You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2909 lines
86KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "dsputil.h"
  27. /*
  28. * TODO:
  29. * - in low precision mode, use more 16 bit multiplies in synth filter
  30. * - test lsf / mpeg25 extensively.
  31. */
  32. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  33. audio decoder */
  34. #ifdef CONFIG_MPEGAUDIO_HP
  35. #define USE_HIGHPRECISION
  36. #endif
  37. #include "mpegaudio.h"
  38. #define FRAC_ONE (1 << FRAC_BITS)
  39. #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  40. #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  41. #define FIX(a) ((int)((a) * FRAC_ONE))
  42. /* WARNING: only correct for posititive numbers */
  43. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  44. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  45. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  46. //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
  47. static always_inline int MULH(int a, int b){
  48. return ((int64_t)(a) * (int64_t)(b))>>32;
  49. }
  50. /****************/
  51. #define HEADER_SIZE 4
  52. #define BACKSTEP_SIZE 512
  53. struct GranuleDef;
  54. typedef struct MPADecodeContext {
  55. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  56. int inbuf_index;
  57. uint8_t *inbuf_ptr, *inbuf;
  58. int frame_size;
  59. int free_format_frame_size; /* frame size in case of free format
  60. (zero if currently unknown) */
  61. /* next header (used in free format parsing) */
  62. uint32_t free_format_next_header;
  63. int error_protection;
  64. int layer;
  65. int sample_rate;
  66. int sample_rate_index; /* between 0 and 8 */
  67. int bit_rate;
  68. int old_frame_size;
  69. GetBitContext gb;
  70. int nb_channels;
  71. int mode;
  72. int mode_ext;
  73. int lsf;
  74. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  75. int synth_buf_offset[MPA_MAX_CHANNELS];
  76. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  77. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  78. #ifdef DEBUG
  79. int frame_count;
  80. #endif
  81. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  82. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  83. unsigned int dither_state;
  84. } MPADecodeContext;
  85. /**
  86. * Context for MP3On4 decoder
  87. */
  88. typedef struct MP3On4DecodeContext {
  89. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  90. int chan_cfg; ///< channel config number
  91. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  92. } MP3On4DecodeContext;
  93. /* layer 3 "granule" */
  94. typedef struct GranuleDef {
  95. uint8_t scfsi;
  96. int part2_3_length;
  97. int big_values;
  98. int global_gain;
  99. int scalefac_compress;
  100. uint8_t block_type;
  101. uint8_t switch_point;
  102. int table_select[3];
  103. int subblock_gain[3];
  104. uint8_t scalefac_scale;
  105. uint8_t count1table_select;
  106. int region_size[3]; /* number of huffman codes in each region */
  107. int preflag;
  108. int short_start, long_end; /* long/short band indexes */
  109. uint8_t scale_factors[40];
  110. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  111. } GranuleDef;
  112. #define MODE_EXT_MS_STEREO 2
  113. #define MODE_EXT_I_STEREO 1
  114. /* layer 3 huffman tables */
  115. typedef struct HuffTable {
  116. int xsize;
  117. const uint8_t *bits;
  118. const uint16_t *codes;
  119. } HuffTable;
  120. #include "mpegaudiodectab.h"
  121. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  122. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  123. /* vlc structure for decoding layer 3 huffman tables */
  124. static VLC huff_vlc[16];
  125. static uint8_t *huff_code_table[16];
  126. static VLC huff_quad_vlc[2];
  127. /* computed from band_size_long */
  128. static uint16_t band_index_long[9][23];
  129. /* XXX: free when all decoders are closed */
  130. #define TABLE_4_3_SIZE (8191 + 16)*4
  131. static int8_t *table_4_3_exp;
  132. static uint32_t *table_4_3_value;
  133. /* intensity stereo coef table */
  134. static int32_t is_table[2][16];
  135. static int32_t is_table_lsf[2][2][16];
  136. static int32_t csa_table[8][4];
  137. static float csa_table_float[8][4];
  138. static int32_t mdct_win[8][36];
  139. /* lower 2 bits: modulo 3, higher bits: shift */
  140. static uint16_t scale_factor_modshift[64];
  141. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  142. static int32_t scale_factor_mult[15][3];
  143. /* mult table for layer 2 group quantization */
  144. #define SCALE_GEN(v) \
  145. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  146. static const int32_t scale_factor_mult2[3][3] = {
  147. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  148. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  149. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  150. };
  151. void ff_mpa_synth_init(MPA_INT *window);
  152. static MPA_INT window[512] __attribute__((aligned(16)));
  153. /* layer 1 unscaling */
  154. /* n = number of bits of the mantissa minus 1 */
  155. static inline int l1_unscale(int n, int mant, int scale_factor)
  156. {
  157. int shift, mod;
  158. int64_t val;
  159. shift = scale_factor_modshift[scale_factor];
  160. mod = shift & 3;
  161. shift >>= 2;
  162. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  163. shift += n;
  164. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  165. return (int)((val + (1LL << (shift - 1))) >> shift);
  166. }
  167. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  168. {
  169. int shift, mod, val;
  170. shift = scale_factor_modshift[scale_factor];
  171. mod = shift & 3;
  172. shift >>= 2;
  173. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  174. /* NOTE: at this point, 0 <= shift <= 21 */
  175. if (shift > 0)
  176. val = (val + (1 << (shift - 1))) >> shift;
  177. return val;
  178. }
  179. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  180. static inline int l3_unscale(int value, int exponent)
  181. {
  182. unsigned int m;
  183. int e;
  184. e = table_4_3_exp [4*value + (exponent&3)];
  185. m = table_4_3_value[4*value + (exponent&3)];
  186. e -= (exponent >> 2);
  187. assert(e>=1);
  188. if (e > 31)
  189. return 0;
  190. m = (m + (1 << (e-1))) >> e;
  191. return m;
  192. }
  193. /* all integer n^(4/3) computation code */
  194. #define DEV_ORDER 13
  195. #define POW_FRAC_BITS 24
  196. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  197. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  198. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  199. static int dev_4_3_coefs[DEV_ORDER];
  200. #if 0 /* unused */
  201. static int pow_mult3[3] = {
  202. POW_FIX(1.0),
  203. POW_FIX(1.25992104989487316476),
  204. POW_FIX(1.58740105196819947474),
  205. };
  206. #endif
  207. static void int_pow_init(void)
  208. {
  209. int i, a;
  210. a = POW_FIX(1.0);
  211. for(i=0;i<DEV_ORDER;i++) {
  212. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  213. dev_4_3_coefs[i] = a;
  214. }
  215. }
  216. #if 0 /* unused, remove? */
  217. /* return the mantissa and the binary exponent */
  218. static int int_pow(int i, int *exp_ptr)
  219. {
  220. int e, er, eq, j;
  221. int a, a1;
  222. /* renormalize */
  223. a = i;
  224. e = POW_FRAC_BITS;
  225. while (a < (1 << (POW_FRAC_BITS - 1))) {
  226. a = a << 1;
  227. e--;
  228. }
  229. a -= (1 << POW_FRAC_BITS);
  230. a1 = 0;
  231. for(j = DEV_ORDER - 1; j >= 0; j--)
  232. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  233. a = (1 << POW_FRAC_BITS) + a1;
  234. /* exponent compute (exact) */
  235. e = e * 4;
  236. er = e % 3;
  237. eq = e / 3;
  238. a = POW_MULL(a, pow_mult3[er]);
  239. while (a >= 2 * POW_FRAC_ONE) {
  240. a = a >> 1;
  241. eq++;
  242. }
  243. /* convert to float */
  244. while (a < POW_FRAC_ONE) {
  245. a = a << 1;
  246. eq--;
  247. }
  248. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  249. #if POW_FRAC_BITS > FRAC_BITS
  250. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  251. /* correct overflow */
  252. if (a >= 2 * (1 << FRAC_BITS)) {
  253. a = a >> 1;
  254. eq++;
  255. }
  256. #endif
  257. *exp_ptr = eq;
  258. return a;
  259. }
  260. #endif
  261. static int decode_init(AVCodecContext * avctx)
  262. {
  263. MPADecodeContext *s = avctx->priv_data;
  264. static int init=0;
  265. int i, j, k;
  266. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  267. avctx->sample_fmt= SAMPLE_FMT_S32;
  268. #else
  269. avctx->sample_fmt= SAMPLE_FMT_S16;
  270. #endif
  271. if(avctx->antialias_algo != FF_AA_FLOAT)
  272. s->compute_antialias= compute_antialias_integer;
  273. else
  274. s->compute_antialias= compute_antialias_float;
  275. if (!init && !avctx->parse_only) {
  276. /* scale factors table for layer 1/2 */
  277. for(i=0;i<64;i++) {
  278. int shift, mod;
  279. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  280. shift = (i / 3);
  281. mod = i % 3;
  282. scale_factor_modshift[i] = mod | (shift << 2);
  283. }
  284. /* scale factor multiply for layer 1 */
  285. for(i=0;i<15;i++) {
  286. int n, norm;
  287. n = i + 2;
  288. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  289. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  290. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  291. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  292. dprintf("%d: norm=%x s=%x %x %x\n",
  293. i, norm,
  294. scale_factor_mult[i][0],
  295. scale_factor_mult[i][1],
  296. scale_factor_mult[i][2]);
  297. }
  298. ff_mpa_synth_init(window);
  299. /* huffman decode tables */
  300. huff_code_table[0] = NULL;
  301. for(i=1;i<16;i++) {
  302. const HuffTable *h = &mpa_huff_tables[i];
  303. int xsize, x, y;
  304. unsigned int n;
  305. uint8_t *code_table;
  306. xsize = h->xsize;
  307. n = xsize * xsize;
  308. /* XXX: fail test */
  309. init_vlc(&huff_vlc[i], 8, n,
  310. h->bits, 1, 1, h->codes, 2, 2, 1);
  311. code_table = av_mallocz(n);
  312. j = 0;
  313. for(x=0;x<xsize;x++) {
  314. for(y=0;y<xsize;y++)
  315. code_table[j++] = (x << 4) | y;
  316. }
  317. huff_code_table[i] = code_table;
  318. }
  319. for(i=0;i<2;i++) {
  320. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  321. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  322. }
  323. for(i=0;i<9;i++) {
