You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

825 lines
24KB

  1. /*
  2. * FLAC (Free Lossless Audio Codec) decoder
  3. * Copyright (c) 2003 Alex Beregszaszi
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file flac.c
  21. * FLAC (Free Lossless Audio Codec) decoder
  22. * @author Alex Beregszaszi
  23. *
  24. * For more information on the FLAC format, visit:
  25. * http://flac.sourceforge.net/
  26. *
  27. * This decoder can be used in 1 of 2 ways: Either raw FLAC data can be fed
  28. * through, starting from the initial 'fLaC' signature; or by passing the
  29. * 34-byte streaminfo structure through avctx->extradata[_size] followed
  30. * by data starting with the 0xFFF8 marker.
  31. */
  32. #include <limits.h>
  33. #include "avcodec.h"
  34. #include "bitstream.h"
  35. #include "golomb.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define MAX_CHANNELS 8
  39. #define MAX_BLOCKSIZE 65535
  40. #define FLAC_STREAMINFO_SIZE 34
  41. enum decorrelation_type {
  42. INDEPENDENT,
  43. LEFT_SIDE,
  44. RIGHT_SIDE,
  45. MID_SIDE,
  46. };
  47. typedef struct FLACContext {
  48. AVCodecContext *avctx;
  49. GetBitContext gb;
  50. int min_blocksize, max_blocksize;
  51. int min_framesize, max_framesize;
  52. int samplerate, channels;
  53. int blocksize/*, last_blocksize*/;
  54. int bps, curr_bps;
  55. enum decorrelation_type decorrelation;
  56. int32_t *decoded[MAX_CHANNELS];
  57. uint8_t *bitstream;
  58. int bitstream_size;
  59. int bitstream_index;
  60. int allocated_bitstream_size;
  61. } FLACContext;
  62. #define METADATA_TYPE_STREAMINFO 0
  63. static int sample_rate_table[] =
  64. { 0, 0, 0, 0,
  65. 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
  66. 0, 0, 0, 0 };
  67. static int sample_size_table[] =
  68. { 0, 8, 12, 0, 16, 20, 24, 0 };
  69. static int blocksize_table[] = {
  70. 0, 192, 576<<0, 576<<1, 576<<2, 576<<3, 0, 0,
  71. 256<<0, 256<<1, 256<<2, 256<<3, 256<<4, 256<<5, 256<<6, 256<<7
  72. };
  73. static const uint8_t table_crc8[256] = {
  74. 0x00, 0x07, 0x0e, 0x09, 0x1c, 0x1b, 0x12, 0x15,
  75. 0x38, 0x3f, 0x36, 0x31, 0x24, 0x23, 0x2a, 0x2d,
  76. 0x70, 0x77, 0x7e, 0x79, 0x6c, 0x6b, 0x62, 0x65,
  77. 0x48, 0x4f, 0x46, 0x41, 0x54, 0x53, 0x5a, 0x5d,
  78. 0xe0, 0xe7, 0xee, 0xe9, 0xfc, 0xfb, 0xf2, 0xf5,
  79. 0xd8, 0xdf, 0xd6, 0xd1, 0xc4, 0xc3, 0xca, 0xcd,
  80. 0x90, 0x97, 0x9e, 0x99, 0x8c, 0x8b, 0x82, 0x85,
  81. 0xa8, 0xaf, 0xa6, 0xa1, 0xb4, 0xb3, 0xba, 0xbd,
  82. 0xc7, 0xc0, 0xc9, 0xce, 0xdb, 0xdc, 0xd5, 0xd2,
  83. 0xff, 0xf8, 0xf1, 0xf6, 0xe3, 0xe4, 0xed, 0xea,
  84. 0xb7, 0xb0, 0xb9, 0xbe, 0xab, 0xac, 0xa5, 0xa2,
  85. 0x8f, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9d, 0x9a,
  86. 0x27, 0x20, 0x29, 0x2e, 0x3b, 0x3c, 0x35, 0x32,
  87. 0x1f, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0d, 0x0a,
  88. 0x57, 0x50, 0x59, 0x5e, 0x4b, 0x4c, 0x45, 0x42,
  89. 0x6f, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7d, 0x7a,
