You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2863 lines
78KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}:@var{packing_format}".
  85. @var{sample_format} specifies the sample format, and can be a string or
  86. the corresponding numeric value defined in @file{libavutil/samplefmt.h}.
  87. @var{channel_layout} specifies the channel layout, and can be a string
  88. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  89. @var{packing_format} specifies the type of packing in output, can be one
  90. of "planar" or "packed", or the corresponding numeric values "0" or "1".
  91. The special parameter "auto", signifies that the filter will
  92. automatically select the output format depending on the output filter.
  93. Some examples follow.
  94. @itemize
  95. @item
  96. Convert input to unsigned 8-bit, stereo, packed:
  97. @example
  98. aconvert=u8:stereo:packed
  99. @end example
  100. @item
  101. Convert input to unsigned 8-bit, automatically select out channel layout
  102. and packing format:
  103. @example
  104. aconvert=u8:auto:auto
  105. @end example
  106. @end itemize
  107. @section aformat
  108. Convert the input audio to one of the specified formats. The framework will
  109. negotiate the most appropriate format to minimize conversions.
  110. The filter accepts three lists of formats, separated by ":", in the form:
  111. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  112. Elements in each list are separated by "," which has to be escaped in the
  113. filtergraph specification.
  114. The special parameter "all", in place of a list of elements, signifies all
  115. supported formats.
  116. Some examples follow:
  117. @example
  118. aformat=u8\\,s16:mono:packed
  119. aformat=s16:mono\\,stereo:all
  120. @end example
  121. @section anull
  122. Pass the audio source unchanged to the output.
  123. @section aresample
  124. Resample the input audio to the specified sample rate.
  125. The filter accepts exactly one parameter, the output sample rate. If not
  126. specified then the filter will automatically convert between its input
  127. and output sample rates.
  128. For example, to resample the input audio to 44100Hz:
  129. @example
  130. aresample=44100
  131. @end example
  132. @section ashowinfo
  133. Show a line containing various information for each input audio frame.
  134. The input audio is not modified.
  135. The shown line contains a sequence of key/value pairs of the form
  136. @var{key}:@var{value}.
  137. A description of each shown parameter follows:
  138. @table @option
  139. @item n
  140. sequential number of the input frame, starting from 0
  141. @item pts
  142. presentation TimeStamp of the input frame, expressed as a number of
  143. time base units. The time base unit depends on the filter input pad, and
  144. is usually 1/@var{sample_rate}.
  145. @item pts_time
  146. presentation TimeStamp of the input frame, expressed as a number of
  147. seconds
  148. @item pos
  149. position of the frame in the input stream, -1 if this information in
  150. unavailable and/or meaningless (for example in case of synthetic audio)
  151. @item fmt
  152. sample format name
  153. @item chlayout
  154. channel layout description
  155. @item nb_samples
  156. number of samples (per each channel) contained in the filtered frame
  157. @item rate
  158. sample rate for the audio frame
  159. @item planar
  160. if the packing format is planar, 0 if packed
  161. @item checksum
  162. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  163. @item plane_checksum
  164. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  165. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  166. @var{c6} @var{c7}]"
  167. @end table
  168. @section earwax
  169. Make audio easier to listen to on headphones.
  170. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  171. so that when listened to on headphones the stereo image is moved from
  172. inside your head (standard for headphones) to outside and in front of
  173. the listener (standard for speakers).
  174. Ported from SoX.
  175. @section pan
  176. Mix channels with specific gain levels. The filter accepts the output
  177. channel layout followed by a set of channels definitions.
  178. The filter accepts parameters of the form:
  179. "@var{l}:@var{outdef}:@var{outdef}:..."
  180. @table @option
  181. @item l
  182. output channel layout or number of channels
  183. @item outdef
  184. output channel specification, of the form:
  185. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  186. @item out_name
  187. output channel to define, either a channel name (FL, FR, etc.) or a channel
  188. number (c0, c1, etc.)
  189. @item gain
  190. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  191. @item in_name
  192. input channel to use, see out_name for details; it is not possible to mix
  193. named and numbered input channels
  194. @end table
  195. If the `=' in a channel specification is replaced by `<', then the gains for
  196. that specification will be renormalized so that the total is 1, thus
  197. avoiding clipping noise.
  198. For example, if you want to down-mix from stereo to mono, but with a bigger
  199. factor for the left channel:
  200. @example
  201. pan=1:c0=0.9*c0+0.1*c1
  202. @end example
  203. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  204. 7-channels surround:
  205. @example
  206. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  207. @end example
  208. Note that @file{ffmpeg} integrates a default down-mix (and up-mix) system
  209. that should be preferred (see "-ac" option) unless you have very specific
  210. needs.
  211. @section volume
  212. Adjust the input audio volume.
  213. The filter accepts exactly one parameter @var{vol}, which expresses
  214. how the audio volume will be increased or decreased.
  215. Output values are clipped to the maximum value.
  216. If @var{vol} is expressed as a decimal number, and the output audio
  217. volume is given by the relation:
  218. @example
  219. @var{output_volume} = @var{vol} * @var{input_volume}
  220. @end example
  221. If @var{vol} is expressed as a decimal number followed by the string
  222. "dB", the value represents the requested change in decibels of the
  223. input audio power, and the output audio volume is given by the
  224. relation:
  225. @example
  226. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  227. @end example
  228. Otherwise @var{vol} is considered an expression and its evaluated
  229. value is used for computing the output audio volume according to the
  230. first relation.
  231. Default value for @var{vol} is 1.0.
  232. @subsection Examples
  233. @itemize
  234. @item
  235. Half the input audio volume:
  236. @example
  237. volume=0.5
  238. @end example
  239. The above example is equivalent to:
  240. @example
  241. volume=1/2
  242. @end example
  243. @item
  244. Decrease input audio power by 12 decibels:
  245. @example
  246. volume=-12dB
  247. @end example
  248. @end itemize
  249. @c man end AUDIO FILTERS
  250. @chapter Audio Sources
  251. @c man begin AUDIO SOURCES
  252. Below is a description of the currently available audio sources.
  253. @section abuffer
  254. Buffer audio frames, and make them available to the filter chain.
  255. This source is mainly intended for a programmatic use, in particular
  256. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  257. It accepts the following mandatory parameters:
  258. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  259. @table @option
  260. @item sample_rate
  261. The sample rate of the incoming audio buffers.
  262. @item sample_fmt
  263. The sample format of the incoming audio buffers.
  264. Either a sample format name or its corresponging integer representation from
  265. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  266. @item channel_layout
  267. The channel layout of the incoming audio buffers.
  268. Either a channel layout name from channel_layout_map in
  269. @file{libavutil/audioconvert.c} or its corresponding integer representation
  270. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  271. @item packing
  272. Either "packed" or "planar", or their integer representation: 0 or 1
  273. respectively.
  274. @end table
  275. For example:
  276. @example
  277. abuffer=44100:s16:stereo:planar
  278. @end example
  279. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  280. Since the sample format with name "s16" corresponds to the number
  281. 1 and the "stereo" channel layout corresponds to the value 3, this is
  282. equivalent to:
  283. @example
  284. abuffer=44100:1:3:1
  285. @end example
  286. @section aevalsrc
  287. Generate an audio signal specified by an expression.
  288. This source accepts in input one or more expressions (one for each
  289. channel), which are evaluated and used to generate a corresponding
  290. audio signal.
  291. It accepts the syntax: @var{exprs}[::@var{options}].
  292. @var{exprs} is a list of expressions separated by ":", one for each
  293. separate channel. The output channel layout depends on the number of
  294. provided expressions, up to 8 channels are supported.
  295. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  296. separated by ":".
  297. The description of the accepted options follows.
  298. @table @option
  299. @item nb_samples, n
  300. Set the number of samples per channel per each output frame,
  301. default to 1024.
  302. @item sample_rate, s
  303. Specify the sample rate, default to 44100.
  304. @end table
  305. Each expression in @var{exprs} can contain the following constants:
  306. @table @option
  307. @item n
  308. number of the evaluated sample, starting from 0
  309. @item t
  310. time of the evaluated sample expressed in seconds, starting from 0
  311. @item s
  312. sample rate
  313. @end table
  314. @subsection Examples
  315. @itemize
  316. @item
  317. Generate silence:
  318. @example
  319. aevalsrc=0
  320. @end example
  321. @item
  322. Generate a sin signal with frequency of 440 Hz, set sample rate to
  323. 8000 Hz:
  324. @example
  325. aevalsrc="sin(440*2*PI*t)::s=8000"
  326. @end example
  327. @item
  328. Generate white noise:
  329. @example
  330. aevalsrc="-2+random(0)"
  331. @end example
  332. @item
  333. Generate an amplitude modulated signal:
  334. @example
  335. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  336. @end example
  337. @item
  338. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  339. @example
  340. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  341. @end example
  342. @end itemize
  343. @section amovie
  344. Read an audio stream from a movie container.
  345. It accepts the syntax: @var{movie_name}[:@var{options}] where
  346. @var{movie_name} is the name of the resource to read (not necessarily
  347. a file but also a device or a stream accessed through some protocol),
  348. and @var{options} is an optional sequence of @var{key}=@var{value}
  349. pairs, separated by ":".