  324. k = 0;
  325. for(j=0;j<22;j++) {
  326. band_index_long[i][j] = k;
  327. k += band_size_long[i][j];
  328. }
  329. band_index_long[i][22] = k;
  330. }
  331. /* compute n ^ (4/3) and store it in mantissa/exp format */
  332. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  333. if(!table_4_3_exp)
  334. return -1;
  335. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  336. if(!table_4_3_value)
  337. return -1;
  338. int_pow_init();
  339. for(i=1;i<TABLE_4_3_SIZE;i++) {
  340. double f, fm;
  341. int e, m;
  342. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  343. fm = frexp(f, &e);
  344. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  345. e+= FRAC_BITS - 31 + 5;
  346. /* normalized to FRAC_BITS */
  347. table_4_3_value[i] = m;
  348. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  349. table_4_3_exp[i] = -e;
  350. }
  351. for(i=0;i<7;i++) {
  352. float f;
  353. int v;
  354. if (i != 6) {
  355. f = tan((double)i * M_PI / 12.0);
  356. v = FIXR(f / (1.0 + f));
  357. } else {
  358. v = FIXR(1.0);
  359. }
  360. is_table[0][i] = v;
  361. is_table[1][6 - i] = v;
  362. }
  363. /* invalid values */
  364. for(i=7;i<16;i++)
  365. is_table[0][i] = is_table[1][i] = 0.0;
  366. for(i=0;i<16;i++) {
  367. double f;
  368. int e, k;
  369. for(j=0;j<2;j++) {
  370. e = -(j + 1) * ((i + 1) >> 1);
  371. f = pow(2.0, e / 4.0);
  372. k = i & 1;
  373. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  374. is_table_lsf[j][k][i] = FIXR(1.0);
  375. dprintf("is_table_lsf %d %d: %x %x\n",
  376. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  377. }
  378. }
  379. for(i=0;i<8;i++) {
  380. float ci, cs, ca;
  381. ci = ci_table[i];
  382. cs = 1.0 / sqrt(1.0 + ci * ci);
  383. ca = cs * ci;
  384. csa_table[i][0] = FIXHR(cs/4);
  385. csa_table[i][1] = FIXHR(ca/4);
  386. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  387. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  388. csa_table_float[i][0] = cs;
  389. csa_table_float[i][1] = ca;
  390. csa_table_float[i][2] = ca + cs;
  391. csa_table_float[i][3] = ca - cs;
  392. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  393. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  394. }
  395. /* compute mdct windows */
  396. for(i=0;i<36;i++) {
  397. for(j=0; j<4; j++){
  398. double d;
  399. if(j==2 && i%3 != 1)
  400. continue;
  401. d= sin(M_PI * (i + 0.5) / 36.0);
  402. if(j==1){
  403. if (i>=30) d= 0;
  404. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  405. else if(i>=18) d= 1;
  406. }else if(j==3){
  407. if (i< 6) d= 0;
  408. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  409. else if(i< 18) d= 1;
  410. }
  411. //merge last stage of imdct into the window coefficients
  412. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  413. if(j==2)
  414. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  415. else
  416. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  417. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  418. }
  419. }
  420. /* NOTE: we do frequency inversion adter the MDCT by changing
  421. the sign of the right window coefs */
  422. for(j=0;j<4;j++) {
  423. for(i=0;i<36;i+=2) {
  424. mdct_win[j + 4][i] = mdct_win[j][i];
  425. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  426. }
  427. }
  428. #if defined(DEBUG)
  429. for(j=0;j<8;j++) {
  430. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  431. for(i=0;i<36;i++)
  432. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  433. av_log(avctx, AV_LOG_DEBUG, "\n");
  434. }
  435. #endif
  436. init = 1;
  437. }
  438. s->inbuf_index = 0;
  439. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  440. s->inbuf_ptr = s->inbuf;
  441. #ifdef DEBUG
  442. s->frame_count = 0;
  443. #endif
  444. if (avctx->codec_id == CODEC_ID_MP3ADU)
  445. s->adu_mode = 1;
  446. return 0;
  447. }
  448. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  449. /* cos(i*pi/64) */
  450. #define COS0_0 FIXR(0.50060299823519630134)
  451. #define COS0_1 FIXR(0.50547095989754365998)
  452. #define COS0_2 FIXR(0.51544730992262454697)
  453. #define COS0_3 FIXR(0.53104259108978417447)
  454. #define COS0_4 FIXR(0.55310389603444452782)
  455. #define COS0_5 FIXR(0.58293496820613387367)
  456. #define COS0_6 FIXR(0.62250412303566481615)
  457. #define COS0_7 FIXR(0.67480834145500574602)
  458. #define COS0_8 FIXR(0.74453627100229844977)
  459. #define COS0_9 FIXR(0.83934964541552703873)
  460. #define COS0_10 FIXR(0.97256823786196069369)
  461. #define COS0_11 FIXR(1.16943993343288495515)
  462. #define COS0_12 FIXR(1.48416461631416627724)
  463. #define COS0_13 FIXR(2.05778100995341155085)
  464. #define COS0_14 FIXR(3.40760841846871878570)
  465. #define COS0_15 FIXR(10.19000812354805681150)
  466. #define COS1_0 FIXR(0.50241928618815570551)
  467. #define COS1_1 FIXR(0.52249861493968888062)
  468. #define COS1_2 FIXR(0.56694403481635770368)
  469. #define COS1_3 FIXR(0.64682178335999012954)
  470. #define COS1_4 FIXR(0.78815462345125022473)
  471. #define COS1_5 FIXR(1.06067768599034747134)
  472. #define COS1_6 FIXR(1.72244709823833392782)
  473. #define COS1_7 FIXR(5.10114861868916385802)
  474. #define COS2_0 FIXR(0.50979557910415916894)
  475. #define COS2_1 FIXR(0.60134488693504528054)
  476. #define COS2_2 FIXR(0.89997622313641570463)
  477. #define COS2_3 FIXR(2.56291544774150617881)
  478. #define COS3_0 FIXR(0.54119610014619698439)
  479. #define COS3_1 FIXR(1.30656296487637652785)
  480. #define COS4_0 FIXR(0.70710678118654752439)
  481. /* butterfly operator */
  482. #define BF(a, b, c)\
  483. {\
  484. tmp0 = tab[a] + tab[b];\
  485. tmp1 = tab[a] - tab[b];\
  486. tab[a] = tmp0;\
  487. tab[b] = MULL(tmp1, c);\
  488. }
  489. #define BF1(a, b, c, d)\
  490. {\
  491. BF(a, b, COS4_0);\
  492. BF(c, d, -COS4_0);\
  493. tab[c] += tab[d];\
  494. }
  495. #define BF2(a, b, c, d)\
  496. {\
  497. BF(a, b, COS4_0);\
  498. BF(c, d, -COS4_0);\
  499. tab[c] += tab[d];\
  500. tab[a] += tab[c];\
  501. tab[c] += tab[b];\
  502. tab[b] += tab[d];\
  503. }
  504. #define ADD(a, b) tab[a] += tab[b]
  505. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  506. static void dct32(int32_t *out, int32_t *tab)
  507. {
  508. int tmp0, tmp1;
  509. /* pass 1 */
  510. BF(0, 31, COS0_0);
  511. BF(15, 16, COS0_15);
  512. /* pass 2 */
  513. BF(0, 15, COS1_0);
  514. BF(16, 31, -COS1_0);
  515. /* pass 1 */
  516. BF(7, 24, COS0_7);
  517. BF(8, 23, COS0_8);
  518. /* pass 2 */
  519. BF(7, 8, COS1_7);
  520. BF(23, 24, -COS1_7);
  521. /* pass 3 */
  522. BF(0, 7, COS2_0);
  523. BF(8, 15, -COS2_0);
  524. BF(16, 23, COS2_0);
  525. BF(24, 31, -COS2_0);
  526. /* pass 1 */
  527. BF(3, 28, COS0_3);
  528. BF(12, 19, COS0_12);
  529. /* pass 2 */
  530. BF(3, 12, COS1_3);
  531. BF(19, 28, -COS1_3);
  532. /* pass 1 */
  533. BF(4, 27, COS0_4);
  534. BF(11, 20, COS0_11);
  535. /* pass 2 */
  536. BF(4, 11, COS1_4);
  537. BF(20, 27, -COS1_4);
  538. /* pass 3 */
  539. BF(3, 4, COS2_3);
  540. BF(11, 12, -COS2_3);
  541. BF(19, 20, COS2_3);
  542. BF(27, 28, -COS2_3);
  543. /* pass 4 */
  544. BF(0, 3, COS3_0);
  545. BF(4, 7, -COS3_0);
  546. BF(8, 11, COS3_0);
  547. BF(12, 15, -COS3_0);
  548. BF(16, 19, COS3_0);
  549. BF(20, 23, -COS3_0);
  550. BF(24, 27, COS3_0);
  551. BF(28, 31, -COS3_0);
  552. /* pass 1 */
  553. BF(1, 30, COS0_1);
  554. BF(14, 17, COS0_14);
  555. /* pass 2 */
  556. BF(1, 14, COS1_1);
  557. BF(17, 30, -COS1_1);
  558. /* pass 1 */
  559. BF(6, 25, COS0_6);
  560. BF(9, 22, COS0_9);
  561. /* pass 2 */
  562. BF(6, 9, COS1_6);
  563. BF(22, 25, -COS1_6);
  564. /* pass 3 */
  565. BF(1, 6, COS2_1);
  566. BF(9, 14, -COS2_1);
  567. BF(17, 22, COS2_1);
  568. BF(25, 30, -COS2_1);
  569. /* pass 1 */
  570. BF(2, 29, COS0_2);
  571. BF(13, 18, COS0_13);
  572. /* pass 2 */
  573. BF(2, 13, COS1_2);
  574. BF(18, 29, -COS1_2);
  575. /* pass 1 */
  576. BF(5, 26, COS0_5);
  577. BF(10, 21, COS0_10);
  578. /* pass 2 */
  579. BF(5, 10, COS1_5);
  580. BF(21, 26, -COS1_5);
  581. /* pass 3 */
  582. BF(2, 5, COS2_2);
  583. BF(10, 13, -COS2_2);
  584. BF(18, 21, COS2_2);
  585. BF(26, 29, -COS2_2);
  586. /* pass 4 */
  587. BF(1, 2, COS3_1);
  588. BF(5, 6, -COS3_1);
  589. BF(9, 10, COS3_1);
  590. BF(13, 14, -COS3_1);
  591. BF(17, 18, COS3_1);
  592. BF(21, 22, -COS3_1);
  593. BF(25, 26, COS3_1);
  594. BF(29, 30, -COS3_1);
  595. /* pass 5 */
  596. BF1(0, 1, 2, 3);
  597. BF2(4, 5, 6, 7);
  598. BF1(8, 9, 10, 11);
  599. BF2(12, 13, 14, 15);
  600. BF1(16, 17, 18, 19);
  601. BF2(20, 21, 22, 23);
  602. BF1(24, 25, 26, 27);
  603. BF2(28, 29, 30, 31);
  604. /* pass 6 */
  605. ADD( 8, 12);
  606. ADD(12, 10);
  607. ADD(10, 14);
  608. ADD(14, 9);
  609. ADD( 9, 13);
  610. ADD(13, 11);
  611. ADD(11, 15);
  612. out[ 0] = tab[0];
  613. out[16] = tab[1];
  614. out[ 8] = tab[2];
  615. out[24] = tab[3];
  616. out[ 4] = tab[4];
  617. out[20] = tab[5];
  618. out[12] = tab[6];
  619. out[28] = tab[7];
  620. out[ 2] = tab[8];
  621. out[18] = tab[9];
  622. out[10] = tab[10];
  623. out[26] = tab[11];
  624. out[ 6] = tab[12];
  625. out[22] = tab[13];
  626. out[14] = tab[14];
  627. out[30] = tab[15];
  628. ADD(24, 28);
  629. ADD(28, 26);
  630. ADD(26, 30);
  631. ADD(30, 25);
  632. ADD(25, 29);
  633. ADD(29, 27);
  634. ADD(27, 31);
  635. out[ 1] = tab[16] + tab[24];
  636. out[17] = tab[17] + tab[25];
  637. out[ 9] = tab[18] + tab[26];
  638. out[25] = tab[19] + tab[27];
  639. out[ 5] = tab[20] + tab[28];
  640. out[21] = tab[21] + tab[29];
  641. out[13] = tab[22] + tab[30];
  642. out[29] = tab[23] + tab[31];
  643. out[ 3] = tab[24] + tab[20];
  644. out[19] = tab[25] + tab[21];
  645. out[11] = tab[26] + tab[22];
  646. out[27] = tab[27] + tab[23];
  647. out[ 7] = tab[28] + tab[18];
  648. out[23] = tab[29] + tab[19];
  649. out[15] = tab[30] + tab[17];
  650. out[31] = tab[31];
  651. }
  652. #if FRAC_BITS <= 15
  653. static inline int round_sample(int *sum)
  654. {
  655. int sum1;
  656. sum1 = (*sum) >> OUT_SHIFT;
  657. *sum &= (1<<OUT_SHIFT)-1;
  658. if (sum1 < OUT_MIN)
  659. sum1 = OUT_MIN;
  660. else if (sum1 > OUT_MAX)
  661. sum1 = OUT_MAX;
  662. return sum1;
  663. }
  664. #if defined(ARCH_POWERPC_405)
  665. /* signed 16x16 -> 32 multiply add accumulate */