  90. 0x89, 0x8e, 0x87, 0x80, 0x95, 0x92, 0x9b, 0x9c,
  91. 0xb1, 0xb6, 0xbf, 0xb8, 0xad, 0xaa, 0xa3, 0xa4,
  92. 0xf9, 0xfe, 0xf7, 0xf0, 0xe5, 0xe2, 0xeb, 0xec,
  93. 0xc1, 0xc6, 0xcf, 0xc8, 0xdd, 0xda, 0xd3, 0xd4,
  94. 0x69, 0x6e, 0x67, 0x60, 0x75, 0x72, 0x7b, 0x7c,
  95. 0x51, 0x56, 0x5f, 0x58, 0x4d, 0x4a, 0x43, 0x44,
  96. 0x19, 0x1e, 0x17, 0x10, 0x05, 0x02, 0x0b, 0x0c,
  97. 0x21, 0x26, 0x2f, 0x28, 0x3d, 0x3a, 0x33, 0x34,
  98. 0x4e, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5c, 0x5b,
  99. 0x76, 0x71, 0x78, 0x7f, 0x6a, 0x6d, 0x64, 0x63,
  100. 0x3e, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2c, 0x2b,
  101. 0x06, 0x01, 0x08, 0x0f, 0x1a, 0x1d, 0x14, 0x13,
  102. 0xae, 0xa9, 0xa0, 0xa7, 0xb2, 0xb5, 0xbc, 0xbb,
  103. 0x96, 0x91, 0x98, 0x9f, 0x8a, 0x8d, 0x84, 0x83,
  104. 0xde, 0xd9, 0xd0, 0xd7, 0xc2, 0xc5, 0xcc, 0xcb,
  105. 0xe6, 0xe1, 0xe8, 0xef, 0xfa, 0xfd, 0xf4, 0xf3
  106. };
  107. static int64_t get_utf8(GetBitContext *gb)
  108. {
  109. uint64_t val;
  110. int ones=0, bytes;
  111. while(get_bits1(gb))
  112. ones++;
  113. if (ones==0) bytes=0;
  114. else if(ones==1) return -1;
  115. else bytes= ones - 1;
  116. val= get_bits(gb, 7-ones);
  117. while(bytes--){
  118. const int tmp = get_bits(gb, 8);
  119. if((tmp>>6) != 2)
  120. return -1;
  121. val<<=6;
  122. val|= tmp&0x3F;
  123. }
  124. return val;
  125. }
  126. #if 0
  127. static int skip_utf8(GetBitContext *gb)
  128. {
  129. int ones=0, bytes;
  130. while(get_bits1(gb))
  131. ones++;
  132. if (ones==0) bytes=0;
  133. else if(ones==1) return -1;
  134. else bytes= ones - 1;
  135. skip_bits(gb, 7-ones);
  136. while(bytes--){
  137. const int tmp = get_bits(gb, 8);
  138. if((tmp>>6) != 2)
  139. return -1;
  140. }
  141. return 0;
  142. }
  143. #endif
  144. static int get_crc8(const uint8_t *buf, int count){
  145. int crc=0;
  146. int i;
  147. for(i=0; i<count; i++){
  148. crc = table_crc8[crc ^ buf[i]];
  149. }
  150. return crc;
  151. }
  152. static void metadata_streaminfo(FLACContext *s);
  153. static void dump_headers(FLACContext *s);
  154. static int flac_decode_init(AVCodecContext * avctx)
  155. {
  156. FLACContext *s = avctx->priv_data;
  157. s->avctx = avctx;
  158. /* initialize based on the demuxer-supplied streamdata header */
  159. if (avctx->extradata_size == FLAC_STREAMINFO_SIZE) {
  160. init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size*8);
  161. metadata_streaminfo(s);
  162. dump_headers(s);
  163. }
  164. return 0;
  165. }
  166. static void dump_headers(FLACContext *s)
  167. {
  168. av_log(s->avctx, AV_LOG_DEBUG, " Blocksize: %d .. %d (%d)\n", s->min_blocksize, s->max_blocksize, s->blocksize);
  169. av_log(s->avctx, AV_LOG_DEBUG, " Framesize: %d .. %d\n", s->min_framesize, s->max_framesize);
  170. av_log(s->avctx, AV_LOG_DEBUG, " Samplerate: %d\n", s->samplerate);
  171. av_log(s->avctx, AV_LOG_DEBUG, " Channels: %d\n", s->channels);