  350. The description of the accepted options follows.
  351. @table @option
  352. @item format_name, f
  353. Specify the format assumed for the movie to read, and can be either
  354. the name of a container or an input device. If not specified the
  355. format is guessed from @var{movie_name} or by probing.
  356. @item seek_point, sp
  357. Specify the seek point in seconds, the frames will be output
  358. starting from this seek point, the parameter is evaluated with
  359. @code{av_strtod} so the numerical value may be suffixed by an IS
  360. postfix. Default value is "0".
  361. @item stream_index, si
  362. Specify the index of the audio stream to read. If the value is -1,
  363. the best suited audio stream will be automatically selected. Default
  364. value is "-1".
  365. @end table
  366. @section anullsrc
  367. Null audio source, return unprocessed audio frames. It is mainly useful
  368. as a template and to be employed in analysis / debugging tools, or as
  369. the source for filters which ignore the input data (for example the sox
  370. synth filter).
  371. It accepts an optional sequence of @var{key}=@var{value} pairs,
  372. separated by ":".
  373. The description of the accepted options follows.
  374. @table @option
  375. @item sample_rate, s
  376. Specify the sample rate, and defaults to 44100.
  377. @item channel_layout, cl
  378. Specify the channel layout, and can be either an integer or a string
  379. representing a channel layout. The default value of @var{channel_layout}
  380. is "stereo".
  381. Check the channel_layout_map definition in
  382. @file{libavcodec/audioconvert.c} for the mapping between strings and
  383. channel layout values.
  384. @item nb_samples, n
  385. Set the number of samples per requested frames.
  386. @end table
  387. Follow some examples:
  388. @example
  389. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  390. anullsrc=r=48000:cl=4
  391. # same as
  392. anullsrc=r=48000:cl=mono
  393. @end example
  394. @c man end AUDIO SOURCES
  395. @chapter Audio Sinks
  396. @c man begin AUDIO SINKS
  397. Below is a description of the currently available audio sinks.
  398. @section abuffersink
  399. Buffer audio frames, and make them available to the end of filter chain.
  400. This sink is mainly intended for programmatic use, in particular
  401. through the interface defined in @file{libavfilter/buffersink.h}.
  402. It requires a pointer to an AVABufferSinkContext structure, which
  403. defines the incoming buffers' formats, to be passed as the opaque
  404. parameter to @code{avfilter_init_filter} for initialization.
  405. @section anullsink
  406. Null audio sink, do absolutely nothing with the input audio. It is
  407. mainly useful as a template and to be employed in analysis / debugging
  408. tools.
  409. @c man end AUDIO SINKS
  410. @chapter Video Filters
  411. @c man begin VIDEO FILTERS
  412. When you configure your FFmpeg build, you can disable any of the
  413. existing filters using --disable-filters.
  414. The configure output will show the video filters included in your
  415. build.
  416. Below is a description of the currently available video filters.
  417. @section ass
  418. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  419. using the libass library.
  420. To enable compilation of this filter you need to configure FFmpeg with
  421. @code{--enable-libass}.
  422. This filter accepts in input the name of the ass file to render.
  423. For example, to render the file @file{sub.ass} on top of the input
  424. video, use the command:
  425. @example
  426. ass=sub.ass
  427. @end example
  428. @section blackframe
  429. Detect frames that are (almost) completely black. Can be useful to
  430. detect chapter transitions or commercials. Output lines consist of
  431. the frame number of the detected frame, the percentage of blackness,
  432. the position in the file if known or -1 and the timestamp in seconds.
  433. In order to display the output lines, you need to set the loglevel at
  434. least to the AV_LOG_INFO value.
  435. The filter accepts the syntax:
  436. @example
  437. blackframe[=@var{amount}:[@var{threshold}]]
  438. @end example
  439. @var{amount} is the percentage of the pixels that have to be below the
  440. threshold, and defaults to 98.
  441. @var{threshold} is the threshold below which a pixel value is
  442. considered black, and defaults to 32.
  443. @section boxblur
  444. Apply boxblur algorithm to the input video.
  445. This filter accepts the parameters:
  446. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  447. Chroma and alpha parameters are optional, if not specified they default
  448. to the corresponding values set for @var{luma_radius} and
  449. @var{luma_power}.
  450. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  451. the radius in pixels of the box used for blurring the corresponding
  452. input plane. They are expressions, and can contain the following
  453. constants:
  454. @table @option
  455. @item w, h
  456. the input width and height in pixels
  457. @item cw, ch
  458. the input chroma image width and height in pixels
  459. @item hsub, vsub
  460. horizontal and vertical chroma subsample values. For example for the
  461. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  462. @end table
  463. The radius must be a non-negative number, and must not be greater than
  464. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  465. and of @code{min(cw,ch)/2} for the chroma planes.
  466. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  467. how many times the boxblur filter is applied to the corresponding
  468. plane.
  469. Some examples follow:
  470. @itemize
  471. @item
  472. Apply a boxblur filter with luma, chroma, and alpha radius
  473. set to 2:
  474. @example
  475. boxblur=2:1
  476. @end example
  477. @item
  478. Set luma radius to 2, alpha and chroma radius to 0
  479. @example
  480. boxblur=2:1:0:0:0:0
  481. @end example
  482. @item
  483. Set luma and chroma radius to a fraction of the video dimension
  484. @example
  485. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  486. @end example
  487. @end itemize
  488. @section copy
  489. Copy the input source unchanged to the output. Mainly useful for
  490. testing purposes.
  491. @section crop
  492. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  493. The parameters are expressions containing the following constants:
  494. @table @option
  495. @item x, y
  496. the computed values for @var{x} and @var{y}. They are evaluated for
  497. each new frame.
  498. @item in_w, in_h
  499. the input width and height
  500. @item iw, ih
  501. same as @var{in_w} and @var{in_h}
  502. @item out_w, out_h
  503. the output (cropped) width and height
  504. @item ow, oh
  505. same as @var{out_w} and @var{out_h}
  506. @item a
  507. same as @var{iw} / @var{ih}
  508. @item sar
  509. input sample aspect ratio
  510. @item dar
  511. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  512. @item hsub, vsub
  513. horizontal and vertical chroma subsample values. For example for the
  514. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  515. @item n
  516. the number of input frame, starting from 0
  517. @item pos
  518. the position in the file of the input frame, NAN if unknown
  519. @item t
  520. timestamp expressed in seconds, NAN if the input timestamp is unknown
  521. @end table
  522. The @var{out_w} and @var{out_h} parameters specify the expressions for
  523. the width and height of the output (cropped) video. They are
  524. evaluated just at the configuration of the filter.
  525. The default value of @var{out_w} is "in_w", and the default value of
  526. @var{out_h} is "in_h".
  527. The expression for @var{out_w} may depend on the value of @var{out_h},
  528. and the expression for @var{out_h} may depend on @var{out_w}, but they
  529. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  530. evaluated after @var{out_w} and @var{out_h}.
  531. The @var{x} and @var{y} parameters specify the expressions for the
  532. position of the top-left corner of the output (non-cropped) area. They
  533. are evaluated for each frame. If the evaluated value is not valid, it
  534. is approximated to the nearest valid value.
  535. The default value of @var{x} is "(in_w-out_w)/2", and the default
  536. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  537. the center of the input image.
  538. The expression for @var{x} may depend on @var{y}, and the expression
  539. for @var{y} may depend on @var{x}.
  540. Follow some examples:
  541. @example
  542. # crop the central input area with size 100x100
  543. crop=100:100
  544. # crop the central input area with size 2/3 of the input video
  545. "crop=2/3*in_w:2/3*in_h"
  546. # crop the input video central square
  547. crop=in_h
  548. # delimit the rectangle with the top-left corner placed at position
  549. # 100:100 and the right-bottom corner corresponding to the right-bottom
  550. # corner of the input image.
  551. crop=in_w-100:in_h-100:100:100
  552. # crop 10 pixels from the left and right borders, and 20 pixels from
  553. # the top and bottom borders
  554. "crop=in_w-2*10:in_h-2*20"
  555. # keep only the bottom right quarter of the input image
  556. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  557. # crop height for getting Greek harmony
  558. "crop=in_w:1/PHI*in_w"
  559. # trembling effect
  560. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  561. # erratic camera effect depending on timestamp
  562. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  563. # set x depending on the value of y
  564. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  565. @end example
  566. @section cropdetect
  567. Auto-detect crop size.
  568. Calculate necessary cropping parameters and prints the recommended
  569. parameters through the logging system. The detected dimensions
  570. correspond to the non-black area of the input video.
  571. It accepts the syntax:
  572. @example
  573. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  574. @end example
  575. @table @option
  576. @item limit
  577. Threshold, which can be optionally specified from nothing (0) to
  578. everything (255), defaults to 24.
  579. @item round
  580. Value which the width/height should be divisible by, defaults to
  581. 16. The offset is automatically adjusted to center the video. Use 2 to
  582. get only even dimensions (needed for 4:2:2 video). 16 is best when
  583. encoding to most video codecs.
  584. @item reset
  585. Counter that determines after how many frames cropdetect will reset
  586. the previously detected largest video area and start over to detect
  587. the current optimal crop area. Defaults to 0.
  588. This can be useful when channel logos distort the video area. 0
  589. indicates never reset and return the largest area encountered during
  590. playback.