  666. #define MACS(rt, ra, rb) \
  667. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  668. /* signed 16x16 -> 32 multiply */
  669. #define MULS(ra, rb) \
  670. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  671. #else
  672. /* signed 16x16 -> 32 multiply add accumulate */
  673. #define MACS(rt, ra, rb) rt += (ra) * (rb)
  674. /* signed 16x16 -> 32 multiply */
  675. #define MULS(ra, rb) ((ra) * (rb))
  676. #endif
  677. #else
  678. static inline int round_sample(int64_t *sum)
  679. {
  680. int sum1;
  681. sum1 = (int)((*sum) >> OUT_SHIFT);
  682. *sum &= (1<<OUT_SHIFT)-1;
  683. if (sum1 < OUT_MIN)
  684. sum1 = OUT_MIN;
  685. else if (sum1 > OUT_MAX)
  686. sum1 = OUT_MAX;
  687. return sum1;
  688. }
  689. #define MULS(ra, rb) MUL64(ra, rb)
  690. #endif
  691. #define SUM8(sum, op, w, p) \
  692. { \
  693. sum op MULS((w)[0 * 64], p[0 * 64]);\
  694. sum op MULS((w)[1 * 64], p[1 * 64]);\
  695. sum op MULS((w)[2 * 64], p[2 * 64]);\
  696. sum op MULS((w)[3 * 64], p[3 * 64]);\
  697. sum op MULS((w)[4 * 64], p[4 * 64]);\
  698. sum op MULS((w)[5 * 64], p[5 * 64]);\
  699. sum op MULS((w)[6 * 64], p[6 * 64]);\
  700. sum op MULS((w)[7 * 64], p[7 * 64]);\
  701. }
  702. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  703. { \
  704. int tmp;\
  705. tmp = p[0 * 64];\
  706. sum1 op1 MULS((w1)[0 * 64], tmp);\
  707. sum2 op2 MULS((w2)[0 * 64], tmp);\
  708. tmp = p[1 * 64];\
  709. sum1 op1 MULS((w1)[1 * 64], tmp);\
  710. sum2 op2 MULS((w2)[1 * 64], tmp);\
  711. tmp = p[2 * 64];\
  712. sum1 op1 MULS((w1)[2 * 64], tmp);\
  713. sum2 op2 MULS((w2)[2 * 64], tmp);\
  714. tmp = p[3 * 64];\
  715. sum1 op1 MULS((w1)[3 * 64], tmp);\
  716. sum2 op2 MULS((w2)[3 * 64], tmp);\
  717. tmp = p[4 * 64];\
  718. sum1 op1 MULS((w1)[4 * 64], tmp);\
  719. sum2 op2 MULS((w2)[4 * 64], tmp);\
  720. tmp = p[5 * 64];\
  721. sum1 op1 MULS((w1)[5 * 64], tmp);\
  722. sum2 op2 MULS((w2)[5 * 64], tmp);\
  723. tmp = p[6 * 64];\
  724. sum1 op1 MULS((w1)[6 * 64], tmp);\
  725. sum2 op2 MULS((w2)[6 * 64], tmp);\
  726. tmp = p[7 * 64];\
  727. sum1 op1 MULS((w1)[7 * 64], tmp);\
  728. sum2 op2 MULS((w2)[7 * 64], tmp);\
  729. }
  730. void ff_mpa_synth_init(MPA_INT *window)
  731. {
  732. int i;
  733. /* max = 18760, max sum over all 16 coefs : 44736 */
  734. for(i=0;i<257;i++) {
  735. int v;
  736. v = mpa_enwindow[i];
  737. #if WFRAC_BITS < 16
  738. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  739. #endif
  740. window[i] = v;
  741. if ((i & 63) != 0)
  742. v = -v;
  743. if (i != 0)
  744. window[512 - i] = v;
  745. }
  746. }
  747. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  748. 32 samples. */
  749. /* XXX: optimize by avoiding ring buffer usage */
  750. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  751. MPA_INT *window, int *dither_state,
  752. OUT_INT *samples, int incr,
  753. int32_t sb_samples[SBLIMIT])
  754. {
  755. int32_t tmp[32];
  756. register MPA_INT *synth_buf;
  757. register const MPA_INT *w, *w2, *p;
  758. int j, offset, v;
  759. OUT_INT *samples2;
  760. #if FRAC_BITS <= 15
  761. int sum, sum2;
  762. #else
  763. int64_t sum, sum2;
  764. #endif
  765. dct32(tmp, sb_samples);
  766. offset = *synth_buf_offset;
  767. synth_buf = synth_buf_ptr + offset;
  768. for(j=0;j<32;j++) {
  769. v = tmp[j];
  770. #if FRAC_BITS <= 15
  771. /* NOTE: can cause a loss in precision if very high amplitude
  772. sound */
  773. if (v > 32767)
  774. v = 32767;
  775. else if (v < -32768)
  776. v = -32768;
  777. #endif
  778. synth_buf[j] = v;
  779. }
  780. /* copy to avoid wrap */
  781. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  782. samples2 = samples + 31 * incr;
  783. w = window;
  784. w2 = window + 31;
  785. sum = *dither_state;
  786. p = synth_buf + 16;
  787. SUM8(sum, +=, w, p);
  788. p = synth_buf + 48;
  789. SUM8(sum, -=, w + 32, p);
  790. *samples = round_sample(&sum);
  791. samples += incr;
  792. w++;
  793. /* we calculate two samples at the same time to avoid one memory
  794. access per two sample */
  795. for(j=1;j<16;j++) {
  796. sum2 = 0;
  797. p = synth_buf + 16 + j;
  798. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  799. p = synth_buf + 48 - j;
  800. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  801. *samples = round_sample(&sum);
  802. samples += incr;
  803. sum += sum2;
  804. *samples2 = round_sample(&sum);
  805. samples2 -= incr;
  806. w++;
  807. w2--;
  808. }
  809. p = synth_buf + 32;
  810. SUM8(sum, -=, w + 32, p);
  811. *samples = round_sample(&sum);
  812. *dither_state= sum;
  813. offset = (offset - 32) & 511;
  814. *synth_buf_offset = offset;
  815. }
  816. #define C3 FIXHR(0.86602540378443864676/2)
  817. /* 0.5 / cos(pi*(2*i+1)/36) */
  818. static const int icos36[9] = {
  819. FIXR(0.50190991877167369479),
  820. FIXR(0.51763809020504152469), //0
  821. FIXR(0.55168895948124587824),
  822. FIXR(0.61038729438072803416),
  823. FIXR(0.70710678118654752439), //1
  824. FIXR(0.87172339781054900991),
  825. FIXR(1.18310079157624925896),
  826. FIXR(1.93185165257813657349), //2
  827. FIXR(5.73685662283492756461),
  828. };
  829. /* 0.5 / cos(pi*(2*i+1)/36) */
  830. static const int icos36h[9] = {
  831. FIXHR(0.50190991877167369479/2),
  832. FIXHR(0.51763809020504152469/2), //0
  833. FIXHR(0.55168895948124587824/2),
  834. FIXHR(0.61038729438072803416/2),
  835. FIXHR(0.70710678118654752439/2), //1
  836. FIXHR(0.87172339781054900991/2),
  837. FIXHR(1.18310079157624925896/4),
  838. FIXHR(1.93185165257813657349/4), //2
  839. // FIXHR(5.73685662283492756461),
  840. };
  841. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  842. cases. */
  843. static void imdct12(int *out, int *in)
  844. {
  845. int in0, in1, in2, in3, in4, in5, t1, t2;
  846. in0= in[0*3];
  847. in1= in[1*3] + in[0*3];
  848. in2= in[2*3] + in[1*3];
  849. in3= in[3*3] + in[2*3];
  850. in4= in[4*3] + in[3*3];
  851. in5= in[5*3] + in[4*3];
  852. in5 += in3;
  853. in3 += in1;
  854. in2= MULH(2*in2, C3);
  855. in3= MULH(4*in3, C3);
  856. t1 = in0 - in4;
  857. t2 = MULH(2*(in1 - in5), icos36h[4]);
  858. out[ 7]=
  859. out[10]= t1 + t2;
  860. out[ 1]=
  861. out[ 4]= t1 - t2;
  862. in0 += in4>>1;
  863. in4 = in0 + in2;
  864. in5 += 2*in1;
  865. in1 = MULH(in5 + in3, icos36h[1]);
  866. out[ 8]=
  867. out[ 9]= in4 + in1;
  868. out[ 2]=
  869. out[ 3]= in4 - in1;
  870. in0 -= in2;
  871. in5 = MULH(2*(in5 - in3), icos36h[7]);
  872. out[ 0]=
  873. out[ 5]= in0 - in5;
  874. out[ 6]=
  875. out[11]= in0 + in5;
  876. }
  877. /* cos(pi*i/18) */
  878. #define C1 FIXHR(0.98480775301220805936/2)
  879. #define C2 FIXHR(0.93969262078590838405/2)
  880. #define C3 FIXHR(0.86602540378443864676/2)
  881. #define C4 FIXHR(0.76604444311897803520/2)
  882. #define C5 FIXHR(0.64278760968653932632/2)
  883. #define C6 FIXHR(0.5/2)
  884. #define C7 FIXHR(0.34202014332566873304/2)
  885. #define C8 FIXHR(0.17364817766693034885/2)
  886. /* using Lee like decomposition followed by hand coded 9 points DCT */
  887. static void imdct36(int *out, int *buf, int *in, int *win)
  888. {
  889. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  890. int tmp[18], *tmp1, *in1;
  891. for(i=17;i>=1;i--)
  892. in[i] += in[i-1];
  893. for(i=17;i>=3;i-=2)
  894. in[i] += in[i-2];
  895. for(j=0;j<2;j++) {
  896. tmp1 = tmp + j;
  897. in1 = in + j;
  898. #if 0
  899. //more accurate but slower
  900. int64_t t0, t1, t2, t3;
  901. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  902. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  903. t1 = in1[2*0] - in1[2*6];
  904. tmp1[ 6] = t1 - (t2>>1);
  905. tmp1[16] = t1 + t2;
  906. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  907. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  908. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  909. tmp1[10] = (t3 - t0 - t2) >> 32;
  910. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  911. tmp1[14] = (t3 + t2 - t1) >> 32;
  912. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  913. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  914. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  915. t0 = MUL64(2*in1[2*3], C3);
  916. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  917. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  918. tmp1[12] = (t2 + t1 - t0) >> 32;
  919. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  920. #else
  921. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  922. t3 = in1[2*0] + (in1[2*6]>>1);
  923. t1 = in1[2*0] - in1[2*6];
  924. tmp1[ 6] = t1 - (t2>>1);
  925. tmp1[16] = t1 + t2;
  926. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  927. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  928. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  929. tmp1[10] = t3 - t0 - t2;
  930. tmp1[ 2] = t3 + t0 + t1;
  931. tmp1[14] = t3 + t2 - t1;
  932. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  933. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  934. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  935. t0 = MULH(2*in1[2*3], C3);
  936. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  937. tmp1[ 0] = t2 + t3 + t0;
  938. tmp1[12] = t2 + t1 - t0;
  939. tmp1[ 8] = t3 - t1 - t0;
  940. #endif
  941. }
  942. i = 0;
  943. for(j=0;j<4;j++) {
  944. t0 = tmp[i];
  945. t1 = tmp[i + 2];
  946. s0 = t1 + t0;
  947. s2 = t1 - t0;
  948. t2 = tmp[i + 1];
  949. t3 = tmp[i + 3];
  950. s1 = MULH(2*(t3 + t2), icos36h[j]);
  951. s3 = MULL(t3 - t2, icos36[8 - j]);
  952. t0 = s0 + s1;
  953. t1 = s0 - s1;
  954. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  955. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  956. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  957. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  958. t0 = s2 + s3;
  959. t1 = s2 - s3;
  960. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  961. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  962. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  963. buf[ + j] = MULH(t0, win[18 + j]);
  964. i += 4;
  965. }
  966. s0 = tmp[16];
  967. s1 = MULH(2*tmp[17], icos36h[4]);
  968. t0 = s0 + s1;
  969. t1 = s0 - s1;