  172. av_log(s->avctx, AV_LOG_DEBUG, " Bits: %d\n", s->bps);
  173. }
  174. static void allocate_buffers(FLACContext *s){
  175. int i;
  176. assert(s->max_blocksize);
  177. if(s->max_framesize == 0 && s->max_blocksize){
  178. s->max_framesize= (s->channels * s->bps * s->max_blocksize + 7)/ 8; //FIXME header overhead
  179. }
  180. for (i = 0; i < s->channels; i++)
  181. {
  182. s->decoded[i] = av_realloc(s->decoded[i], sizeof(int32_t)*s->max_blocksize);
  183. }
  184. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  185. }
  186. static void metadata_streaminfo(FLACContext *s)
  187. {
  188. /* mandatory streaminfo */
  189. s->min_blocksize = get_bits(&s->gb, 16);
  190. s->max_blocksize = get_bits(&s->gb, 16);
  191. s->min_framesize = get_bits_long(&s->gb, 24);
  192. s->max_framesize = get_bits_long(&s->gb, 24);
  193. s->samplerate = get_bits_long(&s->gb, 20);
  194. s->channels = get_bits(&s->gb, 3) + 1;
  195. s->bps = get_bits(&s->gb, 5) + 1;
  196. s->avctx->channels = s->channels;
  197. s->avctx->sample_rate = s->samplerate;
  198. skip_bits(&s->gb, 36); /* total num of samples */
  199. skip_bits(&s->gb, 64); /* md5 sum */
  200. skip_bits(&s->gb, 64); /* md5 sum */
  201. allocate_buffers(s);
  202. }
  203. static int decode_residuals(FLACContext *s, int channel, int pred_order)
  204. {
  205. int i, tmp, partition, method_type, rice_order;
  206. int sample = 0, samples;
  207. method_type = get_bits(&s->gb, 2);
  208. if (method_type != 0){
  209. av_log(s->avctx, AV_LOG_DEBUG, "illegal residual coding method %d\n", method_type);
  210. return -1;
  211. }
  212. rice_order = get_bits(&s->gb, 4);
  213. samples= s->blocksize >> rice_order;
  214. sample=
  215. i= pred_order;
  216. for (partition = 0; partition < (1 << rice_order); partition++)
  217. {
  218. tmp = get_bits(&s->gb, 4);
  219. if (tmp == 15)
  220. {
  221. av_log(s->avctx, AV_LOG_DEBUG, "fixed len partition\n");
  222. tmp = get_bits(&s->gb, 5);
  223. for (; i < samples; i++, sample++)
  224. s->decoded[channel][sample] = get_sbits(&s->gb, tmp);
  225. }
  226. else
  227. {
  228. // av_log(s->avctx, AV_LOG_DEBUG, "rice coded partition k=%d\n", tmp);
  229. for (; i < samples; i++, sample++){
  230. s->decoded[channel][sample] = get_sr_golomb_flac(&s->gb, tmp, INT_MAX, 0);
  231. }
  232. }
  233. i= 0;
  234. }
  235. // av_log(s->avctx, AV_LOG_DEBUG, "partitions: %d, samples: %d\n", 1 << rice_order, sample);
  236. return 0;
  237. }
  238. static int decode_subframe_fixed(FLACContext *s, int channel, int pred_order)
  239. {
  240. int i;
  241. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME FIXED\n");
  242. /* warm up samples */
  243. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  244. for (i = 0; i < pred_order; i++)
  245. {
  246. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  247. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  248. }