  591. @end table
  592. @section delogo
  593. Suppress a TV station logo by a simple interpolation of the surrounding
  594. pixels. Just set a rectangle covering the logo and watch it disappear
  595. (and sometimes something even uglier appear - your mileage may vary).
  596. The filter accepts parameters as a string of the form
  597. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  598. @var{key}=@var{value} pairs, separated by ":".
  599. The description of the accepted parameters follows.
  600. @table @option
  601. @item x, y
  602. Specify the top left corner coordinates of the logo. They must be
  603. specified.
  604. @item w, h
  605. Specify the width and height of the logo to clear. They must be
  606. specified.
  607. @item band, t
  608. Specify the thickness of the fuzzy edge of the rectangle (added to
  609. @var{w} and @var{h}). The default value is 4.
  610. @item show
  611. When set to 1, a green rectangle is drawn on the screen to simplify
  612. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  613. @var{band} is set to 4. The default value is 0.
  614. @end table
  615. Some examples follow.
  616. @itemize
  617. @item
  618. Set a rectangle covering the area with top left corner coordinates 0,0
  619. and size 100x77, setting a band of size 10:
  620. @example
  621. delogo=0:0:100:77:10
  622. @end example
  623. @item
  624. As the previous example, but use named options:
  625. @example
  626. delogo=x=0:y=0:w=100:h=77:band=10
  627. @end example
  628. @end itemize
  629. @section deshake
  630. Attempt to fix small changes in horizontal and/or vertical shift. This
  631. filter helps remove camera shake from hand-holding a camera, bumping a
  632. tripod, moving on a vehicle, etc.
  633. The filter accepts parameters as a string of the form
  634. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  635. A description of the accepted parameters follows.
  636. @table @option
  637. @item x, y, w, h
  638. Specify a rectangular area where to limit the search for motion
  639. vectors.
  640. If desired the search for motion vectors can be limited to a
  641. rectangular area of the frame defined by its top left corner, width
  642. and height. These parameters have the same meaning as the drawbox
  643. filter which can be used to visualise the position of the bounding
  644. box.
  645. This is useful when simultaneous movement of subjects within the frame
  646. might be confused for camera motion by the motion vector search.
  647. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  648. then the full frame is used. This allows later options to be set
  649. without specifying the bounding box for the motion vector search.
  650. Default - search the whole frame.
  651. @item rx, ry
  652. Specify the maximum extent of movement in x and y directions in the
  653. range 0-64 pixels. Default 16.
  654. @item edge
  655. Specify how to generate pixels to fill blanks at the edge of the
  656. frame. An integer from 0 to 3 as follows:
  657. @table @option
  658. @item 0
  659. Fill zeroes at blank locations
  660. @item 1
  661. Original image at blank locations
  662. @item 2
  663. Extruded edge value at blank locations
  664. @item 3
  665. Mirrored edge at blank locations
  666. @end table
  667. The default setting is mirror edge at blank locations.
  668. @item blocksize
  669. Specify the blocksize to use for motion search. Range 4-128 pixels,
  670. default 8.
  671. @item contrast
  672. Specify the contrast threshold for blocks. Only blocks with more than
  673. the specified contrast (difference between darkest and lightest
  674. pixels) will be considered. Range 1-255, default 125.
  675. @item search
  676. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  677. search. Default - exhaustive search.
  678. @item filename
  679. If set then a detailed log of the motion search is written to the
  680. specified file.
  681. @end table
  682. @section drawbox
  683. Draw a colored box on the input image.
  684. It accepts the syntax:
  685. @example
  686. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  687. @end example
  688. @table @option
  689. @item x, y
  690. Specify the top left corner coordinates of the box. Default to 0.
  691. @item width, height
  692. Specify the width and height of the box, if 0 they are interpreted as
  693. the input width and height. Default to 0.
  694. @item color
  695. Specify the color of the box to write, it can be the name of a color
  696. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  697. @end table
  698. Follow some examples:
  699. @example
  700. # draw a black box around the edge of the input image
  701. drawbox
  702. # draw a box with color red and an opacity of 50%
  703. drawbox=10:20:200:60:red@@0.5"
  704. @end example
  705. @section drawtext
  706. Draw text string or text from specified file on top of video using the
  707. libfreetype library.
  708. To enable compilation of this filter you need to configure FFmpeg with
  709. @code{--enable-libfreetype}.
  710. The filter also recognizes strftime() sequences in the provided text
  711. and expands them accordingly. Check the documentation of strftime().
  712. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  713. separated by ":".
  714. The description of the accepted parameters follows.
  715. @table @option
  716. @item fontfile
  717. The font file to be used for drawing text. Path must be included.
  718. This parameter is mandatory.
  719. @item text
  720. The text string to be drawn. The text must be a sequence of UTF-8
  721. encoded characters.
  722. This parameter is mandatory if no file is specified with the parameter
  723. @var{textfile}.
  724. @item textfile
  725. A text file containing text to be drawn. The text must be a sequence
  726. of UTF-8 encoded characters.
  727. This parameter is mandatory if no text string is specified with the
  728. parameter @var{text}.
  729. If both text and textfile are specified, an error is thrown.
  730. @item x, y
  731. The expressions which specify the offsets where text will be drawn
  732. within the video frame. They are relative to the top/left border of the
  733. output image.
  734. The default value of @var{x} and @var{y} is "0".
  735. See below for the list of accepted constants.
  736. @item fontsize
  737. The font size to be used for drawing text.
  738. The default value of @var{fontsize} is 16.
  739. @item fontcolor
  740. The color to be used for drawing fonts.
  741. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  742. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  743. The default value of @var{fontcolor} is "black".
  744. @item boxcolor
  745. The color to be used for drawing box around text.
  746. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  747. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  748. The default value of @var{boxcolor} is "white".
  749. @item box
  750. Used to draw a box around text using background color.
  751. Value should be either 1 (enable) or 0 (disable).
  752. The default value of @var{box} is 0.
  753. @item shadowx, shadowy
  754. The x and y offsets for the text shadow position with respect to the
  755. position of the text. They can be either positive or negative
  756. values. Default value for both is "0".
  757. @item shadowcolor
  758. The color to be used for drawing a shadow behind the drawn text. It
  759. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  760. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  761. The default value of @var{shadowcolor} is "black".
  762. @item ft_load_flags
  763. Flags to be used for loading the fonts.
  764. The flags map the corresponding flags supported by libfreetype, and are
  765. a combination of the following values:
  766. @table @var
  767. @item default
  768. @item no_scale
  769. @item no_hinting
  770. @item render
  771. @item no_bitmap
  772. @item vertical_layout
  773. @item force_autohint
  774. @item crop_bitmap
  775. @item pedantic
  776. @item ignore_global_advance_width
  777. @item no_recurse
  778. @item ignore_transform
  779. @item monochrome
  780. @item linear_design
  781. @item no_autohint
  782. @item end table
  783. @end table
  784. Default value is "render".
  785. For more information consult the documentation for the FT_LOAD_*
  786. libfreetype flags.
  787. @item tabsize
  788. The size in number of spaces to use for rendering the tab.
  789. Default value is 4.
  790. @end table
  791. The parameters for @var{x} and @var{y} are expressions containing the
  792. following constants:
  793. @table @option
  794. @item w, h
  795. the input width and height
  796. @item tw, text_w
  797. the width of the rendered text
  798. @item th, text_h
  799. the height of the rendered text
  800. @item lh, line_h
  801. the height of each text line
  802. @item sar
  803. input sample aspect ratio
  804. @item dar
  805. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  806. @item hsub, vsub
  807. horizontal and vertical chroma subsample values. For example for the
  808. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  809. @item max_glyph_w
  810. maximum glyph width, that is the maximum width for all the glyphs
  811. contained in the rendered text
  812. @item max_glyph_h
  813. maximum glyph height, that is the maximum height for all the glyphs
  814. contained in the rendered text, it is equivalent to @var{ascent} -
  815. @var{descent}.
  816. @item max_glyph_a, ascent
  817. the maximum distance from the baseline to the highest/upper grid
  818. coordinate used to place a glyph outline point, for all the rendered
  819. glyphs.
  820. It is a positive value, due to the grid's orientation with the Y axis
  821. upwards.
  822. @item max_glyph_d, descent
  823. the maximum distance from the baseline to the lowest grid coordinate
  824. used to place a glyph outline point, for all the rendered glyphs.
  825. This is a negative value, due to the grid's orientation, with the Y axis
  826. upwards.
  827. @item n
  828. the number of input frame, starting from 0
  829. @item t
  830. timestamp expressed in seconds, NAN if the input timestamp is unknown
  831. @end table
  832. Some examples follow.
  833. @itemize
  834. @item
  835. Draw "Test Text" with font FreeSerif, using the default values for the
  836. optional parameters.
  837. @example
  838. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  839. @end example
  840. @item
  841. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  842. and y=50 (counting from the top-left corner of the screen), text is
  843. yellow with a red box around it. Both the text and the box have an
  844. opacity of 20%.
  845. @example
  846. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  847. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  848. @end example
  849. Note that the double quotes are not necessary if spaces are not used
  850. within the parameter list.
  851. @item
  852. Show the text at the center of the video frame:
  853. @example
  854. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  855. @end example
  856. @item
  857. Show a text line sliding from right to left in the last row of the video
  858. frame. The file @file{LONG_LINE} is assumed to contain a single line
  859. with no newlines.