  970. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  971. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  972. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  973. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  974. }
  975. /* header decoding. MUST check the header before because no
  976. consistency check is done there. Return 1 if free format found and
  977. that the frame size must be computed externally */
  978. static int decode_header(MPADecodeContext *s, uint32_t header)
  979. {
  980. int sample_rate, frame_size, mpeg25, padding;
  981. int sample_rate_index, bitrate_index;
  982. if (header & (1<<20)) {
  983. s->lsf = (header & (1<<19)) ? 0 : 1;
  984. mpeg25 = 0;
  985. } else {
  986. s->lsf = 1;
  987. mpeg25 = 1;
  988. }
  989. s->layer = 4 - ((header >> 17) & 3);
  990. /* extract frequency */
  991. sample_rate_index = (header >> 10) & 3;
  992. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  993. sample_rate_index += 3 * (s->lsf + mpeg25);
  994. s->sample_rate_index = sample_rate_index;
  995. s->error_protection = ((header >> 16) & 1) ^ 1;
  996. s->sample_rate = sample_rate;
  997. bitrate_index = (header >> 12) & 0xf;
  998. padding = (header >> 9) & 1;
  999. //extension = (header >> 8) & 1;
  1000. s->mode = (header >> 6) & 3;
  1001. s->mode_ext = (header >> 4) & 3;
  1002. //copyright = (header >> 3) & 1;
  1003. //original = (header >> 2) & 1;
  1004. //emphasis = header & 3;
  1005. if (s->mode == MPA_MONO)
  1006. s->nb_channels = 1;
  1007. else
  1008. s->nb_channels = 2;
  1009. if (bitrate_index != 0) {
  1010. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1011. s->bit_rate = frame_size * 1000;
  1012. switch(s->layer) {
  1013. case 1:
  1014. frame_size = (frame_size * 12000) / sample_rate;
  1015. frame_size = (frame_size + padding) * 4;
  1016. break;
  1017. case 2:
  1018. frame_size = (frame_size * 144000) / sample_rate;
  1019. frame_size += padding;
  1020. break;
  1021. default:
  1022. case 3:
  1023. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1024. frame_size += padding;
  1025. break;
  1026. }
  1027. s->frame_size = frame_size;
  1028. } else {
  1029. /* if no frame size computed, signal it */
  1030. if (!s->free_format_frame_size)
  1031. return 1;
  1032. /* free format: compute bitrate and real frame size from the
  1033. frame size we extracted by reading the bitstream */
  1034. s->frame_size = s->free_format_frame_size;
  1035. switch(s->layer) {
  1036. case 1:
  1037. s->frame_size += padding * 4;
  1038. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1039. break;
  1040. case 2:
  1041. s->frame_size += padding;
  1042. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1043. break;
  1044. default:
  1045. case 3:
  1046. s->frame_size += padding;
  1047. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1048. break;
  1049. }
  1050. }
  1051. #if defined(DEBUG)
  1052. dprintf("layer%d, %d Hz, %d kbits/s, ",
  1053. s->layer, s->sample_rate, s->bit_rate);
  1054. if (s->nb_channels == 2) {
  1055. if (s->layer == 3) {
  1056. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1057. dprintf("ms-");
  1058. if (s->mode_ext & MODE_EXT_I_STEREO)
  1059. dprintf("i-");
  1060. }
  1061. dprintf("stereo");
  1062. } else {
  1063. dprintf("mono");
  1064. }
  1065. dprintf("\n");
  1066. #endif
  1067. return 0;
  1068. }
  1069. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1070. header, otherwise the coded frame size in bytes */
  1071. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1072. {
  1073. MPADecodeContext s1, *s = &s1;
  1074. memset( s, 0, sizeof(MPADecodeContext) );
  1075. if (ff_mpa_check_header(head) != 0)
  1076. return -1;
  1077. if (decode_header(s, head) != 0) {
  1078. return -1;
  1079. }
  1080. switch(s->layer) {
  1081. case 1:
  1082. avctx->frame_size = 384;
  1083. break;
  1084. case 2:
  1085. avctx->frame_size = 1152;
  1086. break;
  1087. default:
  1088. case 3:
  1089. if (s->lsf)
  1090. avctx->frame_size = 576;
  1091. else
  1092. avctx->frame_size = 1152;
  1093. break;
  1094. }
  1095. avctx->sample_rate = s->sample_rate;
  1096. avctx->channels = s->nb_channels;
  1097. avctx->bit_rate = s->bit_rate;
  1098. avctx->sub_id = s->layer;
  1099. return s->frame_size;
  1100. }
  1101. /* return the number of decoded frames */
  1102. static int mp_decode_layer1(MPADecodeContext *s)
  1103. {
  1104. int bound, i, v, n, ch, j, mant;
  1105. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1106. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1107. if (s->mode == MPA_JSTEREO)
  1108. bound = (s->mode_ext + 1) * 4;
  1109. else
  1110. bound = SBLIMIT;
  1111. /* allocation bits */
  1112. for(i=0;i<bound;i++) {
  1113. for(ch=0;ch<s->nb_channels;ch++) {
  1114. allocation[ch][i] = get_bits(&s->gb, 4);
  1115. }
  1116. }
  1117. for(i=bound;i<SBLIMIT;i++) {
  1118. allocation[0][i] = get_bits(&s->gb, 4);
  1119. }
  1120. /* scale factors */
  1121. for(i=0;i<bound;i++) {
  1122. for(ch=0;ch<s->nb_channels;ch++) {
  1123. if (allocation[ch][i])
  1124. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1125. }
  1126. }
  1127. for(i=bound;i<SBLIMIT;i++) {
  1128. if (allocation[0][i]) {
  1129. scale_factors[0][i] = get_bits(&s->gb, 6);
  1130. scale_factors[1][i] = get_bits(&s->gb, 6);
  1131. }
  1132. }
  1133. /* compute samples */
  1134. for(j=0;j<12;j++) {
  1135. for(i=0;i<bound;i++) {
  1136. for(ch=0;ch<s->nb_channels;ch++) {
  1137. n = allocation[ch][i];
  1138. if (n) {
  1139. mant = get_bits(&s->gb, n + 1);
  1140. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1141. } else {
  1142. v = 0;
  1143. }
  1144. s->sb_samples[ch][j][i] = v;
  1145. }
  1146. }
  1147. for(i=bound;i<SBLIMIT;i++) {
  1148. n = allocation[0][i];
  1149. if (n) {
  1150. mant = get_bits(&s->gb, n + 1);
  1151. v = l1_unscale(n, mant, scale_factors[0][i]);
  1152. s->sb_samples[0][j][i] = v;
  1153. v = l1_unscale(n, mant, scale_factors[1][i]);
  1154. s->sb_samples[1][j][i] = v;
  1155. } else {
  1156. s->sb_samples[0][j][i] = 0;
  1157. s->sb_samples[1][j][i] = 0;
  1158. }
  1159. }
  1160. }
  1161. return 12;
  1162. }
  1163. /* bitrate is in kb/s */
  1164. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1165. {
  1166. int ch_bitrate, table;
  1167. ch_bitrate = bitrate / nb_channels;
  1168. if (!lsf) {
  1169. if ((freq == 48000 && ch_bitrate >= 56) ||
  1170. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1171. table = 0;
  1172. else if (freq != 48000 && ch_bitrate >= 96)
  1173. table = 1;
  1174. else if (freq != 32000 && ch_bitrate <= 48)
  1175. table = 2;
  1176. else
  1177. table = 3;
  1178. } else {
  1179. table = 4;
  1180. }
  1181. return table;
  1182. }
  1183. static int mp_decode_layer2(MPADecodeContext *s)
  1184. {
  1185. int sblimit; /* number of used subbands */
  1186. const unsigned char *alloc_table;
  1187. int table, bit_alloc_bits, i, j, ch, bound, v;
  1188. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1189. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1190. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1191. int scale, qindex, bits, steps, k, l, m, b;
  1192. /* select decoding table */
  1193. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1194. s->sample_rate, s->lsf);
  1195. sblimit = sblimit_table[table];
  1196. alloc_table = alloc_tables[table];
  1197. if (s->mode == MPA_JSTEREO)
  1198. bound = (s->mode_ext + 1) * 4;
  1199. else
  1200. bound = sblimit;
  1201. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1202. /* sanity check */
  1203. if( bound > sblimit ) bound = sblimit;
  1204. /* parse bit allocation */
  1205. j = 0;
  1206. for(i=0;i<bound;i++) {
  1207. bit_alloc_bits = alloc_table[j];
  1208. for(ch=0;ch<s->nb_channels;ch++) {
  1209. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1210. }
  1211. j += 1 << bit_alloc_bits;
  1212. }
  1213. for(i=bound;i<sblimit;i++) {
  1214. bit_alloc_bits = alloc_table[j];
  1215. v = get_bits(&s->gb, bit_alloc_bits);
  1216. bit_alloc[0][i] = v;
  1217. bit_alloc[1][i] = v;
  1218. j += 1 << bit_alloc_bits;
  1219. }
  1220. #ifdef DEBUG
  1221. {
  1222. for(ch=0;ch<s->nb_channels;ch++) {
  1223. for(i=0;i<sblimit;i++)
  1224. dprintf(" %d", bit_alloc[ch][i]);
  1225. dprintf("\n");
  1226. }
  1227. }
  1228. #endif
  1229. /* scale codes */
  1230. for(i=0;i<sblimit;i++) {
  1231. for(ch=0;ch<s->nb_channels;ch++) {
  1232. if (bit_alloc[ch][i])
  1233. scale_code[ch][i] = get_bits(&s->gb, 2);
  1234. }
  1235. }
  1236. /* scale factors */
  1237. for(i=0;i<sblimit;i++) {
  1238. for(ch=0;ch<s->nb_channels;ch++) {
  1239. if (bit_alloc[ch][i]) {
  1240. sf = scale_factors[ch][i];
  1241. switch(scale_code[ch][i]) {
  1242. default:
  1243. case 0:
  1244. sf[0] = get_bits(&s->gb, 6);
  1245. sf[1] = get_bits(&s->gb, 6);
  1246. sf[2] = get_bits(&s->gb, 6);
  1247. break;
  1248. case 2:
  1249. sf[0] = get_bits(&s->gb, 6);
  1250. sf[1] = sf[0];
  1251. sf[2] = sf[0];
  1252. break;
  1253. case 1:
  1254. sf[0] = get_bits(&s->gb, 6);
  1255. sf[2] = get_bits(&s->gb, 6);
  1256. sf[1] = sf[0];
  1257. break;
  1258. case 3:
  1259. sf[0] = get_bits(&s->gb, 6);
  1260. sf[2] = get_bits(&s->gb, 6);
  1261. sf[1] = sf[2];
  1262. break;
  1263. }
  1264. }
  1265. }
  1266. }
  1267. #ifdef DEBUG
  1268. for(ch=0;ch<s->nb_channels;ch++) {
  1269. for(i=0;i<sblimit;i++) {
  1270. if (bit_alloc[ch][i]) {
  1271. sf = scale_factors[ch][i];
  1272. dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
  1273. } else {
  1274. dprintf(" -");
  1275. }
  1276. }
  1277. dprintf("\n");
  1278. }
  1279. #endif
  1280. /* samples */
  1281. for(k=0;k<3;k++) {
  1282. for(l=0;l<12;l+=3) {
  1283. j = 0;
  1284. for(i=0;i<bound;i++) {
  1285. bit_alloc_bits = alloc_table[j];
  1286. for(ch=0;ch<s->nb_channels;ch++) {
  1287. b = bit_alloc[ch][i];
  1288. if (b) {
  1289. scale = scale_factors[ch][i][k];
  1290. qindex = alloc_table[j+b];
  1291. bits = quant_bits[qindex];
  1292. if (bits < 0) {
  1293. /* 3 values at the same time */
  1294. v = get_bits(&s->gb, -bits);
  1295. steps = quant_steps[qindex];
  1296. s->sb_samples[ch][k * 12 + l + 0][i] =
  1297. l2_unscale_group(steps, v % steps, scale);
  1298. v = v / steps;
  1299. s->sb_samples[ch][k * 12 + l + 1][i] =
  1300. l2_unscale_group(steps, v % steps, scale);
  1301. v = v / steps;
  1302. s->sb_samples[ch][k * 12 + l + 2][i] =