  249. if (decode_residuals(s, channel, pred_order) < 0)
  250. return -1;
  251. switch(pred_order)
  252. {
  253. case 0:
  254. break;
  255. case 1:
  256. for (i = pred_order; i < s->blocksize; i++)
  257. s->decoded[channel][i] += s->decoded[channel][i-1];
  258. break;
  259. case 2:
  260. for (i = pred_order; i < s->blocksize; i++)
  261. s->decoded[channel][i] += 2*s->decoded[channel][i-1]
  262. - s->decoded[channel][i-2];
  263. break;
  264. case 3:
  265. for (i = pred_order; i < s->blocksize; i++)
  266. s->decoded[channel][i] += 3*s->decoded[channel][i-1]
  267. - 3*s->decoded[channel][i-2]
  268. + s->decoded[channel][i-3];
  269. break;
  270. case 4:
  271. for (i = pred_order; i < s->blocksize; i++)
  272. s->decoded[channel][i] += 4*s->decoded[channel][i-1]
  273. - 6*s->decoded[channel][i-2]
  274. + 4*s->decoded[channel][i-3]
  275. - s->decoded[channel][i-4];
  276. break;
  277. default:
  278. av_log(s->avctx, AV_LOG_ERROR, "illegal pred order %d\n", pred_order);
  279. return -1;
  280. }
  281. return 0;
  282. }
  283. static int decode_subframe_lpc(FLACContext *s, int channel, int pred_order)
  284. {
  285. int sum, i, j;
  286. int coeff_prec, qlevel;
  287. int coeffs[pred_order];
  288. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME LPC\n");
  289. /* warm up samples */
  290. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  291. for (i = 0; i < pred_order; i++)
  292. {
  293. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  294. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  295. }
  296. coeff_prec = get_bits(&s->gb, 4) + 1;
  297. if (coeff_prec == 16)
  298. {
  299. av_log(s->avctx, AV_LOG_DEBUG, "invalid coeff precision\n");
  300. return -1;
  301. }
  302. // av_log(s->avctx, AV_LOG_DEBUG, " qlp coeff prec: %d\n", coeff_prec);
  303. qlevel = get_sbits(&s->gb, 5);
  304. // av_log(s->avctx, AV_LOG_DEBUG, " quant level: %d\n", qlevel);
  305. if(qlevel < 0){
  306. av_log(s->avctx, AV_LOG_DEBUG, "qlevel %d not supported, maybe buggy stream\n", qlevel);
  307. return -1;
  308. }
  309. for (i = 0; i < pred_order; i++)
  310. {
  311. coeffs[i] = get_sbits(&s->gb, coeff_prec);
  312. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, coeffs[i]);
  313. }
  314. if (decode_residuals(s, channel, pred_order) < 0)
  315. return -1;
  316. for (i = pred_order; i < s->blocksize; i++)
  317. {
  318. sum = 0;
  319. for (j = 0; j < pred_order; j++)
  320. sum += coeffs[j] * s->decoded[channel][i-j-1];
  321. s->decoded[channel][i] += sum >> qlevel;
  322. }
  323. return 0;
  324. }
  325. static inline int decode_subframe(FLACContext *s, int channel)
  326. {
  327. int type, wasted = 0;
  328. int i, tmp;
  329. s->curr_bps = s->bps;
  330. if(channel == 0){
  331. if(s->decorrelation == RIGHT_SIDE)
  332. s->curr_bps++;
  333. }else{
  334. if(s->decorrelation == LEFT_SIDE || s->decorrelation == MID_SIDE)
  335. s->curr_bps++;
  336. }
  337. if (get_bits1(&s->gb))