  860. @example
  861. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  862. @end example
  863. @item
  864. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  865. @example
  866. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  867. @end example
  868. @item
  869. Draw a single green letter "g", at the center of the input video.
  870. The glyph baseline is placed at half screen height.
  871. @example
  872. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  873. @end example
  874. @end itemize
  875. For more information about libfreetype, check:
  876. @url{http://www.freetype.org/}.
  877. @section fade
  878. Apply fade-in/out effect to input video.
  879. It accepts the parameters:
  880. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  881. @var{type} specifies if the effect type, can be either "in" for
  882. fade-in, or "out" for a fade-out effect.
  883. @var{start_frame} specifies the number of the start frame for starting
  884. to apply the fade effect.
  885. @var{nb_frames} specifies the number of frames for which the fade
  886. effect has to last. At the end of the fade-in effect the output video
  887. will have the same intensity as the input video, at the end of the
  888. fade-out transition the output video will be completely black.
  889. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  890. separated by ":". The description of the accepted options follows.
  891. @table @option
  892. @item type, t
  893. See @var{type}.
  894. @item start_frame, s
  895. See @var{start_frame}.
  896. @item nb_frames, n
  897. See @var{nb_frames}.
  898. @item alpha
  899. If set to 1, fade only alpha channel, if one exists on the input.
  900. Default value is 0.
  901. @end table
  902. A few usage examples follow, usable too as test scenarios.
  903. @example
  904. # fade in first 30 frames of video
  905. fade=in:0:30
  906. # fade out last 45 frames of a 200-frame video
  907. fade=out:155:45
  908. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  909. fade=in:0:25, fade=out:975:25
  910. # make first 5 frames black, then fade in from frame 5-24
  911. fade=in:5:20
  912. # fade in alpha over first 25 frames of video
  913. fade=in:0:25:alpha=1
  914. @end example
  915. @section fieldorder
  916. Transform the field order of the input video.
  917. It accepts one parameter which specifies the required field order that
  918. the input interlaced video will be transformed to. The parameter can
  919. assume one of the following values:
  920. @table @option
  921. @item 0 or bff
  922. output bottom field first
  923. @item 1 or tff
  924. output top field first
  925. @end table
  926. Default value is "tff".
  927. Transformation is achieved by shifting the picture content up or down
  928. by one line, and filling the remaining line with appropriate picture content.
  929. This method is consistent with most broadcast field order converters.
  930. If the input video is not flagged as being interlaced, or it is already
  931. flagged as being of the required output field order then this filter does
  932. not alter the incoming video.
  933. This filter is very useful when converting to or from PAL DV material,
  934. which is bottom field first.
  935. For example:
  936. @example
  937. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  938. @end example
  939. @section fifo
  940. Buffer input images and send them when they are requested.
  941. This filter is mainly useful when auto-inserted by the libavfilter
  942. framework.
  943. The filter does not take parameters.
  944. @section format
  945. Convert the input video to one of the specified pixel formats.
  946. Libavfilter will try to pick one that is supported for the input to
  947. the next filter.
  948. The filter accepts a list of pixel format names, separated by ":",
  949. for example "yuv420p:monow:rgb24".
  950. Some examples follow:
  951. @example
  952. # convert the input video to the format "yuv420p"
  953. format=yuv420p
  954. # convert the input video to any of the formats in the list
  955. format=yuv420p:yuv444p:yuv410p
  956. @end example
  957. @anchor{frei0r}
  958. @section frei0r
  959. Apply a frei0r effect to the input video.
  960. To enable compilation of this filter you need to install the frei0r
  961. header and configure FFmpeg with --enable-frei0r.
  962. The filter supports the syntax:
  963. @example
  964. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  965. @end example
  966. @var{filter_name} is the name to the frei0r effect to load. If the
  967. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  968. is searched in each one of the directories specified by the colon
  969. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  970. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  971. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  972. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  973. for the frei0r effect.
  974. A frei0r effect parameter can be a boolean (whose values are specified
  975. with "y" and "n"), a double, a color (specified by the syntax
  976. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  977. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  978. description), a position (specified by the syntax @var{X}/@var{Y},
  979. @var{X} and @var{Y} being float numbers) and a string.
  980. The number and kind of parameters depend on the loaded effect. If an
  981. effect parameter is not specified the default value is set.
  982. Some examples follow:
  983. @example
  984. # apply the distort0r effect, set the first two double parameters
  985. frei0r=distort0r:0.5:0.01
  986. # apply the colordistance effect, takes a color as first parameter
  987. frei0r=colordistance:0.2/0.3/0.4
  988. frei0r=colordistance:violet
  989. frei0r=colordistance:0x112233
  990. # apply the perspective effect, specify the top left and top right
  991. # image positions
  992. frei0r=perspective:0.2/0.2:0.8/0.2
  993. @end example
  994. For more information see:
  995. @url{http://piksel.org/frei0r}
  996. @section gradfun
  997. Fix the banding artifacts that are sometimes introduced into nearly flat
  998. regions by truncation to 8bit color depth.
  999. Interpolate the gradients that should go where the bands are, and
  1000. dither them.
  1001. This filter is designed for playback only. Do not use it prior to
  1002. lossy compression, because compression tends to lose the dither and
  1003. bring back the bands.
  1004. The filter takes two optional parameters, separated by ':':
  1005. @var{strength}:@var{radius}
  1006. @var{strength} is the maximum amount by which the filter will change
  1007. any one pixel. Also the threshold for detecting nearly flat
  1008. regions. Acceptable values range from .51 to 255, default value is
  1009. 1.2, out-of-range values will be clipped to the valid range.
  1010. @var{radius} is the neighborhood to fit the gradient to. A larger
  1011. radius makes for smoother gradients, but also prevents the filter from
  1012. modifying the pixels near detailed regions. Acceptable values are
  1013. 8-32, default value is 16, out-of-range values will be clipped to the
  1014. valid range.
  1015. @example
  1016. # default parameters
  1017. gradfun=1.2:16
  1018. # omitting radius
  1019. gradfun=1.2
  1020. @end example
  1021. @section hflip
  1022. Flip the input video horizontally.
  1023. For example to horizontally flip the input video with @command{ffmpeg}:
  1024. @example
  1025. ffmpeg -i in.avi -vf "hflip" out.avi
  1026. @end example
  1027. @section hqdn3d
  1028. High precision/quality 3d denoise filter. This filter aims to reduce
  1029. image noise producing smooth images and making still images really
  1030. still. It should enhance compressibility.
  1031. It accepts the following optional parameters:
  1032. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1033. @table @option
  1034. @item luma_spatial
  1035. a non-negative float number which specifies spatial luma strength,
  1036. defaults to 4.0
  1037. @item chroma_spatial
  1038. a non-negative float number which specifies spatial chroma strength,
  1039. defaults to 3.0*@var{luma_spatial}/4.0
  1040. @item luma_tmp
  1041. a float number which specifies luma temporal strength, defaults to
  1042. 6.0*@var{luma_spatial}/4.0
  1043. @item chroma_tmp
  1044. a float number which specifies chroma temporal strength, defaults to
  1045. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1046. @end table
  1047. @section lut, lutrgb, lutyuv
  1048. Compute a look-up table for binding each pixel component input value
  1049. to an output value, and apply it to input video.
  1050. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1051. to an RGB input video.
  1052. These filters accept in input a ":"-separated list of options, which
  1053. specify the expressions used for computing the lookup table for the
  1054. corresponding pixel component values.
  1055. The @var{lut} filter requires either YUV or RGB pixel formats in
  1056. input, and accepts the options:
  1057. @table @option
  1058. @item c0
  1059. first pixel component
  1060. @item c1
  1061. second pixel component
  1062. @item c2
  1063. third pixel component
  1064. @item c3
  1065. fourth pixel component, corresponds to the alpha component
  1066. @end table
  1067. The exact component associated to each option depends on the format in
  1068. input.
  1069. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1070. accepts the options:
  1071. @table @option
  1072. @item r
  1073. red component
  1074. @item g
  1075. green component
  1076. @item b
  1077. blue component
  1078. @item a
  1079. alpha component
  1080. @end table
  1081. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1082. accepts the options:
  1083. @table @option
  1084. @item y
  1085. Y/luminance component
  1086. @item u
  1087. U/Cb component
  1088. @item v
  1089. V/Cr component
  1090. @item a
  1091. alpha component
  1092. @end table
  1093. The expressions can contain the following constants and functions:
  1094. @table @option
  1095. @item w, h
  1096. the input width and height
  1097. @item val
  1098. input value for the pixel component
  1099. @item clipval
  1100. the input value clipped in the @var{minval}-@var{maxval} range
  1101. @item maxval
  1102. maximum value for the pixel component
  1103. @item minval
  1104. minimum value for the pixel component
  1105. @item negval
  1106. the negated value for the pixel component value clipped in the
  1107. @var{minval}-@var{maxval} range , it corresponds to the expression
  1108. "maxval-clipval+minval"
  1109. @item clip(val)
  1110. the computed value in @var{val} clipped in the
  1111. @var{minval}-@var{maxval} range
  1112. @item gammaval(gamma)
  1113. the computed gamma correction value of the pixel component value
  1114. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1115. expression
  1116. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1117. @end table
  1118. All expressions default to "val".
  1119. Some examples follow:
  1120. @example
  1121. # negate input video
  1122. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1123. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1124. # the above is the same as
  1125. lutrgb="r=negval:g=negval:b=negval"
  1126. lutyuv="y=negval:u=negval:v=negval"
  1127. # negate luminance
  1128. lutyuv=y=negval
  1129. # remove chroma components, turns the video into a graytone image
  1130. lutyuv="u=128:v=128"
  1131. # apply a luma burning effect
  1132. lutyuv="y=2*val"
  1133. # remove green and blue components
  1134. lutrgb="g=0:b=0"
  1135. # set a constant alpha channel value on input
  1136. format=rgba,lutrgb=a="maxval-minval/2"
  1137. # correct luminance gamma by a 0.5 factor
  1138. lutyuv=y=gammaval(0.5)
  1139. @end example
  1140. @section mp
  1141. Apply an MPlayer filter to the input video.
  1142. This filter provides a wrapper around most of the filters of
  1143. MPlayer/MEncoder.
  1144. This wrapper is considered experimental. Some of the wrapped filters
  1145. may not work properly and we may drop support for them, as they will
  1146. be implemented natively into FFmpeg. Thus you should avoid
  1147. depending on them when writing portable scripts.