  1303. l2_unscale_group(steps, v, scale);
  1304. } else {
  1305. for(m=0;m<3;m++) {
  1306. v = get_bits(&s->gb, bits);
  1307. v = l1_unscale(bits - 1, v, scale);
  1308. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1309. }
  1310. }
  1311. } else {
  1312. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1313. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1314. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1315. }
  1316. }
  1317. /* next subband in alloc table */
  1318. j += 1 << bit_alloc_bits;
  1319. }
  1320. /* XXX: find a way to avoid this duplication of code */
  1321. for(i=bound;i<sblimit;i++) {
  1322. bit_alloc_bits = alloc_table[j];
  1323. b = bit_alloc[0][i];
  1324. if (b) {
  1325. int mant, scale0, scale1;
  1326. scale0 = scale_factors[0][i][k];
  1327. scale1 = scale_factors[1][i][k];
  1328. qindex = alloc_table[j+b];
  1329. bits = quant_bits[qindex];
  1330. if (bits < 0) {
  1331. /* 3 values at the same time */
  1332. v = get_bits(&s->gb, -bits);
  1333. steps = quant_steps[qindex];
  1334. mant = v % steps;
  1335. v = v / steps;
  1336. s->sb_samples[0][k * 12 + l + 0][i] =
  1337. l2_unscale_group(steps, mant, scale0);
  1338. s->sb_samples[1][k * 12 + l + 0][i] =
  1339. l2_unscale_group(steps, mant, scale1);
  1340. mant = v % steps;
  1341. v = v / steps;
  1342. s->sb_samples[0][k * 12 + l + 1][i] =
  1343. l2_unscale_group(steps, mant, scale0);
  1344. s->sb_samples[1][k * 12 + l + 1][i] =
  1345. l2_unscale_group(steps, mant, scale1);
  1346. s->sb_samples[0][k * 12 + l + 2][i] =
  1347. l2_unscale_group(steps, v, scale0);
  1348. s->sb_samples[1][k * 12 + l + 2][i] =
  1349. l2_unscale_group(steps, v, scale1);
  1350. } else {
  1351. for(m=0;m<3;m++) {
  1352. mant = get_bits(&s->gb, bits);
  1353. s->sb_samples[0][k * 12 + l + m][i] =
  1354. l1_unscale(bits - 1, mant, scale0);
  1355. s->sb_samples[1][k * 12 + l + m][i] =
  1356. l1_unscale(bits - 1, mant, scale1);
  1357. }
  1358. }
  1359. } else {
  1360. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1361. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1362. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1363. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1364. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1365. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1366. }
  1367. /* next subband in alloc table */
  1368. j += 1 << bit_alloc_bits;
  1369. }
  1370. /* fill remaining samples to zero */
  1371. for(i=sblimit;i<SBLIMIT;i++) {
  1372. for(ch=0;ch<s->nb_channels;ch++) {
  1373. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1374. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1375. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1376. }
  1377. }
  1378. }
  1379. }
  1380. return 3 * 12;
  1381. }
  1382. /*
  1383. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1384. */
  1385. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1386. {
  1387. uint8_t *ptr;
  1388. /* compute current position in stream */
  1389. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1390. /* copy old data before current one */
  1391. ptr -= backstep;
  1392. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1393. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1394. /* init get bits again */
  1395. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1396. /* prepare next buffer */
  1397. s->inbuf_index ^= 1;
  1398. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1399. s->old_frame_size = s->frame_size;
  1400. }
  1401. static inline void lsf_sf_expand(int *slen,
  1402. int sf, int n1, int n2, int n3)
  1403. {
  1404. if (n3) {
  1405. slen[3] = sf % n3;
  1406. sf /= n3;
  1407. } else {
  1408. slen[3] = 0;
  1409. }
  1410. if (n2) {
  1411. slen[2] = sf % n2;
  1412. sf /= n2;
  1413. } else {
  1414. slen[2] = 0;
  1415. }
  1416. slen[1] = sf % n1;
  1417. sf /= n1;
  1418. slen[0] = sf;
  1419. }
  1420. static void exponents_from_scale_factors(MPADecodeContext *s,
  1421. GranuleDef *g,
  1422. int16_t *exponents)
  1423. {
  1424. const uint8_t *bstab, *pretab;
  1425. int len, i, j, k, l, v0, shift, gain, gains[3];
  1426. int16_t *exp_ptr;
  1427. exp_ptr = exponents;
  1428. gain = g->global_gain - 210;
  1429. shift = g->scalefac_scale + 1;
  1430. bstab = band_size_long[s->sample_rate_index];
  1431. pretab = mpa_pretab[g->preflag];
  1432. for(i=0;i<g->long_end;i++) {
  1433. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1434. len = bstab[i];
  1435. for(j=len;j>0;j--)
  1436. *exp_ptr++ = v0;
  1437. }
  1438. if (g->short_start < 13) {
  1439. bstab = band_size_short[s->sample_rate_index];
  1440. gains[0] = gain - (g->subblock_gain[0] << 3);
  1441. gains[1] = gain - (g->subblock_gain[1] << 3);
  1442. gains[2] = gain - (g->subblock_gain[2] << 3);
  1443. k = g->long_end;
  1444. for(i=g->short_start;i<13;i++) {
  1445. len = bstab[i];
  1446. for(l=0;l<3;l++) {
  1447. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1448. for(j=len;j>0;j--)
  1449. *exp_ptr++ = v0;
  1450. }
  1451. }
  1452. }
  1453. }
  1454. /* handle n = 0 too */
  1455. static inline int get_bitsz(GetBitContext *s, int n)
  1456. {
  1457. if (n == 0)
  1458. return 0;
  1459. else
  1460. return get_bits(s, n);
  1461. }
  1462. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1463. int16_t *exponents, int end_pos)
  1464. {
  1465. int s_index;
  1466. int linbits, code, x, y, l, v, i, j, k, pos;
  1467. GetBitContext last_gb;
  1468. VLC *vlc;
  1469. uint8_t *code_table;
  1470. /* low frequencies (called big values) */
  1471. s_index = 0;
  1472. for(i=0;i<3;i++) {
  1473. j = g->region_size[i];
  1474. if (j == 0)
  1475. continue;
  1476. /* select vlc table */
  1477. k = g->table_select[i];
  1478. l = mpa_huff_data[k][0];
  1479. linbits = mpa_huff_data[k][1];
  1480. vlc = &huff_vlc[l];
  1481. code_table = huff_code_table[l];
  1482. /* read huffcode and compute each couple */
  1483. for(;j>0;j--) {
  1484. if (get_bits_count(&s->gb) >= end_pos)
  1485. break;
  1486. if (code_table) {
  1487. code = get_vlc2(&s->gb, vlc->table, 8, 3);
  1488. if (code < 0)
  1489. return -1;
  1490. y = code_table[code];
  1491. x = y >> 4;
  1492. y = y & 0x0f;
  1493. } else {
  1494. x = 0;
  1495. y = 0;
  1496. }
  1497. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1498. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1499. if (x) {
  1500. if (x == 15)
  1501. x += get_bitsz(&s->gb, linbits);
  1502. v = l3_unscale(x, exponents[s_index]);
  1503. if (get_bits1(&s->gb))
  1504. v = -v;
  1505. } else {
  1506. v = 0;
  1507. }
  1508. g->sb_hybrid[s_index++] = v;
  1509. if (y) {
  1510. if (y == 15)
  1511. y += get_bitsz(&s->gb, linbits);
  1512. v = l3_unscale(y, exponents[s_index]);
  1513. if (get_bits1(&s->gb))
  1514. v = -v;
  1515. } else {
  1516. v = 0;
  1517. }
  1518. g->sb_hybrid[s_index++] = v;
  1519. }
  1520. }
  1521. /* high frequencies */
  1522. vlc = &huff_quad_vlc[g->count1table_select];
  1523. last_gb.buffer = NULL;
  1524. while (s_index <= 572) {
  1525. pos = get_bits_count(&s->gb);
  1526. if (pos >= end_pos) {
  1527. if (pos > end_pos && last_gb.buffer != NULL) {
  1528. /* some encoders generate an incorrect size for this
  1529. part. We must go back into the data */
  1530. s_index -= 4;
  1531. s->gb = last_gb;
  1532. }
  1533. break;
  1534. }
  1535. last_gb= s->gb;
  1536. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 2);
  1537. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1538. if (code < 0)
  1539. return -1;
  1540. for(i=0;i<4;i++) {
  1541. if (code & (8 >> i)) {
  1542. /* non zero value. Could use a hand coded function for
  1543. 'one' value */
  1544. v = l3_unscale(1, exponents[s_index]);
  1545. if(get_bits1(&s->gb))
  1546. v = -v;
  1547. } else {
  1548. v = 0;
  1549. }
  1550. g->sb_hybrid[s_index++] = v;
  1551. }
  1552. }
  1553. while (s_index < 576)
  1554. g->sb_hybrid[s_index++] = 0;
  1555. return 0;
  1556. }
  1557. /* Reorder short blocks from bitstream order to interleaved order. It
  1558. would be faster to do it in parsing, but the code would be far more
  1559. complicated */
  1560. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1561. {
  1562. int i, j, k, len;
  1563. int32_t *ptr, *dst, *ptr1;
  1564. int32_t tmp[576];
  1565. if (g->block_type != 2)
  1566. return;
  1567. if (g->switch_point) {
  1568. if (s->sample_rate_index != 8) {
  1569. ptr = g->sb_hybrid + 36;
  1570. } else {
  1571. ptr = g->sb_hybrid + 48;
  1572. }
  1573. } else {
  1574. ptr = g->sb_hybrid;
  1575. }
  1576. for(i=g->short_start;i<13;i++) {
  1577. len = band_size_short[s->sample_rate_index][i];
  1578. ptr1 = ptr;
  1579. for(k=0;k<3;k++) {
  1580. dst = tmp + k;
  1581. for(j=len;j>0;j--) {
  1582. *dst = *ptr++;
  1583. dst += 3;
  1584. }
  1585. }
  1586. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1587. }
  1588. }
  1589. #define ISQRT2 FIXR(0.70710678118654752440)
  1590. static void compute_stereo(MPADecodeContext *s,
  1591. GranuleDef *g0, GranuleDef *g1)
  1592. {
  1593. int i, j, k, l;
  1594. int32_t v1, v2;
  1595. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1596. int32_t (*is_tab)[16];
  1597. int32_t *tab0, *tab1;
  1598. int non_zero_found_short[3];
  1599. /* intensity stereo */
  1600. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1601. if (!s->lsf) {
  1602. is_tab = is_table;
  1603. sf_max = 7;
  1604. } else {
  1605. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1606. sf_max = 16;
  1607. }
  1608. tab0 = g0->sb_hybrid + 576;
  1609. tab1 = g1->sb_hybrid + 576;
  1610. non_zero_found_short[0] = 0;
  1611. non_zero_found_short[1] = 0;
  1612. non_zero_found_short[2] = 0;
  1613. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1614. for(i = 12;i >= g1->short_start;i--) {
  1615. /* for last band, use previous scale factor */
  1616. if (i != 11)
  1617. k -= 3;
  1618. len = band_size_short[s->sample_rate_index][i];
  1619. for(l=2;l>=0;l--) {
  1620. tab0 -= len;
  1621. tab1 -= len;
  1622. if (!non_zero_found_short[l]) {
  1623. /* test if non zero band. if so, stop doing i-stereo */
  1624. for(j=0;j<len;j++) {
  1625. if (tab1[j] != 0) {
  1626. non_zero_found_short[l] = 1;
  1627. goto found1;
  1628. }
  1629. }