  338. {
  339. av_log(s->avctx, AV_LOG_ERROR, "invalid subframe padding\n");
  340. return -1;
  341. }
  342. type = get_bits(&s->gb, 6);
  343. // wasted = get_bits1(&s->gb);
  344. // if (wasted)
  345. // {
  346. // while (!get_bits1(&s->gb))
  347. // wasted++;
  348. // if (wasted)
  349. // wasted++;
  350. // s->curr_bps -= wasted;
  351. // }
  352. #if 0
  353. wasted= 16 - av_log2(show_bits(&s->gb, 17));
  354. skip_bits(&s->gb, wasted+1);
  355. s->curr_bps -= wasted;
  356. #else
  357. if (get_bits1(&s->gb))
  358. {
  359. wasted = 1;
  360. while (!get_bits1(&s->gb))
  361. wasted++;
  362. s->curr_bps -= wasted;
  363. av_log(s->avctx, AV_LOG_DEBUG, "%d wasted bits\n", wasted);
  364. }
  365. #endif
  366. //FIXME use av_log2 for types
  367. if (type == 0)
  368. {
  369. av_log(s->avctx, AV_LOG_DEBUG, "coding type: constant\n");
  370. tmp = get_sbits(&s->gb, s->curr_bps);
  371. for (i = 0; i < s->blocksize; i++)
  372. s->decoded[channel][i] = tmp;
  373. }
  374. else if (type == 1)
  375. {
  376. av_log(s->avctx, AV_LOG_DEBUG, "coding type: verbatim\n");
  377. for (i = 0; i < s->blocksize; i++)
  378. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  379. }
  380. else if ((type >= 8) && (type <= 12))
  381. {
  382. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: fixed\n");
  383. if (decode_subframe_fixed(s, channel, type & ~0x8) < 0)
  384. return -1;
  385. }
  386. else if (type >= 32)
  387. {
  388. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: lpc\n");
  389. if (decode_subframe_lpc(s, channel, (type & ~0x20)+1) < 0)
  390. return -1;
  391. }
  392. else
  393. {
  394. av_log(s->avctx, AV_LOG_ERROR, "invalid coding type\n");
  395. return -1;
  396. }
  397. if (wasted)
  398. {
  399. int i;
  400. for (i = 0; i < s->blocksize; i++)
  401. s->decoded[channel][i] <<= wasted;
  402. }
  403. return 0;
  404. }
  405. static int decode_frame(FLACContext *s)
  406. {
  407. int blocksize_code, sample_rate_code, sample_size_code, assignment, i, crc8;
  408. int decorrelation, bps, blocksize, samplerate;
  409. blocksize_code = get_bits(&s->gb, 4);
  410. sample_rate_code = get_bits(&s->gb, 4);
  411. assignment = get_bits(&s->gb, 4); /* channel assignment */
  412. if (assignment < 8 && s->channels == assignment+1)
  413. decorrelation = INDEPENDENT;
  414. else if (assignment >=8 && assignment < 11 && s->channels == 2)
  415. decorrelation = LEFT_SIDE + assignment - 8;
  416. else
  417. {
  418. av_log(s->avctx, AV_LOG_ERROR, "unsupported channel assignment %d (channels=%d)\n", assignment, s->channels);
  419. return -1;
  420. }
  421. sample_size_code = get_bits(&s->gb, 3);
  422. if(sample_size_code == 0)
  423. bps= s->bps;
  424. else if((sample_size_code != 3) && (sample_size_code != 7))
  425. bps = sample_size_table[sample_size_code];
  426. else
  427. {
  428. av_log(s->avctx, AV_LOG_ERROR, "invalid sample size code (%d)\n", sample_size_code);