  1148. The filters accepts the parameters:
  1149. @var{filter_name}[:=]@var{filter_params}
  1150. @var{filter_name} is the name of a supported MPlayer filter,
  1151. @var{filter_params} is a string containing the parameters accepted by
  1152. the named filter.
  1153. The list of the currently supported filters follows:
  1154. @table @var
  1155. @item 2xsai
  1156. @item decimate
  1157. @item denoise3d
  1158. @item detc
  1159. @item dint
  1160. @item divtc
  1161. @item down3dright
  1162. @item dsize
  1163. @item eq2
  1164. @item eq
  1165. @item field
  1166. @item fil
  1167. @item fixpts
  1168. @item framestep
  1169. @item fspp
  1170. @item geq
  1171. @item harddup
  1172. @item hqdn3d
  1173. @item hue
  1174. @item il
  1175. @item ilpack
  1176. @item ivtc
  1177. @item kerndeint
  1178. @item mcdeint
  1179. @item mirror
  1180. @item noise
  1181. @item ow
  1182. @item palette
  1183. @item perspective
  1184. @item phase
  1185. @item pp7
  1186. @item pullup
  1187. @item qp
  1188. @item rectangle
  1189. @item remove-logo
  1190. @item rotate
  1191. @item sab
  1192. @item screenshot
  1193. @item smartblur
  1194. @item softpulldown
  1195. @item softskip
  1196. @item spp
  1197. @item swapuv
  1198. @item telecine
  1199. @item tile
  1200. @item tinterlace
  1201. @item unsharp
  1202. @item uspp
  1203. @item yuvcsp
  1204. @item yvu9
  1205. @end table
  1206. The parameter syntax and behavior for the listed filters are the same
  1207. of the corresponding MPlayer filters. For detailed instructions check
  1208. the "VIDEO FILTERS" section in the MPlayer manual.
  1209. Some examples follow:
  1210. @example
  1211. # remove a logo by interpolating the surrounding pixels
  1212. mp=delogo=200:200:80:20:1
  1213. # adjust gamma, brightness, contrast
  1214. mp=eq2=1.0:2:0.5
  1215. # tweak hue and saturation
  1216. mp=hue=100:-10
  1217. @end example
  1218. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1219. @section negate
  1220. Negate input video.
  1221. This filter accepts an integer in input, if non-zero it negates the
  1222. alpha component (if available). The default value in input is 0.
  1223. @section noformat
  1224. Force libavfilter not to use any of the specified pixel formats for the
  1225. input to the next filter.
  1226. The filter accepts a list of pixel format names, separated by ":",
  1227. for example "yuv420p:monow:rgb24".
  1228. Some examples follow:
  1229. @example
  1230. # force libavfilter to use a format different from "yuv420p" for the
  1231. # input to the vflip filter
  1232. noformat=yuv420p,vflip
  1233. # convert the input video to any of the formats not contained in the list
  1234. noformat=yuv420p:yuv444p:yuv410p
  1235. @end example
  1236. @section null
  1237. Pass the video source unchanged to the output.
  1238. @section ocv
  1239. Apply video transform using libopencv.
  1240. To enable this filter install libopencv library and headers and
  1241. configure FFmpeg with --enable-libopencv.
  1242. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1243. @var{filter_name} is the name of the libopencv filter to apply.
  1244. @var{filter_params} specifies the parameters to pass to the libopencv
  1245. filter. If not specified the default values are assumed.
  1246. Refer to the official libopencv documentation for more precise
  1247. information:
  1248. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1249. Follows the list of supported libopencv filters.
  1250. @anchor{dilate}
  1251. @subsection dilate
  1252. Dilate an image by using a specific structuring element.
  1253. This filter corresponds to the libopencv function @code{cvDilate}.
  1254. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1255. @var{struct_el} represents a structuring element, and has the syntax:
  1256. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1257. @var{cols} and @var{rows} represent the number of columns and rows of
  1258. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1259. point, and @var{shape} the shape for the structuring element, and
  1260. can be one of the values "rect", "cross", "ellipse", "custom".
  1261. If the value for @var{shape} is "custom", it must be followed by a
  1262. string of the form "=@var{filename}". The file with name
  1263. @var{filename} is assumed to represent a binary image, with each
  1264. printable character corresponding to a bright pixel. When a custom
  1265. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1266. or columns and rows of the read file are assumed instead.
  1267. The default value for @var{struct_el} is "3x3+0x0/rect".
  1268. @var{nb_iterations} specifies the number of times the transform is
  1269. applied to the image, and defaults to 1.
  1270. Follow some example:
  1271. @example
  1272. # use the default values
  1273. ocv=dilate
  1274. # dilate using a structuring element with a 5x5 cross, iterate two times
  1275. ocv=dilate=5x5+2x2/cross:2
  1276. # read the shape from the file diamond.shape, iterate two times
  1277. # the file diamond.shape may contain a pattern of characters like this:
  1278. # *
  1279. # ***
  1280. # *****
  1281. # ***
  1282. # *
  1283. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1284. ocv=0x0+2x2/custom=diamond.shape:2
  1285. @end example
  1286. @subsection erode
  1287. Erode an image by using a specific structuring element.
  1288. This filter corresponds to the libopencv function @code{cvErode}.
  1289. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1290. with the same syntax and semantics as the @ref{dilate} filter.
  1291. @subsection smooth
  1292. Smooth the input video.
  1293. The filter takes the following parameters:
  1294. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1295. @var{type} is the type of smooth filter to apply, and can be one of
  1296. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1297. "bilateral". The default value is "gaussian".
  1298. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1299. parameters whose meanings depend on smooth type. @var{param1} and
  1300. @var{param2} accept integer positive values or 0, @var{param3} and
  1301. @var{param4} accept float values.
  1302. The default value for @var{param1} is 3, the default value for the
  1303. other parameters is 0.
  1304. These parameters correspond to the parameters assigned to the
  1305. libopencv function @code{cvSmooth}.
  1306. @section overlay
  1307. Overlay one video on top of another.
  1308. It takes two inputs and one output, the first input is the "main"
  1309. video on which the second input is overlayed.
  1310. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1311. @var{x} is the x coordinate of the overlayed video on the main video,
  1312. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1313. the following parameters:
  1314. @table @option
  1315. @item main_w, main_h
  1316. main input width and height
  1317. @item W, H
  1318. same as @var{main_w} and @var{main_h}
  1319. @item overlay_w, overlay_h
  1320. overlay input width and height
  1321. @item w, h
  1322. same as @var{overlay_w} and @var{overlay_h}
  1323. @end table
  1324. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1325. separated by ":".
  1326. The description of the accepted options follows.
  1327. @table @option
  1328. @item rgb
  1329. If set to 1, force the filter to accept inputs in the RGB
  1330. color space. Default value is 0.
  1331. @end table
  1332. Be aware that frames are taken from each input video in timestamp
  1333. order, hence, if their initial timestamps differ, it is a a good idea
  1334. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1335. have them begin in the same zero timestamp, as it does the example for
  1336. the @var{movie} filter.
  1337. Follow some examples:
  1338. @example
  1339. # draw the overlay at 10 pixels from the bottom right
  1340. # corner of the main video.
  1341. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1342. # insert a transparent PNG logo in the bottom left corner of the input
  1343. movie=logo.png [logo];
  1344. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1345. # insert 2 different transparent PNG logos (second logo on bottom
  1346. # right corner):
  1347. movie=logo1.png [logo1];
  1348. movie=logo2.png [logo2];
  1349. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1350. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1351. # add a transparent color layer on top of the main video,
  1352. # WxH specifies the size of the main input to the overlay filter
  1353. color=red@.3:WxH [over]; [in][over] overlay [out]
  1354. @end example
  1355. You can chain together more overlays but the efficiency of such
  1356. approach is yet to be tested.
  1357. @section pad
  1358. Add paddings to the input image, and places the original input at the
  1359. given coordinates @var{x}, @var{y}.
