (sconf->mc_coding) {
  1714. ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
  1715. sizeof(*ctx->chan_data_buffer));
  1716. ctx->chan_data = av_mallocz_array(num_buffers,
  1717. sizeof(*ctx->chan_data));
  1718. ctx->reverted_channels = av_malloc_array(num_buffers,
  1719. sizeof(*ctx->reverted_channels));
  1720. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1721. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1722. ret = AVERROR(ENOMEM);
  1723. goto fail;
  1724. }
  1725. for (c = 0; c < num_buffers; c++)
  1726. ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
  1727. } else {
  1728. ctx->chan_data = NULL;
  1729. ctx->chan_data_buffer = NULL;
  1730. ctx->reverted_channels = NULL;
  1731. }
  1732. channel_size = sconf->frame_length + sconf->max_order;
  1733. ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
  1734. ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
  1735. ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
  1736. if (sconf->floating) {
  1737. ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
  1738. ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
  1739. ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
  1740. ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
  1741. ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
  1742. ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
  1743. ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
  1744. ctx->mlz = av_mallocz(sizeof(*ctx->mlz));
  1745. if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
  1746. || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
  1747. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1748. ret = AVERROR(ENOMEM);
  1749. goto fail;
  1750. }
  1751. ff_mlz_init_dict(avctx, ctx->mlz);
  1752. ff_mlz_flush_dict(ctx->mlz);
  1753. for (c = 0; c < avctx->channels; ++c) {
  1754. ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
  1755. }
  1756. }
  1757. // allocate previous raw sample buffer
  1758. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1759. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1760. ret = AVERROR(ENOMEM);
  1761. goto fail;
  1762. }
  1763. // assign raw samples buffers
  1764. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1765. for (c = 1; c < avctx->channels; c++)
  1766. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1767. // allocate crc buffer
  1768. if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
  1769. (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1770. ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
  1771. avctx->channels *
  1772. av_get_bytes_per_sample(avctx->sample_fmt),
  1773. sizeof(*ctx->crc_buffer));
  1774. if (!ctx->crc_buffer) {
  1775. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1776. ret = AVERROR(ENOMEM);
  1777. goto fail;
  1778. }
  1779. }
  1780. ff_bswapdsp_init(&ctx->bdsp);
  1781. return 0;
  1782. fail:
  1783. return ret;
  1784. }
  1785. /** Flush (reset) the frame ID after seeking.
  1786. */
  1787. static av_cold void flush(AVCodecContext *avctx)
  1788. {
  1789. ALSDecContext *ctx = avctx->priv_data;
  1790. ctx->frame_id = 0;
  1791. }
  1792. AVCodec ff_als_decoder = {
  1793. .name = "als",
  1794. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1795. .type = AVMEDIA_TYPE_AUDIO,
  1796. .id = AV_CODEC_ID_MP4ALS,
  1797. .priv_data_size = sizeof(ALSDecContext),
  1798. .init = decode_init,
  1799. .close = decode_end,
  1800. .decode = decode_frame,
  1801. .flush = flush,
  1802. .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
  1803. .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
  1804. };