  429. return -1;
  430. }
  431. if (get_bits1(&s->gb))
  432. {
  433. av_log(s->avctx, AV_LOG_ERROR, "broken stream, invalid padding\n");
  434. return -1;
  435. }
  436. if(get_utf8(&s->gb) < 0){
  437. av_log(s->avctx, AV_LOG_ERROR, "utf8 fscked\n");
  438. return -1;
  439. }
  440. #if 0
  441. if (/*((blocksize_code == 6) || (blocksize_code == 7)) &&*/
  442. (s->min_blocksize != s->max_blocksize)){
  443. }else{
  444. }
  445. #endif
  446. if (blocksize_code == 0)
  447. blocksize = s->min_blocksize;
  448. else if (blocksize_code == 6)
  449. blocksize = get_bits(&s->gb, 8)+1;
  450. else if (blocksize_code == 7)
  451. blocksize = get_bits(&s->gb, 16)+1;
  452. else
  453. blocksize = blocksize_table[blocksize_code];
  454. if(blocksize > s->max_blocksize){
  455. av_log(s->avctx, AV_LOG_ERROR, "blocksize %d > %d\n", blocksize, s->max_blocksize);
  456. return -1;
  457. }
  458. if (sample_rate_code == 0){
  459. samplerate= s->samplerate;
  460. }else if ((sample_rate_code > 3) && (sample_rate_code < 12))
  461. samplerate = sample_rate_table[sample_rate_code];
  462. else if (sample_rate_code == 12)
  463. samplerate = get_bits(&s->gb, 8) * 1000;
  464. else if (sample_rate_code == 13)
  465. samplerate = get_bits(&s->gb, 16);
  466. else if (sample_rate_code == 14)
  467. samplerate = get_bits(&s->gb, 16) * 10;
  468. else{
  469. av_log(s->avctx, AV_LOG_ERROR, "illegal sample rate code %d\n", sample_rate_code);
  470. return -1;
  471. }
  472. skip_bits(&s->gb, 8);
  473. crc8= get_crc8(s->gb.buffer, get_bits_count(&s->gb)/8);
  474. if(crc8){
  475. av_log(s->avctx, AV_LOG_ERROR, "header crc mismatch crc=%2X\n", crc8);
  476. return -1;
  477. }
  478. s->blocksize = blocksize;
  479. s->samplerate = samplerate;
  480. s->bps = bps;
  481. s->decorrelation= decorrelation;
  482. // dump_headers(s);
  483. /* subframes */
  484. for (i = 0; i < s->channels; i++)
  485. {
  486. // av_log(s->avctx, AV_LOG_DEBUG, "decoded: %x residual: %x\n", s->decoded[i], s->residual[i]);
  487. if (decode_subframe(s, i) < 0)
  488. return -1;
  489. }
  490. align_get_bits(&s->gb);
  491. /* frame footer */
  492. skip_bits(&s->gb, 16); /* data crc */
  493. return 0;
  494. }
  495. static int flac_decode_frame(AVCodecContext *avctx,
  496. void *data, int *data_size,
  497. uint8_t *buf, int buf_size)
  498. {
  499. FLACContext *s = avctx->priv_data;
  500. int metadata_last, metadata_type, metadata_size;
  501. int tmp = 0, i, j = 0, input_buf_size = 0;
  502. int16_t *samples = data;
  503. if(s->max_framesize == 0){
  504. s->max_framesize= 65536; // should hopefully be enough for the first header
  505. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  506. }
  507. if(1 && s->max_framesize){//FIXME truncated
  508. buf_size= FFMAX(FFMIN(buf_size, s->max_framesize - s->bitstream_size), 0);
  509. input_buf_size= buf_size;
  510. if(s->bitstream_index + s->bitstream_size + buf_size > s->allocated_bitstream_size){