  1360. It accepts the following parameters:
  1361. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1362. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1363. expressions containing the following constants:
  1364. @table @option
  1365. @item in_w, in_h
  1366. the input video width and height
  1367. @item iw, ih
  1368. same as @var{in_w} and @var{in_h}
  1369. @item out_w, out_h
  1370. the output width and height, that is the size of the padded area as
  1371. specified by the @var{width} and @var{height} expressions
  1372. @item ow, oh
  1373. same as @var{out_w} and @var{out_h}
  1374. @item x, y
  1375. x and y offsets as specified by the @var{x} and @var{y}
  1376. expressions, or NAN if not yet specified
  1377. @item a
  1378. same as @var{iw} / @var{ih}
  1379. @item sar
  1380. input sample aspect ratio
  1381. @item dar
  1382. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1383. @item hsub, vsub
  1384. horizontal and vertical chroma subsample values. For example for the
  1385. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1386. @end table
  1387. Follows the description of the accepted parameters.
  1388. @table @option
  1389. @item width, height
  1390. Specify the size of the output image with the paddings added. If the
  1391. value for @var{width} or @var{height} is 0, the corresponding input size
  1392. is used for the output.
  1393. The @var{width} expression can reference the value set by the
  1394. @var{height} expression, and vice versa.
  1395. The default value of @var{width} and @var{height} is 0.
  1396. @item x, y
  1397. Specify the offsets where to place the input image in the padded area
  1398. with respect to the top/left border of the output image.
  1399. The @var{x} expression can reference the value set by the @var{y}
  1400. expression, and vice versa.
  1401. The default value of @var{x} and @var{y} is 0.
  1402. @item color
  1403. Specify the color of the padded area, it can be the name of a color
  1404. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1405. The default value of @var{color} is "black".
  1406. @end table
  1407. Some examples follow:
  1408. @example
  1409. # Add paddings with color "violet" to the input video. Output video
  1410. # size is 640x480, the top-left corner of the input video is placed at
  1411. # column 0, row 40.
  1412. pad=640:480:0:40:violet
  1413. # pad the input to get an output with dimensions increased bt 3/2,
  1414. # and put the input video at the center of the padded area
  1415. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1416. # pad the input to get a squared output with size equal to the maximum
  1417. # value between the input width and height, and put the input video at
  1418. # the center of the padded area
  1419. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1420. # pad the input to get a final w/h ratio of 16:9
  1421. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1422. # for anamorphic video, in order to set the output display aspect ratio,
  1423. # it is necessary to use sar in the expression, according to the relation:
  1424. # (ih * X / ih) * sar = output_dar
  1425. # X = output_dar / sar
  1426. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1427. # double output size and put the input video in the bottom-right
  1428. # corner of the output padded area
  1429. pad="2*iw:2*ih:ow-iw:oh-ih"
  1430. @end example
  1431. @section pixdesctest
  1432. Pixel format descriptor test filter, mainly useful for internal
  1433. testing. The output video should be equal to the input video.
  1434. For example:
  1435. @example
  1436. format=monow, pixdesctest
  1437. @end example
  1438. can be used to test the monowhite pixel format descriptor definition.
  1439. @section scale
  1440. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1441. The parameters @var{width} and @var{height} are expressions containing
  1442. the following constants:
  1443. @table @option
  1444. @item in_w, in_h
  1445. the input width and height
  1446. @item iw, ih
  1447. same as @var{in_w} and @var{in_h}
  1448. @item out_w, out_h
  1449. the output (cropped) width and height
  1450. @item ow, oh
  1451. same as @var{out_w} and @var{out_h}
  1452. @item a
  1453. same as @var{iw} / @var{ih}
  1454. @item sar
  1455. input sample aspect ratio
  1456. @item dar
  1457. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1458. @item sar
  1459. input sample aspect ratio
  1460. @item hsub, vsub
  1461. horizontal and vertical chroma subsample values. For example for the
  1462. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1463. @end table
  1464. If the input image format is different from the format requested by
  1465. the next filter, the scale filter will convert the input to the
  1466. requested format.
  1467. If the value for @var{width} or @var{height} is 0, the respective input
  1468. size is used for the output.
  1469. If the value for @var{width} or @var{height} is -1, the scale filter will
  1470. use, for the respective output size, a value that maintains the aspect
  1471. ratio of the input image.
  1472. The default value of @var{width} and @var{height} is 0.
  1473. Valid values for the optional parameter @var{interl} are:
  1474. @table @option
  1475. @item 1
  1476. force interlaced aware scaling
  1477. @item -1
  1478. select interlaced aware scaling depending on whether the source frames
  1479. are flagged as interlaced or not
  1480. @end table
  1481. Some examples follow:
  1482. @example
  1483. # scale the input video to a size of 200x100.
  1484. scale=200:100
  1485. # scale the input to 2x
  1486. scale=2*iw:2*ih
  1487. # the above is the same as
  1488. scale=2*in_w:2*in_h
  1489. # scale the input to half size
  1490. scale=iw/2:ih/2
  1491. # increase the width, and set the height to the same size
  1492. scale=3/2*iw:ow
  1493. # seek for Greek harmony
  1494. scale=iw:1/PHI*iw
  1495. scale=ih*PHI:ih
  1496. # increase the height, and set the width to 3/2 of the height
  1497. scale=3/2*oh:3/5*ih
  1498. # increase the size, but make the size a multiple of the chroma
  1499. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1500. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1501. scale='min(500\, iw*3/2):-1'
  1502. @end example
  1503. @section select
  1504. Select frames to pass in output.
  1505. It accepts in input an expression, which is evaluated for each input
  1506. frame. If the expression is evaluated to a non-zero value, the frame
  1507. is selected and passed to the output, otherwise it is discarded.
  1508. The expression can contain the following constants:
  1509. @table @option
  1510. @item n
  1511. the sequential number of the filtered frame, starting from 0
  1512. @item selected_n
  1513. the sequential number of the selected frame, starting from 0
  1514. @item prev_selected_n
  1515. the sequential number of the last selected frame, NAN if undefined
  1516. @item TB
  1517. timebase of the input timestamps
  1518. @item pts
  1519. the PTS (Presentation TimeStamp) of the filtered video frame,
  1520. expressed in @var{TB} units, NAN if undefined
  1521. @item t
  1522. the PTS (Presentation TimeStamp) of the filtered video frame,
  1523. expressed in seconds, NAN if undefined
  1524. @item prev_pts
  1525. the PTS of the previously filtered video frame, NAN if undefined
  1526. @item prev_selected_pts
  1527. the PTS of the last previously filtered video frame, NAN if undefined
  1528. @item prev_selected_t
  1529. the PTS of the last previously selected video frame, NAN if undefined
  1530. @item start_pts
  1531. the PTS of the first video frame in the video, NAN if undefined
  1532. @item start_t
  1533. the time of the first video frame in the video, NAN if undefined
  1534. @item pict_type
  1535. the type of the filtered frame, can assume one of the following
  1536. values:
  1537. @table @option
  1538. @item I
  1539. @item P
  1540. @item B
  1541. @item S
  1542. @item SI
  1543. @item SP
  1544. @item BI
  1545. @end table
  1546. @item interlace_type
  1547. the frame interlace type, can assume one of the following values:
  1548. @table @option
  1549. @item PROGRESSIVE
  1550. the frame is progressive (not interlaced)
  1551. @item TOPFIRST
  1552. the frame is top-field-first
  1553. @item BOTTOMFIRST
  1554. the frame is bottom-field-first
  1555. @end table
  1556. @item key
  1557. 1 if the filtered frame is a key-frame, 0 otherwise
  1558. @item pos
  1559. the position in the file of the filtered frame, -1 if the information
  1560. is not available (e.g. for synthetic video)
  1561. @end table
  1562. The default value of the select expression is "1".
  1563. Some examples follow:
  1564. @example
  1565. # select all frames in input
  1566. select
  1567. # the above is the same as:
  1568. select=1
  1569. # skip all frames:
  1570. select=0
  1571. # select only I-frames
  1572. select='eq(pict_type\,I)'
  1573. # select one frame every 100
  1574. select='not(mod(n\,100))'
  1575. # select only frames contained in the 10-20 time interval
  1576. select='gte(t\,10)*lte(t\,20)'
  1577. # select only I frames contained in the 10-20 time interval
  1578. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1579. # select frames with a minimum distance of 10 seconds
  1580. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1581. @end example
  1582. @anchor{setdar}
  1583. @section setdar
  1584. Set the Display Aspect Ratio for the filter output video.
  1585. This is done by changing the specified Sample (aka Pixel) Aspect
  1586. Ratio, according to the following equation:
  1587. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1588. Keep in mind that this filter does not modify the pixel dimensions of
  1589. the video frame. Also the display aspect ratio set by this filter may
  1590. be changed by later filters in the filterchain, e.g. in case of
  1591. scaling or if another "setdar" or a "setsar" filter is applied.
  1592. The filter accepts a parameter string which represents the wanted
  1593. display aspect ratio.
  1594. The parameter can be a floating point number string, or an expression
  1595. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1596. numerator and denominator of the aspect ratio.