  1630. sf = g1->scale_factors[k + l];
  1631. if (sf >= sf_max)
  1632. goto found1;
  1633. v1 = is_tab[0][sf];
  1634. v2 = is_tab[1][sf];
  1635. for(j=0;j<len;j++) {
  1636. tmp0 = tab0[j];
  1637. tab0[j] = MULL(tmp0, v1);
  1638. tab1[j] = MULL(tmp0, v2);
  1639. }
  1640. } else {
  1641. found1:
  1642. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1643. /* lower part of the spectrum : do ms stereo
  1644. if enabled */
  1645. for(j=0;j<len;j++) {
  1646. tmp0 = tab0[j];
  1647. tmp1 = tab1[j];
  1648. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1649. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1650. }
  1651. }
  1652. }
  1653. }
  1654. }
  1655. non_zero_found = non_zero_found_short[0] |
  1656. non_zero_found_short[1] |
  1657. non_zero_found_short[2];
  1658. for(i = g1->long_end - 1;i >= 0;i--) {
  1659. len = band_size_long[s->sample_rate_index][i];
  1660. tab0 -= len;
  1661. tab1 -= len;
  1662. /* test if non zero band. if so, stop doing i-stereo */
  1663. if (!non_zero_found) {
  1664. for(j=0;j<len;j++) {
  1665. if (tab1[j] != 0) {
  1666. non_zero_found = 1;
  1667. goto found2;
  1668. }
  1669. }
  1670. /* for last band, use previous scale factor */
  1671. k = (i == 21) ? 20 : i;
  1672. sf = g1->scale_factors[k];
  1673. if (sf >= sf_max)
  1674. goto found2;
  1675. v1 = is_tab[0][sf];
  1676. v2 = is_tab[1][sf];
  1677. for(j=0;j<len;j++) {
  1678. tmp0 = tab0[j];
  1679. tab0[j] = MULL(tmp0, v1);
  1680. tab1[j] = MULL(tmp0, v2);
  1681. }
  1682. } else {
  1683. found2:
  1684. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1685. /* lower part of the spectrum : do ms stereo
  1686. if enabled */
  1687. for(j=0;j<len;j++) {
  1688. tmp0 = tab0[j];
  1689. tmp1 = tab1[j];
  1690. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1691. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1692. }
  1693. }
  1694. }
  1695. }
  1696. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1697. /* ms stereo ONLY */
  1698. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1699. global gain */
  1700. tab0 = g0->sb_hybrid;
  1701. tab1 = g1->sb_hybrid;
  1702. for(i=0;i<576;i++) {
  1703. tmp0 = tab0[i];
  1704. tmp1 = tab1[i];
  1705. tab0[i] = tmp0 + tmp1;
  1706. tab1[i] = tmp0 - tmp1;
  1707. }
  1708. }
  1709. }
  1710. static void compute_antialias_integer(MPADecodeContext *s,
  1711. GranuleDef *g)
  1712. {
  1713. int32_t *ptr, *csa;
  1714. int n, i;
  1715. /* we antialias only "long" bands */
  1716. if (g->block_type == 2) {
  1717. if (!g->switch_point)
  1718. return;
  1719. /* XXX: check this for 8000Hz case */
  1720. n = 1;
  1721. } else {
  1722. n = SBLIMIT - 1;
  1723. }
  1724. ptr = g->sb_hybrid + 18;
  1725. for(i = n;i > 0;i--) {
  1726. int tmp0, tmp1, tmp2;
  1727. csa = &csa_table[0][0];
  1728. #define INT_AA(j) \
  1729. tmp0 = ptr[-1-j];\
  1730. tmp1 = ptr[ j];\
  1731. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1732. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1733. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1734. INT_AA(0)
  1735. INT_AA(1)
  1736. INT_AA(2)
  1737. INT_AA(3)
  1738. INT_AA(4)
  1739. INT_AA(5)
  1740. INT_AA(6)
  1741. INT_AA(7)
  1742. ptr += 18;
  1743. }
  1744. }
  1745. static void compute_antialias_float(MPADecodeContext *s,
  1746. GranuleDef *g)
  1747. {
  1748. int32_t *ptr;
  1749. int n, i;
  1750. /* we antialias only "long" bands */
  1751. if (g->block_type == 2) {
  1752. if (!g->switch_point)
  1753. return;
  1754. /* XXX: check this for 8000Hz case */
  1755. n = 1;
  1756. } else {
  1757. n = SBLIMIT - 1;
  1758. }
  1759. ptr = g->sb_hybrid + 18;
  1760. for(i = n;i > 0;i--) {
  1761. float tmp0, tmp1;
  1762. float *csa = &csa_table_float[0][0];
  1763. #define FLOAT_AA(j)\
  1764. tmp0= ptr[-1-j];\
  1765. tmp1= ptr[ j];\
  1766. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1767. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1768. FLOAT_AA(0)
  1769. FLOAT_AA(1)
  1770. FLOAT_AA(2)
  1771. FLOAT_AA(3)
  1772. FLOAT_AA(4)
  1773. FLOAT_AA(5)
  1774. FLOAT_AA(6)
  1775. FLOAT_AA(7)
  1776. ptr += 18;
  1777. }
  1778. }
  1779. static void compute_imdct(MPADecodeContext *s,
  1780. GranuleDef *g,
  1781. int32_t *sb_samples,
  1782. int32_t *mdct_buf)
  1783. {
  1784. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1785. int32_t out2[12];
  1786. int i, j, mdct_long_end, v, sblimit;
  1787. /* find last non zero block */
  1788. ptr = g->sb_hybrid + 576;
  1789. ptr1 = g->sb_hybrid + 2 * 18;
  1790. while (ptr >= ptr1) {
  1791. ptr -= 6;
  1792. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1793. if (v != 0)
  1794. break;
  1795. }
  1796. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1797. if (g->block_type == 2) {
  1798. /* XXX: check for 8000 Hz */
  1799. if (g->switch_point)
  1800. mdct_long_end = 2;
  1801. else
  1802. mdct_long_end = 0;
  1803. } else {
  1804. mdct_long_end = sblimit;
  1805. }
  1806. buf = mdct_buf;
  1807. ptr = g->sb_hybrid;
  1808. for(j=0;j<mdct_long_end;j++) {
  1809. /* apply window & overlap with previous buffer */
  1810. out_ptr = sb_samples + j;
  1811. /* select window */
  1812. if (g->switch_point && j < 2)
  1813. win1 = mdct_win[0];
  1814. else
  1815. win1 = mdct_win[g->block_type];
  1816. /* select frequency inversion */
  1817. win = win1 + ((4 * 36) & -(j & 1));
  1818. imdct36(out_ptr, buf, ptr, win);
  1819. out_ptr += 18*SBLIMIT;
  1820. ptr += 18;
  1821. buf += 18;
  1822. }
  1823. for(j=mdct_long_end;j<sblimit;j++) {
  1824. /* select frequency inversion */
  1825. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1826. out_ptr = sb_samples + j;
  1827. for(i=0; i<6; i++){
  1828. *out_ptr = buf[i];
  1829. out_ptr += SBLIMIT;
  1830. }
  1831. imdct12(out2, ptr + 0);
  1832. for(i=0;i<6;i++) {
  1833. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1834. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1835. out_ptr += SBLIMIT;
  1836. }
  1837. imdct12(out2, ptr + 1);
  1838. for(i=0;i<6;i++) {
  1839. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1840. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1841. out_ptr += SBLIMIT;
  1842. }
  1843. imdct12(out2, ptr + 2);
  1844. for(i=0;i<6;i++) {
  1845. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1846. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1847. buf[i + 6*2] = 0;
  1848. }
  1849. ptr += 18;
  1850. buf += 18;
  1851. }
  1852. /* zero bands */
  1853. for(j=sblimit;j<SBLIMIT;j++) {
  1854. /* overlap */
  1855. out_ptr = sb_samples + j;
  1856. for(i=0;i<18;i++) {
  1857. *out_ptr = buf[i];
  1858. buf[i] = 0;
  1859. out_ptr += SBLIMIT;
  1860. }
  1861. buf += 18;
  1862. }
  1863. }
  1864. #if defined(DEBUG)
  1865. void sample_dump(int fnum, int32_t *tab, int n)
  1866. {
  1867. static FILE *files[16], *f;
  1868. char buf[512];
  1869. int i;
  1870. int32_t v;
  1871. f = files[fnum];
  1872. if (!f) {
  1873. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1874. fnum,
  1875. #ifdef USE_HIGHPRECISION
  1876. "hp"
  1877. #else
  1878. "lp"
  1879. #endif
  1880. );
  1881. f = fopen(buf, "w");
  1882. if (!f)
  1883. return;
  1884. files[fnum] = f;
  1885. }
  1886. if (fnum == 0) {
  1887. static int pos = 0;
  1888. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1889. for(i=0;i<n;i++) {
  1890. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1891. if ((i % 18) == 17)
  1892. av_log(NULL, AV_LOG_DEBUG, "\n");
  1893. }
  1894. pos += n;
  1895. }
  1896. for(i=0;i<n;i++) {
  1897. /* normalize to 23 frac bits */
  1898. v = tab[i] << (23 - FRAC_BITS);
  1899. fwrite(&v, 1, sizeof(int32_t), f);
  1900. }
  1901. }
  1902. #endif
  1903. /* main layer3 decoding function */
  1904. static int mp_decode_layer3(MPADecodeContext *s)
  1905. {
  1906. int nb_granules, main_data_begin, private_bits;
  1907. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1908. GranuleDef granules[2][2], *g;
  1909. int16_t exponents[576];
  1910. /* read side info */
  1911. if (s->lsf) {
  1912. main_data_begin = get_bits(&s->gb, 8);
  1913. if (s->nb_channels == 2)
  1914. private_bits = get_bits(&s->gb, 2);
  1915. else
  1916. private_bits = get_bits(&s->gb, 1);
  1917. nb_granules = 1;
  1918. } else {
  1919. main_data_begin = get_bits(&s->gb, 9);
  1920. if (s->nb_channels == 2)
  1921. private_bits = get_bits(&s->gb, 3);
  1922. else
  1923. private_bits = get_bits(&s->gb, 5);
  1924. nb_granules = 2;
  1925. for(ch=0;ch<s->nb_channels;ch++) {
  1926. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1927. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1928. }
  1929. }
  1930. for(gr=0;gr<nb_granules;gr++) {
  1931. for(ch=0;ch<s->nb_channels;ch++) {
  1932. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1933. g = &granules[ch][gr];
  1934. g->part2_3_length = get_bits(&s->gb, 12);
  1935. g->big_values = get_bits(&s->gb, 9);
  1936. g->global_gain = get_bits(&s->gb, 8);
  1937. /* if MS stereo only is selected, we precompute the
  1938. 1/sqrt(2) renormalization factor */
  1939. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1940. MODE_EXT_MS_STEREO)
  1941. g->global_gain -= 2;
  1942. if (s->lsf)
  1943. g->scalefac_compress = get_bits(&s->gb, 9);
  1944. else
  1945. g->scalefac_compress = get_bits(&s->gb, 4);
  1946. blocksplit_flag = get_bits(&s->gb, 1);
  1947. if (blocksplit_flag) {
  1948. g->block_type = get_bits(&s->gb, 2);
  1949. if (g->block_type == 0)
  1950. return -1;
  1951. g->switch_point = get_bits(&s->gb, 1);
  1952. for(i=0;i<2;i++)
  1953. g->table_select[i] = get_bits(&s->gb, 5);
  1954. for(i=0;i<3;i++)
  1955. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1956. /* compute huffman coded region sizes */
  1957. if (g->block_type == 2)
  1958. g->region_size[0] = (36 / 2);
  1959. else {
  1960. if (s->sample_rate_index <= 2)
  1961. g->region_size[0] = (36 / 2);
  1962. else if (s->sample_rate_index != 8)
  1963. g->region_size[0] = (54 / 2);
  1964. else
  1965. g->region_size[0] = (108 / 2);
  1966. }
  1967. g->region_size[1] = (576 / 2);
  1968. } else {
  1969. int region_address1, region_address2, l;
  1970. g->block_type = 0;
  1971. g->switch_point = 0;
  1972. for(i=0;i<3;i++)
  1973. g->table_select[i] = get_bits(&s->gb, 5);
  1974. /* compute huffman coded region sizes */