  511. // printf("memmove\n");
  512. memmove(s->bitstream, &s->bitstream[s->bitstream_index], s->bitstream_size);
  513. s->bitstream_index=0;
  514. }
  515. memcpy(&s->bitstream[s->bitstream_index + s->bitstream_size], buf, buf_size);
  516. buf= &s->bitstream[s->bitstream_index];
  517. buf_size += s->bitstream_size;
  518. s->bitstream_size= buf_size;
  519. if(buf_size < s->max_framesize){
  520. // printf("wanna more data ...\n");
  521. return input_buf_size;
  522. }
  523. }
  524. init_get_bits(&s->gb, buf, buf_size*8);
  525. /* fLaC signature (be) */
  526. if (show_bits_long(&s->gb, 32) == bswap_32(ff_get_fourcc("fLaC")))
  527. {
  528. skip_bits(&s->gb, 32);
  529. av_log(s->avctx, AV_LOG_DEBUG, "STREAM HEADER\n");
  530. do {
  531. metadata_last = get_bits(&s->gb, 1);
  532. metadata_type = get_bits(&s->gb, 7);
  533. metadata_size = get_bits_long(&s->gb, 24);
  534. av_log(s->avctx, AV_LOG_DEBUG, " metadata block: flag = %d, type = %d, size = %d\n",
  535. metadata_last, metadata_type,
  536. metadata_size);
  537. if(metadata_size){
  538. switch(metadata_type)
  539. {
  540. case METADATA_TYPE_STREAMINFO:{
  541. metadata_streaminfo(s);
  542. /* Buffer might have been reallocated, reinit bitreader */
  543. if(buf != &s->bitstream[s->bitstream_index])
  544. {
  545. int bits_count = get_bits_count(&s->gb);
  546. buf= &s->bitstream[s->bitstream_index];
  547. init_get_bits(&s->gb, buf, buf_size*8);
  548. skip_bits(&s->gb, bits_count);
  549. }
  550. dump_headers(s);
  551. break;}
  552. default:
  553. for(i=0; i<metadata_size; i++)
  554. skip_bits(&s->gb, 8);
  555. }
  556. }
  557. } while(!metadata_last);
  558. }
  559. else
  560. {
  561. tmp = show_bits(&s->gb, 16);
  562. if(tmp != 0xFFF8){
  563. av_log(s->avctx, AV_LOG_ERROR, "FRAME HEADER not here\n");
  564. while(get_bits_count(&s->gb)/8+2 < buf_size && show_bits(&s->gb, 16) != 0xFFF8)
  565. skip_bits(&s->gb, 8);
  566. goto end; // we may not have enough bits left to decode a frame, so try next time
  567. }
  568. skip_bits(&s->gb, 16);
  569. if (decode_frame(s) < 0){
  570. av_log(s->avctx, AV_LOG_ERROR, "decode_frame() failed\n");
  571. s->bitstream_size=0;
  572. s->bitstream_index=0;
  573. return -1;
  574. }
  575. }
  576. #if 0
  577. /* fix the channel order here */
  578. if (s->order == MID_SIDE)
  579. {
  580. short *left = samples;
  581. short *right = samples + s->blocksize;
  582. for (i = 0; i < s->blocksize; i += 2)
  583. {
  584. uint32_t x = s->decoded[0][i];
  585. uint32_t y = s->decoded[0][i+1];
  586. right[i] = x - (y / 2);
  587. left[i] = right[i] + y;
  588. }
  589. *data_size = 2 * s->blocksize;
  590. }
  591. else
  592. {
  593. for (i = 0; i < s->channels; i++)
  594. {
  595. switch(s->order)
  596. {
  597. case INDEPENDENT:
  598. for (j = 0; j < s->blocksize; j++)
  599. samples[(s->blocksize*i)+j] = s->decoded[i][j];
  600. break;