  1597. If the parameter is not specified, it is assumed the value "0:1".
  1598. For example to change the display aspect ratio to 16:9, specify:
  1599. @example
  1600. setdar=16:9
  1601. # the above is equivalent to
  1602. setdar=1.77777
  1603. @end example
  1604. See also the @ref{setsar} filter documentation.
  1605. @section setpts
  1606. Change the PTS (presentation timestamp) of the input video frames.
  1607. Accept in input an expression evaluated through the eval API, which
  1608. can contain the following constants:
  1609. @table @option
  1610. @item PTS
  1611. the presentation timestamp in input
  1612. @item N
  1613. the count of the input frame, starting from 0.
  1614. @item STARTPTS
  1615. the PTS of the first video frame
  1616. @item INTERLACED
  1617. tell if the current frame is interlaced
  1618. @item POS
  1619. original position in the file of the frame, or undefined if undefined
  1620. for the current frame
  1621. @item PREV_INPTS
  1622. previous input PTS
  1623. @item PREV_OUTPTS
  1624. previous output PTS
  1625. @end table
  1626. Some examples follow:
  1627. @example
  1628. # start counting PTS from zero
  1629. setpts=PTS-STARTPTS
  1630. # fast motion
  1631. setpts=0.5*PTS
  1632. # slow motion
  1633. setpts=2.0*PTS
  1634. # fixed rate 25 fps
  1635. setpts=N/(25*TB)
  1636. # fixed rate 25 fps with some jitter
  1637. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1638. @end example
  1639. @anchor{setsar}
  1640. @section setsar
  1641. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1642. Note that as a consequence of the application of this filter, the
  1643. output display aspect ratio will change according to the following
  1644. equation:
  1645. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1646. Keep in mind that the sample aspect ratio set by this filter may be
  1647. changed by later filters in the filterchain, e.g. if another "setsar"
  1648. or a "setdar" filter is applied.
  1649. The filter accepts a parameter string which represents the wanted
  1650. sample aspect ratio.
  1651. The parameter can be a floating point number string, or an expression
  1652. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1653. numerator and denominator of the aspect ratio.
  1654. If the parameter is not specified, it is assumed the value "0:1".
  1655. For example to change the sample aspect ratio to 10:11, specify:
  1656. @example
  1657. setsar=10:11
  1658. @end example
  1659. @section settb
  1660. Set the timebase to use for the output frames timestamps.
  1661. It is mainly useful for testing timebase configuration.
  1662. It accepts in input an arithmetic expression representing a rational.
  1663. The expression can contain the constants "AVTB" (the
  1664. default timebase), and "intb" (the input timebase).
  1665. The default value for the input is "intb".
  1666. Follow some examples.
  1667. @example
  1668. # set the timebase to 1/25
  1669. settb=1/25
  1670. # set the timebase to 1/10
  1671. settb=0.1
  1672. #set the timebase to 1001/1000
  1673. settb=1+0.001
  1674. #set the timebase to 2*intb
  1675. settb=2*intb
  1676. #set the default timebase value
  1677. settb=AVTB
  1678. @end example
  1679. @section showinfo
  1680. Show a line containing various information for each input video frame.
  1681. The input video is not modified.
  1682. The shown line contains a sequence of key/value pairs of the form
  1683. @var{key}:@var{value}.
  1684. A description of each shown parameter follows:
  1685. @table @option
  1686. @item n
  1687. sequential number of the input frame, starting from 0
  1688. @item pts
  1689. Presentation TimeStamp of the input frame, expressed as a number of
  1690. time base units. The time base unit depends on the filter input pad.
  1691. @item pts_time
  1692. Presentation TimeStamp of the input frame, expressed as a number of
  1693. seconds
  1694. @item pos
  1695. position of the frame in the input stream, -1 if this information in
  1696. unavailable and/or meaningless (for example in case of synthetic video)
  1697. @item fmt
  1698. pixel format name
  1699. @item sar
  1700. sample aspect ratio of the input frame, expressed in the form
  1701. @var{num}/@var{den}
  1702. @item s
  1703. size of the input frame, expressed in the form
  1704. @var{width}x@var{height}
  1705. @item i
  1706. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1707. for bottom field first)
  1708. @item iskey
  1709. 1 if the frame is a key frame, 0 otherwise
  1710. @item type
  1711. picture type of the input frame ("I" for an I-frame, "P" for a
  1712. P-frame, "B" for a B-frame, "?" for unknown type).
  1713. Check also the documentation of the @code{AVPictureType} enum and of
  1714. the @code{av_get_picture_type_char} function defined in
  1715. @file{libavutil/avutil.h}.
  1716. @item checksum
  1717. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1718. @item plane_checksum
  1719. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1720. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1721. @end table
  1722. @section slicify
  1723. Pass the images of input video on to next video filter as multiple
  1724. slices.
  1725. @example
  1726. ffmpeg -i in.avi -vf "slicify=32" out.avi
  1727. @end example
  1728. The filter accepts the slice height as parameter. If the parameter is
  1729. not specified it will use the default value of 16.
  1730. Adding this in the beginning of filter chains should make filtering
  1731. faster due to better use of the memory cache.
  1732. @section split
  1733. Pass on the input video to two outputs. Both outputs are identical to
  1734. the input video.
  1735. For example:
  1736. @example
  1737. [in] split [splitout1][splitout2];
  1738. [splitout1] crop=100:100:0:0 [cropout];
  1739. [splitout2] pad=200:200:100:100 [padout];
  1740. @end example
  1741. will create two separate outputs from the same input, one cropped and
  1742. one padded.
  1743. @section transpose
  1744. Transpose rows with columns in the input video and optionally flip it.
  1745. It accepts a parameter representing an integer, which can assume the
  1746. values:
  1747. @table @samp
  1748. @item 0
  1749. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1750. @example
  1751. L.R L.l
  1752. . . -> . .
  1753. l.r R.r
  1754. @end example
  1755. @item 1
  1756. Rotate by 90 degrees clockwise, that is:
  1757. @example
  1758. L.R l.L
  1759. . . -> . .
  1760. l.r r.R
  1761. @end example
  1762. @item 2
  1763. Rotate by 90 degrees counterclockwise, that is:
  1764. @example
  1765. L.R R.r
  1766. . . -> . .
  1767. l.r L.l
  1768. @end example
  1769. @item 3
  1770. Rotate by 90 degrees clockwise and vertically flip, that is:
  1771. @example
  1772. L.R r.R
  1773. . . -> . .
  1774. l.r l.L
  1775. @end example
  1776. @end table
  1777. @section unsharp
  1778. Sharpen or blur the input video.
  1779. It accepts the following parameters:
  1780. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1781. Negative values for the amount will blur the input video, while positive
  1782. values will sharpen. All parameters are optional and default to the
  1783. equivalent of the string '5:5:1.0:5:5:0.0'.
  1784. @table @option
  1785. @item luma_msize_x
  1786. Set the luma matrix horizontal size. It can be an integer between 3
  1787. and 13, default value is 5.
  1788. @item luma_msize_y
  1789. Set the luma matrix vertical size. It can be an integer between 3
  1790. and 13, default value is 5.
  1791. @item luma_amount
  1792. Set the luma effect strength. It can be a float number between -2.0
  1793. and 5.0, default value is 1.0.
  1794. @item chroma_msize_x
  1795. Set the chroma matrix horizontal size. It can be an integer between 3
  1796. and 13, default value is 5.
  1797. @item chroma_msize_y
  1798. Set the chroma matrix vertical size. It can be an integer between 3
  1799. and 13, default value is 5.
  1800. @item chroma_amount
  1801. Set the chroma effect strength. It can be a float number between -2.0
  1802. and 5.0, default value is 0.0.
  1803. @end table
  1804. @example
  1805. # Strong luma sharpen effect parameters
  1806. unsharp=7:7:2.5
  1807. # Strong blur of both luma and chroma parameters
  1808. unsharp=7:7:-2:7:7:-2
  1809. # Use the default values with @command{ffmpeg}
  1810. ffmpeg -i in.avi -vf "unsharp" out.mp4
  1811. @end example
  1812. @section vflip
  1813. Flip the input video vertically.
  1814. @example
  1815. ffmpeg -i in.avi -vf "vflip" out.avi
  1816. @end example
  1817. @section yadif
  1818. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1819. filter").
  1820. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1821. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1822. following values:
  1823. @table @option
  1824. @item 0
  1825. output 1 frame for each frame
  1826. @item 1
  1827. output 1 frame for each field
  1828. @item 2
  1829. like 0 but skips spatial interlacing check
  1830. @item 3
  1831. like 1 but skips spatial interlacing check
  1832. @end table
  1833. Default value is 0.
  1834. @var{parity} specifies the picture field parity assumed for the input
  1835. interlaced video, accepts one of the following values:
  1836. @table @option
  1837. @item 0
  1838. assume top field first
  1839. @item 1
  1840. assume bottom field first
  1841. @item -1
  1842. enable automatic detection
  1843. @end table
  1844. Default value is -1.
  1845. If interlacing is unknown or decoder does not export this information,
  1846. top field first will be assumed.
  1847. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1848. and only deinterlace frames marked as interlaced
  1849. @table @option
  1850. @item 0
  1851. deinterlace all frames
  1852. @item 1
  1853. only deinterlace frames marked as interlaced
  1854. @end table
  1855. Default value is 0.
  1856. @c man end VIDEO FILTERS
  1857. @chapter Video Sources
  1858. @c man begin VIDEO SOURCES
  1859. Below is a description of the currently available video sources.
  1860. @section buffer
  1861. Buffer video frames, and make them available to the filter chain.
  1862. This source is mainly intended for a programmatic use, in particular
  1863. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1864. It accepts the following parameters:
  1865. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  1866. All the parameters but @var{scale_params} need to be explicitly
  1867. defined.
