You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

647 lines
19KB

  1. /*
  2. * ASUS V1/V2 codec
  3. * Copyright (c) 2003 Michael Niedermayer
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file asv1.c
  21. * ASUS V1/V2 codec.
  22. */
  23. #include "avcodec.h"
  24. #include "dsputil.h"
  25. #include "mpegvideo.h"
  26. //#undef NDEBUG
  27. //#include <assert.h>
  28. #define VLC_BITS 6
  29. #define ASV2_LEVEL_VLC_BITS 10
  30. typedef struct ASV1Context{
  31. AVCodecContext *avctx;
  32. DSPContext dsp;
  33. AVFrame picture;
  34. PutBitContext pb;
  35. GetBitContext gb;
  36. ScanTable scantable;
  37. int inv_qscale;
  38. int mb_width;
  39. int mb_height;
  40. int mb_width2;
  41. int mb_height2;
  42. DCTELEM __align8 block[6][64];
  43. uint16_t __align8 intra_matrix[64];
  44. int __align8 q_intra_matrix[64];
  45. uint8_t *bitstream_buffer;
  46. int bitstream_buffer_size;
  47. } ASV1Context;
  48. static const uint8_t scantab[64]={
  49. 0x00,0x08,0x01,0x09,0x10,0x18,0x11,0x19,
  50. 0x02,0x0A,0x03,0x0B,0x12,0x1A,0x13,0x1B,
  51. 0x04,0x0C,0x05,0x0D,0x20,0x28,0x21,0x29,
  52. 0x06,0x0E,0x07,0x0F,0x14,0x1C,0x15,0x1D,
  53. 0x22,0x2A,0x23,0x2B,0x30,0x38,0x31,0x39,
  54. 0x16,0x1E,0x17,0x1F,0x24,0x2C,0x25,0x2D,
  55. 0x32,0x3A,0x33,0x3B,0x26,0x2E,0x27,0x2F,
  56. 0x34,0x3C,0x35,0x3D,0x36,0x3E,0x37,0x3F,
  57. };
  58. static const uint8_t ccp_tab[17][2]={
  59. {0x2,2}, {0x7,5}, {0xB,5}, {0x3,5},
  60. {0xD,5}, {0x5,5}, {0x9,5}, {0x1,5},
  61. {0xE,5}, {0x6,5}, {0xA,5}, {0x2,5},
  62. {0xC,5}, {0x4,5}, {0x8,5}, {0x3,2},
  63. {0xF,5}, //EOB
  64. };
  65. static const uint8_t level_tab[7][2]={
  66. {3,4}, {3,3}, {3,2}, {0,3}, {2,2}, {2,3}, {2,4}
  67. };
  68. static const uint8_t dc_ccp_tab[8][2]={
  69. {0x1,2}, {0xD,4}, {0xF,4}, {0xC,4},
  70. {0x5,3}, {0xE,4}, {0x4,3}, {0x0,2},
  71. };
  72. static const uint8_t ac_ccp_tab[16][2]={
  73. {0x00,2}, {0x3B,6}, {0x0A,4}, {0x3A,6},
  74. {0x02,3}, {0x39,6}, {0x3C,6}, {0x38,6},
  75. {0x03,3}, {0x3D,6}, {0x08,4}, {0x1F,5},
  76. {0x09,4}, {0x0B,4}, {0x0D,4}, {0x0C,4},
  77. };
  78. static const uint8_t asv2_level_tab[63][2]={
  79. {0x3F,10},{0x2F,10},{0x37,10},{0x27,10},{0x3B,10},{0x2B,10},{0x33,10},{0x23,10},
  80. {0x3D,10},{0x2D,10},{0x35,10},{0x25,10},{0x39,10},{0x29,10},{0x31,10},{0x21,10},
  81. {0x1F, 8},{0x17, 8},{0x1B, 8},{0x13, 8},{0x1D, 8},{0x15, 8},{0x19, 8},{0x11, 8},
  82. {0x0F, 6},{0x0B, 6},{0x0D, 6},{0x09, 6},
  83. {0x07, 4},{0x05, 4},
  84. {0x03, 2},
  85. {0x00, 5},
  86. {0x02, 2},
  87. {0x04, 4},{0x06, 4},
  88. {0x08, 6},{0x0C, 6},{0x0A, 6},{0x0E, 6},
  89. {0x10, 8},{0x18, 8},{0x14, 8},{0x1C, 8},{0x12, 8},{0x1A, 8},{0x16, 8},{0x1E, 8},
  90. {0x20,10},{0x30,10},{0x28,10},{0x38,10},{0x24,10},{0x34,10},{0x2C,10},{0x3C,10},
  91. {0x22,10},{0x32,10},{0x2A,10},{0x3A,10},{0x26,10},{0x36,10},{0x2E,10},{0x3E,10},
  92. };
  93. static VLC ccp_vlc;
  94. static VLC level_vlc;
  95. static VLC dc_ccp_vlc;
  96. static VLC ac_ccp_vlc;
  97. static VLC asv2_level_vlc;
  98. static void init_vlcs(ASV1Context *a){
  99. static int done = 0;
  100. if (!done) {
  101. done = 1;
  102. init_vlc(&ccp_vlc, VLC_BITS, 17,
  103. &ccp_tab[0][1], 2, 1,
  104. &ccp_tab[0][0], 2, 1, 1);
  105. init_vlc(&dc_ccp_vlc, VLC_BITS, 8,
  106. &dc_ccp_tab[0][1], 2, 1,
  107. &dc_ccp_tab[0][0], 2, 1, 1);
  108. init_vlc(&ac_ccp_vlc, VLC_BITS, 16,
  109. &ac_ccp_tab[0][1], 2, 1,
  110. &ac_ccp_tab[0][0], 2, 1, 1);
  111. init_vlc(&level_vlc, VLC_BITS, 7,
  112. &level_tab[0][1], 2, 1,
  113. &level_tab[0][0], 2, 1, 1);
  114. init_vlc(&asv2_level_vlc, ASV2_LEVEL_VLC_BITS, 63,
  115. &asv2_level_tab[0][1], 2, 1,
  116. &asv2_level_tab[0][0], 2, 1, 1);
  117. }
  118. }
  119. //FIXME write a reversed bitstream reader to avoid the double reverse
  120. static inline int asv2_get_bits(GetBitContext *gb, int n){
  121. return ff_reverse[ get_bits(gb, n) << (8-n) ];
  122. }