  601. case LEFT_SIDE:
  602. case RIGHT_SIDE:
  603. if (i == 0)
  604. for (j = 0; j < s->blocksize; j++)
  605. samples[(s->blocksize*i)+j] = s->decoded[0][j];
  606. else
  607. for (j = 0; j < s->blocksize; j++)
  608. samples[(s->blocksize*i)+j] = s->decoded[0][j] - s->decoded[i][j];
  609. break;
  610. // case MID_SIDE:
  611. // av_log(s->avctx, AV_LOG_DEBUG, "mid-side unsupported\n");
  612. }
  613. *data_size += s->blocksize;
  614. }
  615. }
  616. #else
  617. switch(s->decorrelation)
  618. {
  619. case INDEPENDENT:
  620. for (j = 0; j < s->blocksize; j++)
  621. {
  622. for (i = 0; i < s->channels; i++)
  623. *(samples++) = s->decoded[i][j];
  624. }
  625. break;
  626. case LEFT_SIDE:
  627. assert(s->channels == 2);
  628. for (i = 0; i < s->blocksize; i++)
  629. {
  630. *(samples++) = s->decoded[0][i];
  631. *(samples++) = s->decoded[0][i] - s->decoded[1][i];
  632. }
  633. break;
  634. case RIGHT_SIDE:
  635. assert(s->channels == 2);
  636. for (i = 0; i < s->blocksize; i++)
  637. {
  638. *(samples++) = s->decoded[0][i] + s->decoded[1][i];
  639. *(samples++) = s->decoded[1][i];
  640. }
  641. break;
  642. case MID_SIDE:
  643. assert(s->channels == 2);
  644. for (i = 0; i < s->blocksize; i++)
  645. {
  646. int mid, side;
  647. mid = s->decoded[0][i];
  648. side = s->decoded[1][i];
  649. #if 1 //needs to be checked but IMHO it should be binary identical
  650. mid -= side>>1;
  651. *(samples++) = mid + side;
  652. *(samples++) = mid;
  653. #else
  654. mid <<= 1;
  655. if (side & 1)
  656. mid++;
  657. *(samples++) = (mid + side) >> 1;
  658. *(samples++) = (mid - side) >> 1;
  659. #endif
  660. }
  661. break;
  662. }
  663. #endif
  664. *data_size = (int8_t *)samples - (int8_t *)data;
  665. // av_log(s->avctx, AV_LOG_DEBUG, "data size: %d\n", *data_size);
  666. // s->last_blocksize = s->blocksize;
  667. end:
  668. i= (get_bits_count(&s->gb)+7)/8;;
  669. if(i > buf_size){
  670. av_log(s->avctx, AV_LOG_ERROR, "overread: %d\n", i - buf_size);
  671. s->bitstream_size=0;
  672. s->bitstream_index=0;
  673. return -1;
  674. }
  675. if(s->bitstream_size){
  676. s->bitstream_index += i;
  677. s->bitstream_size -= i;
  678. return input_buf_size;
  679. }else
  680. return i;
  681. }
  682. static int flac_decode_close(AVCodecContext *avctx)
  683. {
  684. FLACContext *s = avctx->priv_data;
  685. int i;
  686. for (i = 0; i < s->channels; i++)
  687. {
  688. av_freep(&s->decoded[i]);
  689. }
  690. av_freep(&s->bitstream);
  691. return 0;
  692. }
  693. static void flac_flush(AVCodecContext *avctx){
  694. FLACContext *s = avctx->priv_data;
  695. s->bitstream_size=
  696. s->bitstream_index= 0;
  697. }
  698. AVCodec flac_decoder = {
  699. "flac",
  700. CODEC_TYPE_AUDIO,
  701. CODEC_ID_FLAC,
  702. sizeof(FLACContext),
  703. flac_decode_init,
  704. NULL,
  705. flac_decode_close,
  706. flac_decode_frame,
  707. .flush= flac_flush,
  708. };