  1868. Follows the list of the accepted parameters.
  1869. @table @option
  1870. @item width, height
  1871. Specify the width and height of the buffered video frames.
  1872. @item pix_fmt_string
  1873. A string representing the pixel format of the buffered video frames.
  1874. It may be a number corresponding to a pixel format, or a pixel format
  1875. name.
  1876. @item timebase_num, timebase_den
  1877. Specify numerator and denomitor of the timebase assumed by the
  1878. timestamps of the buffered frames.
  1879. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1880. Specify numerator and denominator of the sample aspect ratio assumed
  1881. by the video frames.
  1882. @item scale_params
  1883. Specify the optional parameters to be used for the scale filter which
  1884. is automatically inserted when an input change is detected in the
  1885. input size or format.
  1886. @end table
  1887. For example:
  1888. @example
  1889. buffer=320:240:yuv410p:1:24:1:1
  1890. @end example
  1891. will instruct the source to accept video frames with size 320x240 and
  1892. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1893. square pixels (1:1 sample aspect ratio).
  1894. Since the pixel format with name "yuv410p" corresponds to the number 6
  1895. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1896. this example corresponds to:
  1897. @example
  1898. buffer=320:240:6:1:24:1:1
  1899. @end example
  1900. @section color
  1901. Provide an uniformly colored input.
  1902. It accepts the following parameters:
  1903. @var{color}:@var{frame_size}:@var{frame_rate}
  1904. Follows the description of the accepted parameters.
  1905. @table @option
  1906. @item color
  1907. Specify the color of the source. It can be the name of a color (case
  1908. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1909. alpha specifier. The default value is "black".
  1910. @item frame_size
  1911. Specify the size of the sourced video, it may be a string of the form
  1912. @var{width}x@var{height}, or the name of a size abbreviation. The
  1913. default value is "320x240".
  1914. @item frame_rate
  1915. Specify the frame rate of the sourced video, as the number of frames
  1916. generated per second. It has to be a string in the format
  1917. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1918. number or a valid video frame rate abbreviation. The default value is
  1919. "25".
  1920. @end table
  1921. For example the following graph description will generate a red source
  1922. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1923. frames per second, which will be overlayed over the source connected
  1924. to the pad with identifier "in".
  1925. @example
  1926. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1927. @end example
  1928. @section movie
  1929. Read a video stream from a movie container.
  1930. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1931. @var{movie_name} is the name of the resource to read (not necessarily
  1932. a file but also a device or a stream accessed through some protocol),
  1933. and @var{options} is an optional sequence of @var{key}=@var{value}
  1934. pairs, separated by ":".
  1935. The description of the accepted options follows.
  1936. @table @option
  1937. @item format_name, f
  1938. Specifies the format assumed for the movie to read, and can be either
  1939. the name of a container or an input device. If not specified the
  1940. format is guessed from @var{movie_name} or by probing.
  1941. @item seek_point, sp
  1942. Specifies the seek point in seconds, the frames will be output
  1943. starting from this seek point, the parameter is evaluated with
  1944. @code{av_strtod} so the numerical value may be suffixed by an IS
  1945. postfix. Default value is "0".
  1946. @item stream_index, si
  1947. Specifies the index of the video stream to read. If the value is -1,
  1948. the best suited video stream will be automatically selected. Default
  1949. value is "-1".
  1950. @end table
  1951. This filter allows to overlay a second video on top of main input of
  1952. a filtergraph as shown in this graph:
  1953. @example
  1954. input -----------> deltapts0 --> overlay --> output
  1955. ^
  1956. |
  1957. movie --> scale--> deltapts1 -------+
  1958. @end example
  1959. Some examples follow:
  1960. @example
  1961. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1962. # on top of the input labelled as "in".
  1963. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1964. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1965. # read from a video4linux2 device, and overlay it on top of the input
  1966. # labelled as "in"
  1967. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1968. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1969. @end example
  1970. @section mptestsrc
  1971. Generate various test patterns, as generated by the MPlayer test filter.
  1972. The size of the generated video is fixed, and is 256x256.
  1973. This source is useful in particular for testing encoding features.
  1974. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  1975. separated by ":". The description of the accepted options follows.
  1976. @table @option
  1977. @item rate, r
  1978. Specify the frame rate of the sourced video, as the number of frames
  1979. generated per second. It has to be a string in the format
  1980. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1981. number or a valid video frame rate abbreviation. The default value is
  1982. "25".
  1983. @item duration, d
  1984. Set the video duration of the sourced video. The accepted syntax is:
  1985. @example
  1986. [-]HH[:MM[:SS[.m...]]]
  1987. [-]S+[.m...]
  1988. @end example
  1989. See also the function @code{av_parse_time()}.
  1990. If not specified, or the expressed duration is negative, the video is
  1991. supposed to be generated forever.
  1992. @item test, t
  1993. Set the number or the name of the test to perform. Supported tests are:
  1994. @table @option
  1995. @item dc_luma
  1996. @item dc_chroma
  1997. @item freq_luma
  1998. @item freq_chroma
  1999. @item amp_luma
  2000. @item amp_chroma
  2001. @item cbp
  2002. @item mv
  2003. @item ring1
  2004. @item ring2
  2005. @item all
  2006. @end table
  2007. Default value is "all", which will cycle through the list of all tests.
  2008. @end table
  2009. For example the following:
  2010. @example
  2011. testsrc=t=dc_luma
  2012. @end example
  2013. will generate a "dc_luma" test pattern.
  2014. @section frei0r_src
  2015. Provide a frei0r source.
  2016. To enable compilation of this filter you need to install the frei0r
  2017. header and configure FFmpeg with --enable-frei0r.
  2018. The source supports the syntax:
  2019. @example
  2020. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2021. @end example
  2022. @var{size} is the size of the video to generate, may be a string of the
  2023. form @var{width}x@var{height} or a frame size abbreviation.
  2024. @var{rate} is the rate of the video to generate, may be a string of
  2025. the form @var{num}/@var{den} or a frame rate abbreviation.
  2026. @var{src_name} is the name to the frei0r source to load. For more
  2027. information regarding frei0r and how to set the parameters read the
  2028. section @ref{frei0r} in the description of the video filters.
  2029. Some examples follow:
  2030. @example
  2031. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2032. # which is overlayed on the overlay filter main input
  2033. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2034. @end example
  2035. @section nullsrc, rgbtestsrc, testsrc
  2036. The @code{nullsrc} source returns unprocessed video frames. It is
  2037. mainly useful to be employed in analysis / debugging tools, or as the
  2038. source for filters which ignore the input data.
  2039. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2040. detecting RGB vs BGR issues. You should see a red, green and blue
  2041. stripe from top to bottom.
  2042. The @code{testsrc} source generates a test video pattern, showing a
  2043. color pattern, a scrolling gradient and a timestamp. This is mainly
  2044. intended for testing purposes.
  2045. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2046. separated by ":". The description of the accepted options follows.
  2047. @table @option
  2048. @item size, s
  2049. Specify the size of the sourced video, it may be a string of the form
  2050. @var{width}x@var{height}, or the name of a size abbreviation. The
  2051. default value is "320x240".
  2052. @item rate, r
  2053. Specify the frame rate of the sourced video, as the number of frames
  2054. generated per second. It has to be a string in the format
  2055. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2056. number or a valid video frame rate abbreviation. The default value is
  2057. "25".
  2058. @item sar
  2059. Set the sample aspect ratio of the sourced video.
  2060. @item duration
  2061. Set the video duration of the sourced video. The accepted syntax is:
  2062. @example
  2063. [-]HH[:MM[:SS[.m...]]]
  2064. [-]S+[.m...]
  2065. @end example
  2066. See also the function @code{av_parse_time()}.
  2067. If not specified, or the expressed duration is negative, the video is
  2068. supposed to be generated forever.
  2069. @end table
  2070. For example the following:
  2071. @example
  2072. testsrc=duration=5.3:size=qcif:rate=10
  2073. @end example
  2074. will generate a video with a duration of 5.3 seconds, with size
  2075. 176x144 and a frame rate of 10 frames per second.
  2076. If the input content is to be ignored, @code{nullsrc} can be used. The
  2077. following command generates noise in the luminance plane by employing
  2078. the @code{mp=geq} filter:
  2079. @example
  2080. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2081. @end example
  2082. @c man end VIDEO SOURCES
  2083. @chapter Video Sinks
  2084. @c man begin VIDEO SINKS
  2085. Below is a description of the currently available video sinks.
  2086. @section buffersink
  2087. Buffer video frames, and make them available to the end of the filter
  2088. graph.
  2089. This sink is mainly intended for a programmatic use, in particular
  2090. through the interface defined in @file{libavfilter/buffersink.h}.
  2091. It does not require a string parameter in input, but you need to
  2092. specify a pointer to a list of supported pixel formats terminated by
  2093. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2094. when initializing this sink.
  2095. @section nullsink
  2096. Null video sink, do absolutely nothing with the input video. It is
  2097. mainly useful as a template and to be employed in analysis / debugging
  2098. tools.
  2099. @c man end VIDEO SINKS