  1975. region_address1 = get_bits(&s->gb, 4);
  1976. region_address2 = get_bits(&s->gb, 3);
  1977. dprintf("region1=%d region2=%d\n",
  1978. region_address1, region_address2);
  1979. g->region_size[0] =
  1980. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1981. l = region_address1 + region_address2 + 2;
  1982. /* should not overflow */
  1983. if (l > 22)
  1984. l = 22;
  1985. g->region_size[1] =
  1986. band_index_long[s->sample_rate_index][l] >> 1;
  1987. }
  1988. /* convert region offsets to region sizes and truncate
  1989. size to big_values */
  1990. g->region_size[2] = (576 / 2);
  1991. j = 0;
  1992. for(i=0;i<3;i++) {
  1993. k = g->region_size[i];
  1994. if (k > g->big_values)
  1995. k = g->big_values;
  1996. g->region_size[i] = k - j;
  1997. j = k;
  1998. }
  1999. /* compute band indexes */
  2000. if (g->block_type == 2) {
  2001. if (g->switch_point) {
  2002. /* if switched mode, we handle the 36 first samples as
  2003. long blocks. For 8000Hz, we handle the 48 first
  2004. exponents as long blocks (XXX: check this!) */
  2005. if (s->sample_rate_index <= 2)
  2006. g->long_end = 8;
  2007. else if (s->sample_rate_index != 8)
  2008. g->long_end = 6;
  2009. else
  2010. g->long_end = 4; /* 8000 Hz */
  2011. if (s->sample_rate_index != 8)
  2012. g->short_start = 3;
  2013. else
  2014. g->short_start = 2;
  2015. } else {
  2016. g->long_end = 0;
  2017. g->short_start = 0;
  2018. }
  2019. } else {
  2020. g->short_start = 13;
  2021. g->long_end = 22;
  2022. }
  2023. g->preflag = 0;
  2024. if (!s->lsf)
  2025. g->preflag = get_bits(&s->gb, 1);
  2026. g->scalefac_scale = get_bits(&s->gb, 1);
  2027. g->count1table_select = get_bits(&s->gb, 1);
  2028. dprintf("block_type=%d switch_point=%d\n",
  2029. g->block_type, g->switch_point);
  2030. }
  2031. }
  2032. if (!s->adu_mode) {
  2033. /* now we get bits from the main_data_begin offset */
  2034. dprintf("seekback: %d\n", main_data_begin);
  2035. seek_to_maindata(s, main_data_begin);
  2036. }
  2037. for(gr=0;gr<nb_granules;gr++) {
  2038. for(ch=0;ch<s->nb_channels;ch++) {
  2039. g = &granules[ch][gr];
  2040. bits_pos = get_bits_count(&s->gb);
  2041. if (!s->lsf) {
  2042. uint8_t *sc;
  2043. int slen, slen1, slen2;
  2044. /* MPEG1 scale factors */
  2045. slen1 = slen_table[0][g->scalefac_compress];
  2046. slen2 = slen_table[1][g->scalefac_compress];
  2047. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2048. if (g->block_type == 2) {
  2049. n = g->switch_point ? 17 : 18;
  2050. j = 0;
  2051. for(i=0;i<n;i++)
  2052. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  2053. for(i=0;i<18;i++)
  2054. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  2055. for(i=0;i<3;i++)
  2056. g->scale_factors[j++] = 0;
  2057. } else {
  2058. sc = granules[ch][0].scale_factors;
  2059. j = 0;
  2060. for(k=0;k<4;k++) {
  2061. n = (k == 0 ? 6 : 5);
  2062. if ((g->scfsi & (0x8 >> k)) == 0) {
  2063. slen = (k < 2) ? slen1 : slen2;
  2064. for(i=0;i<n;i++)
  2065. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  2066. } else {
  2067. /* simply copy from last granule */
  2068. for(i=0;i<n;i++) {
  2069. g->scale_factors[j] = sc[j];
  2070. j++;
  2071. }
  2072. }
  2073. }
  2074. g->scale_factors[j++] = 0;
  2075. }
  2076. #if defined(DEBUG)
  2077. {
  2078. dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2079. g->scfsi, gr, ch);
  2080. for(i=0;i<j;i++)
  2081. dprintf(" %d", g->scale_factors[i]);
  2082. dprintf("\n");
  2083. }
  2084. #endif
  2085. } else {
  2086. int tindex, tindex2, slen[4], sl, sf;
  2087. /* LSF scale factors */
  2088. if (g->block_type == 2) {
  2089. tindex = g->switch_point ? 2 : 1;
  2090. } else {
  2091. tindex = 0;
  2092. }
  2093. sf = g->scalefac_compress;
  2094. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2095. /* intensity stereo case */
  2096. sf >>= 1;
  2097. if (sf < 180) {
  2098. lsf_sf_expand(slen, sf, 6, 6, 0);
  2099. tindex2 = 3;
  2100. } else if (sf < 244) {
  2101. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2102. tindex2 = 4;
  2103. } else {
  2104. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2105. tindex2 = 5;
  2106. }
  2107. } else {
  2108. /* normal case */
  2109. if (sf < 400) {
  2110. lsf_sf_expand(slen, sf, 5, 4, 4);
  2111. tindex2 = 0;
  2112. } else if (sf < 500) {
  2113. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2114. tindex2 = 1;
  2115. } else {
  2116. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2117. tindex2 = 2;
  2118. g->preflag = 1;
  2119. }
  2120. }
  2121. j = 0;
  2122. for(k=0;k<4;k++) {
  2123. n = lsf_nsf_table[tindex2][tindex][k];
  2124. sl = slen[k];
  2125. for(i=0;i<n;i++)
  2126. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2127. }
  2128. /* XXX: should compute exact size */
  2129. for(;j<40;j++)
  2130. g->scale_factors[j] = 0;
  2131. #if defined(DEBUG)
  2132. {
  2133. dprintf("gr=%d ch=%d scale_factors:\n",
  2134. gr, ch);
  2135. for(i=0;i<40;i++)
  2136. dprintf(" %d", g->scale_factors[i]);
  2137. dprintf("\n");
  2138. }
  2139. #endif
  2140. }
  2141. exponents_from_scale_factors(s, g, exponents);
  2142. /* read Huffman coded residue */
  2143. if (huffman_decode(s, g, exponents,
  2144. bits_pos + g->part2_3_length) < 0)
  2145. return -1;
  2146. #if defined(DEBUG)
  2147. sample_dump(0, g->sb_hybrid, 576);
  2148. #endif
  2149. /* skip extension bits */
  2150. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2151. if (bits_left < 0) {
  2152. dprintf("bits_left=%d\n", bits_left);
  2153. return -1;
  2154. }
  2155. while (bits_left >= 16) {
  2156. skip_bits(&s->gb, 16);
  2157. bits_left -= 16;
  2158. }
  2159. if (bits_left > 0)
  2160. skip_bits(&s->gb, bits_left);
  2161. } /* ch */
  2162. if (s->nb_channels == 2)
  2163. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2164. for(ch=0;ch<s->nb_channels;ch++) {
  2165. g = &granules[ch][gr];
  2166. reorder_block(s, g);
  2167. #if defined(DEBUG)
  2168. sample_dump(0, g->sb_hybrid, 576);
  2169. #endif
  2170. s->compute_antialias(s, g);
  2171. #if defined(DEBUG)
  2172. sample_dump(1, g->sb_hybrid, 576);
  2173. #endif
  2174. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2175. #if defined(DEBUG)
  2176. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2177. #endif
  2178. }
  2179. } /* gr */
  2180. return nb_granules * 18;
  2181. }
  2182. static int mp_decode_frame(MPADecodeContext *s,
  2183. OUT_INT *samples)
  2184. {
  2185. int i, nb_frames, ch;
  2186. OUT_INT *samples_ptr;
  2187. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2188. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2189. /* skip error protection field */
  2190. if (s->error_protection)
  2191. get_bits(&s->gb, 16);
  2192. dprintf("frame %d:\n", s->frame_count);
  2193. switch(s->layer) {
  2194. case 1:
  2195. nb_frames = mp_decode_layer1(s);
  2196. break;
  2197. case 2:
  2198. nb_frames = mp_decode_layer2(s);
  2199. break;
  2200. case 3:
  2201. default:
  2202. nb_frames = mp_decode_layer3(s);
  2203. break;
  2204. }
  2205. #if defined(DEBUG)
  2206. for(i=0;i<nb_frames;i++) {
  2207. for(ch=0;ch<s->nb_channels;ch++) {
  2208. int j;
  2209. dprintf("%d-%d:", i, ch);
  2210. for(j=0;j<SBLIMIT;j++)
  2211. dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2212. dprintf("\n");
  2213. }
  2214. }
  2215. #endif
  2216. /* apply the synthesis filter */
  2217. for(ch=0;ch<s->nb_channels;ch++) {
  2218. samples_ptr = samples + ch;
  2219. for(i=0;i<nb_frames;i++) {
  2220. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2221. window, &s->dither_state,
  2222. samples_ptr, s->nb_channels,
  2223. s->sb_samples[ch][i]);
  2224. samples_ptr += 32 * s->nb_channels;
  2225. }
  2226. }
  2227. #ifdef DEBUG
  2228. s->frame_count++;
  2229. #endif
  2230. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2231. }
  2232. static int decode_frame(AVCodecContext * avctx,
  2233. void *data, int *data_size,
  2234. uint8_t * buf, int buf_size)
  2235. {
  2236. MPADecodeContext *s = avctx->priv_data;
  2237. uint32_t header;
  2238. uint8_t *buf_ptr;
  2239. int len, out_size;
  2240. OUT_INT *out_samples = data;
  2241. buf_ptr = buf;
  2242. while (buf_size > 0) {
  2243. len = s->inbuf_ptr - s->inbuf;
  2244. if (s->frame_size == 0) {
  2245. /* special case for next header for first frame in free
  2246. format case (XXX: find a simpler method) */
  2247. if (s->free_format_next_header != 0) {
  2248. s->inbuf[0] = s->free_format_next_header >> 24;
  2249. s->inbuf[1] = s->free_format_next_header >> 16;
  2250. s->inbuf[2] = s->free_format_next_header >> 8;
  2251. s->inbuf[3] = s->free_format_next_header;
  2252. s->inbuf_ptr = s->inbuf + 4;
  2253. s->free_format_next_header = 0;
  2254. goto got_header;
  2255. }
  2256. /* no header seen : find one. We need at least HEADER_SIZE
  2257. bytes to parse it */
  2258. len = HEADER_SIZE - len;
  2259. if (len > buf_size)
  2260. len = buf_size;
  2261. if (len > 0) {
  2262. memcpy(s->inbuf_ptr, buf_ptr, len);
  2263. buf_ptr += len;
  2264. buf_size -= len;
  2265. s->inbuf_ptr += len;
  2266. }
  2267. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2268. got_header:
  2269. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2270. (s->inbuf[2] << 8) | s->inbuf[3];
  2271. if (ff_mpa_check_header(header) < 0) {
  2272. /* no sync found : move by one byte (inefficient, but simple!) */
  2273. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2274. s->inbuf_ptr--;
  2275. dprintf("skip %x\n", header);
  2276. /* reset free format frame size to give a chance
  2277. to get a new bitrate */
  2278. s->free_format_frame_size = 0;
  2279. } else {
  2280. if (decode_header(s, header) == 1) {
  2281. /* free format: prepare to compute frame size */
  2282. s->frame_size = -1;
  2283. }
  2284. /* update codec info */
  2285. avctx->sample_rate = s->sample_rate;
  2286. avctx->channels = s->nb_channels;
  2287. avctx->bit_rate = s->bit_rate;
  2288. avctx->sub_id = s->layer;
  2289. switch(s->layer) {
  2290. case 1:
  2291. avctx->frame_size = 384;
  2292. break;
  2293. case 2:
  2294. avctx->frame_size = 1152;
  2295. break;
  2296. case 3:
  2297. if (s->lsf)
  2298. avctx->frame_size = 576;
  2299. else
  2300. avctx->frame_size = 1152;
  2301. break;
  2302. }
  2303. }
  2304. }
  2305. } else if (s->frame_size == -1) {
  2306. /* free format : find next sync to compute frame size */
  2307. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2308. if (len > buf_size)
  2309. len = buf_size;
  2310. if (len == 0) {
  2311. /* frame too long: resync */
  2312. s->frame_size = 0;
  2313. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2314. s->inbuf_ptr--;
  2315. } else {
  2316. uint8_t *p, *pend;
  2317. uint32_t header1;
  2318. int padding;
  2319. memcpy(s->inbuf_ptr, buf_ptr, len);
  2320. /* check for header */
  2321. p = s->inbuf_ptr - 3;
  2322. pend = s->inbuf_ptr + len - 4;
  2323. while (p <= pend) {
  2324. header = (p[0] << 24) | (p[1] << 16) |
  2325. (p[2] << 8) | p[3];
  2326. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2327. (s->inbuf[2] << 8) | s->inbuf[3];
  2328. /* check with high probability that we have a
  2329. valid header */
  2330. if ((header & SAME_HEADER_MASK) ==
  2331. (header1 & SAME_HEADER_MASK)) {
  2332. /* header found: update pointers */
  2333. len = (p + 4) - s->inbuf_ptr;
  2334. buf_ptr += len;
  2335. buf_size -= len;
  2336. s->inbuf_ptr = p;
  2337. /* compute frame size */
  2338. s->free_format_next_header = header;
  2339. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2340. padding = (header1 >> 9) & 1;
  2341. if (s->layer == 1)
  2342. s->free_format_frame_size -= padding * 4;
  2343. else
  2344. s->free_format_frame_size -= padding;
  2345. dprintf("free frame size=%d padding=%d\n",
  2346. s->free_format_frame_size, padding);
  2347. decode_header(s, header1);
  2348. goto next_data;
  2349. }
  2350. p++;
  2351. }
  2352. /* not found: simply increase pointers */
  2353. buf_ptr += len;
  2354. s->inbuf_ptr += len;
  2355. buf_size -= len;
  2356. }
  2357. } else if (len < s->frame_size) {
  2358. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2359. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2360. len = s->frame_size - len;
  2361. if (len > buf_size)
  2362. len = buf_size;
  2363. memcpy(s->inbuf_ptr, buf_ptr, len);
  2364. buf_ptr += len;
  2365. s->inbuf_ptr += len;
  2366. buf_size -= len;
  2367. }
  2368. next_data:
  2369. if (s->frame_size > 0 &&
  2370. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2371. if (avctx->parse_only) {
  2372. /* simply return the frame data */
  2373. *(uint8_t **)data = s->inbuf;
  2374. out_size = s->inbuf_ptr - s->inbuf;
  2375. } else {
  2376. out_size = mp_decode_frame(s, out_samples);
  2377. }
  2378. s->inbuf_ptr = s->inbuf;
  2379. s->frame_size = 0;
  2380. if(out_size>=0)
  2381. *data_size = out_size;
  2382. else
  2383. av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed
  2384. break;
  2385. }
  2386. }
  2387. return buf_ptr - buf;
  2388. }
  2389. static int decode_frame_adu(AVCodecContext * avctx,
  2390. void *data, int *data_size,
  2391. uint8_t * buf, int buf_size)
  2392. {
  2393. MPADecodeContext *s = avctx->priv_data;
  2394. uint32_t header;
  2395. int len, out_size;
  2396. OUT_INT *out_samples = data;
  2397. len = buf_size;
  2398. // Discard too short frames
  2399. if (buf_size < HEADER_SIZE) {
  2400. *data_size = 0;
  2401. return buf_size;
  2402. }
  2403. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2404. len = MPA_MAX_CODED_FRAME_SIZE;
  2405. memcpy(s->inbuf, buf, len);
  2406. s->inbuf_ptr = s->inbuf + len;
  2407. // Get header and restore sync word
  2408. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2409. (s->inbuf[2] << 8) | s->inbuf[3] | 0xffe00000;
  2410. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2411. *data_size = 0;
  2412. return buf_size;
  2413. }
  2414. decode_header(s, header);
  2415. /* update codec info */
  2416. avctx->sample_rate = s->sample_rate;
  2417. avctx->channels = s->nb_channels;
  2418. avctx->bit_rate = s->bit_rate;
  2419. avctx->sub_id = s->layer;
  2420. avctx->frame_size=s->frame_size = len;
  2421. if (avctx->parse_only) {
  2422. /* simply return the frame data */
  2423. *(uint8_t **)data = s->inbuf;
  2424. out_size = s->inbuf_ptr - s->inbuf;
  2425. } else {
  2426. out_size = mp_decode_frame(s, out_samples);
  2427. }
  2428. *data_size = out_size;
  2429. return buf_size;
  2430. }
  2431. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2432. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2433. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2434. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2435. static int chan_offset[9][5] = {
  2436. {0},
  2437. {0}, // C
  2438. {0}, // FLR
  2439. {2,0}, // C FLR
  2440. {2,0,3}, // C FLR BS
  2441. {4,0,2}, // C FLR BLRS
  2442. {4,0,2,5}, // C FLR BLRS LFE
  2443. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2444. {0,2} // FLR BLRS
  2445. };
  2446. static int decode_init_mp3on4(AVCodecContext * avctx)
  2447. {
  2448. MP3On4DecodeContext *s = avctx->priv_data;
  2449. int i;
  2450. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2451. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2452. return -1;
  2453. }
  2454. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2455. s->frames = mp3Frames[s->chan_cfg];
  2456. if(!s->frames) {
  2457. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2458. return -1;
  2459. }
  2460. avctx->channels = mp3Channels[s->chan_cfg];
  2461. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2462. * We replace avctx->priv_data with the context of the first decoder so that
  2463. * decode_init() does not have to be changed.
  2464. * Other decoders will be inited here copying data from the first context
  2465. */
  2466. // Allocate zeroed memory for the first decoder context
  2467. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2468. // Put decoder context in place to make init_decode() happy
  2469. avctx->priv_data = s->mp3decctx[0];
  2470. decode_init(avctx);
  2471. // Restore mp3on4 context pointer
  2472. avctx->priv_data = s;
  2473. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2474. /* Create a separate codec/context for each frame (first is already ok).
  2475. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2476. */
  2477. for (i = 1; i < s->frames; i++) {
  2478. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2479. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2480. s->mp3decctx[i]->inbuf = &s->mp3decctx[i]->inbuf1[0][BACKSTEP_SIZE];
  2481. s->mp3decctx[i]->inbuf_ptr = s->mp3decctx[i]->inbuf;
  2482. s->mp3decctx[i]->adu_mode = 1;
  2483. }
  2484. return 0;
  2485. }
  2486. static int decode_close_mp3on4(AVCodecContext * avctx)
  2487. {
  2488. MP3On4DecodeContext *s = avctx->priv_data;
  2489. int i;
  2490. for (i = 0; i < s->frames; i++)
  2491. if (s->mp3decctx[i])
  2492. av_free(s->mp3decctx[i]);
  2493. return 0;
  2494. }
  2495. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2496. void *data, int *data_size,
  2497. uint8_t * buf, int buf_size)
  2498. {
  2499. MP3On4DecodeContext *s = avctx->priv_data;
  2500. MPADecodeContext *m;
  2501. int len, out_size = 0;
  2502. uint32_t header;
  2503. OUT_INT *out_samples = data;
  2504. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2505. OUT_INT *outptr, *bp;
  2506. int fsize;
  2507. unsigned char *start2 = buf, *start;
  2508. int fr, i, j, n;
  2509. int off = avctx->channels;
  2510. int *coff = chan_offset[s->chan_cfg];
  2511. len = buf_size;
  2512. // Discard too short frames
  2513. if (buf_size < HEADER_SIZE) {
  2514. *data_size = 0;
  2515. return buf_size;
  2516. }
  2517. // If only one decoder interleave is not needed
  2518. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2519. for (fr = 0; fr < s->frames; fr++) {
  2520. start = start2;
  2521. fsize = (start[0] << 4) | (start[1] >> 4);
  2522. start2 += fsize;
  2523. if (fsize > len)
  2524. fsize = len;
  2525. len -= fsize;
  2526. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2527. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2528. m = s->mp3decctx[fr];
  2529. assert (m != NULL);
  2530. /* copy original to new */
  2531. m->inbuf_ptr = m->inbuf + fsize;
  2532. memcpy(m->inbuf, start, fsize);
  2533. // Get header
  2534. header = (m->inbuf[0] << 24) | (m->inbuf[1] << 16) |
  2535. (m->inbuf[2] << 8) | m->inbuf[3] | 0xfff00000;
  2536. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2537. *data_size = 0;
  2538. return buf_size;
  2539. }
  2540. decode_header(m, header);
  2541. mp_decode_frame(m, decoded_buf);
  2542. n = MPA_FRAME_SIZE * m->nb_channels;
  2543. out_size += n * sizeof(OUT_INT);
  2544. if(s->frames > 1) {
  2545. /* interleave output data */
  2546. bp = out_samples + coff[fr];
  2547. if(m->nb_channels == 1) {
  2548. for(j = 0; j < n; j++) {
  2549. *bp = decoded_buf[j];
  2550. bp += off;
  2551. }
  2552. } else {
  2553. for(j = 0; j < n; j++) {
  2554. bp[0] = decoded_buf[j++];
  2555. bp[1] = decoded_buf[j];
  2556. bp += off;
  2557. }
  2558. }
  2559. }
  2560. }
  2561. /* update codec info */
  2562. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2563. avctx->frame_size= buf_size;
  2564. avctx->bit_rate = 0;
  2565. for (i = 0; i < s->frames; i++)
  2566. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2567. *data_size = out_size;
  2568. return buf_size;
  2569. }
  2570. AVCodec mp2_decoder =
  2571. {
  2572. "mp2",
  2573. CODEC_TYPE_AUDIO,
  2574. CODEC_ID_MP2,
  2575. sizeof(MPADecodeContext),
  2576. decode_init,
  2577. NULL,
  2578. NULL,
  2579. decode_frame,
  2580. CODEC_CAP_PARSE_ONLY,
  2581. };
  2582. AVCodec mp3_decoder =
  2583. {
  2584. "mp3",
  2585. CODEC_TYPE_AUDIO,
  2586. CODEC_ID_MP3,
  2587. sizeof(MPADecodeContext),
  2588. decode_init,
  2589. NULL,
  2590. NULL,
  2591. decode_frame,
  2592. CODEC_CAP_PARSE_ONLY,
  2593. };
  2594. AVCodec mp3adu_decoder =
  2595. {
  2596. "mp3adu",
  2597. CODEC_TYPE_AUDIO,
  2598. CODEC_ID_MP3ADU,
  2599. sizeof(MPADecodeContext),
  2600. decode_init,
  2601. NULL,
  2602. NULL,
  2603. decode_frame_adu,
  2604. CODEC_CAP_PARSE_ONLY,
  2605. };
  2606. AVCodec mp3on4_decoder =
  2607. {
  2608. "mp3on4",
  2609. CODEC_TYPE_AUDIO,
  2610. CODEC_ID_MP3ON4,
  2611. sizeof(MP3On4DecodeContext),
  2612. decode_init_mp3on4,
  2613. NULL,
  2614. decode_close_mp3on4,
  2615. decode_frame_mp3on4,
  2616. 0
  2617. };