  123. static inline void asv2_put_bits(PutBitContext *pb, int n, int v){
  124. put_bits(pb, n, ff_reverse[ v << (8-n) ]);
  125. }
  126. static inline int asv1_get_level(GetBitContext *gb){
  127. int code= get_vlc2(gb, level_vlc.table, VLC_BITS, 1);
  128. if(code==3) return get_sbits(gb, 8);
  129. else return code - 3;
  130. }
  131. static inline int asv2_get_level(GetBitContext *gb){
  132. int code= get_vlc2(gb, asv2_level_vlc.table, ASV2_LEVEL_VLC_BITS, 1);
  133. if(code==31) return (int8_t)asv2_get_bits(gb, 8);
  134. else return code - 31;
  135. }
  136. static inline void asv1_put_level(PutBitContext *pb, int level){
  137. unsigned int index= level + 3;
  138. if(index <= 6) put_bits(pb, level_tab[index][1], level_tab[index][0]);
  139. else{
  140. put_bits(pb, level_tab[3][1], level_tab[3][0]);
  141. put_bits(pb, 8, level&0xFF);
  142. }
  143. }
  144. static inline void asv2_put_level(PutBitContext *pb, int level){
  145. unsigned int index= level + 31;
  146. if(index <= 62) put_bits(pb, asv2_level_tab[index][1], asv2_level_tab[index][0]);
  147. else{
  148. put_bits(pb, asv2_level_tab[31][1], asv2_level_tab[31][0]);
  149. asv2_put_bits(pb, 8, level&0xFF);
  150. }
  151. }
  152. static inline int asv1_decode_block(ASV1Context *a, DCTELEM block[64]){
  153. int i;
  154. block[0]= 8*get_bits(&a->gb, 8);
  155. for(i=0; i<11; i++){
  156. const int ccp= get_vlc2(&a->gb, ccp_vlc.table, VLC_BITS, 1);
  157. if(ccp){
  158. if(ccp == 16) break;
  159. if(ccp < 0 || i>=10){
  160. av_log(a->avctx, AV_LOG_ERROR, "coded coeff pattern damaged\n");
  161. return -1;
  162. }
  163. if(ccp&8) block[a->scantable.permutated[4*i+0]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+0])>>4;
  164. if(ccp&4) block[a->scantable.permutated[4*i+1]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+1])>>4;
  165. if(ccp&2) block[a->scantable.permutated[4*i+2]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+2])>>4;
  166. if(ccp&1) block[a->scantable.permutated[4*i+3]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+3])>>4;
  167. }
  168. }
  169. return 0;
  170. }
  171. static inline int asv2_decode_block(ASV1Context *a, DCTELEM block[64]){
  172. int i, count, ccp;
  173. count= asv2_get_bits(&a->gb, 4);
  174. block[0]= 8*asv2_get_bits(&a->gb, 8);
  175. ccp= get_vlc2(&a->gb, dc_ccp_vlc.table, VLC_BITS, 1);
  176. if(ccp){
  177. if(ccp&4) block[a->scantable.permutated[1]]= (asv2_get_level(&a->gb) * a->intra_matrix[1])>>4;
  178. if(ccp&2) block[a->scantable.permutated[2]]= (asv2_get_level(&a->gb) * a->intra_matrix[2])>>4;
  179. if(ccp&1) block[a->scantable.permutated[3]]= (asv2_get_level(&a->gb) * a->intra_matrix[3])>>4;
  180. }
  181. for(i=1; i<count+1; i++){
  182. const int ccp= get_vlc2(&a->gb, ac_ccp_vlc.table, VLC_BITS, 1);
  183. if(ccp){
  184. if(ccp&8) block[a->scantable.permutated[4*i+0]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+0])>>4;
  185. if(ccp&4) block[a->scantable.permutated[4*i+1]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+1])>>4;
  186. if(ccp&2) block[a->scantable.permutated[4*i+2]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+2])>>4;
  187. if(ccp&1) block[a->scantable.permutated[4*i+3]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+3])>>4;
  188. }
  189. }
  190. return 0;
  191. }
  192. static inline void asv1_encode_block(ASV1Context *a, DCTELEM block[64]){
  193. int i;
  194. int nc_count=0;
  195. put_bits(&a->pb, 8, (block[0] + 32)>>6);
  196. block[0]= 0;
  197. for(i=0; i<10; i++){
  198. const int index= scantab[4*i];
  199. int ccp=0;
  200. if( (block[index + 0] = (block[index + 0]*a->q_intra_matrix[index + 0] + (1<<15))>>16) ) ccp |= 8;
  201. if( (block[index + 8] = (block[index + 8]*a->q_intra_matrix[index + 8] + (1<<15))>>16) ) ccp |= 4;
  202. if( (block[index + 1] = (block[index + 1]*a->q_intra_matrix[index + 1] + (1<<15))>>16) ) ccp |= 2;
  203. if( (block[index + 9] = (block[index + 9]*a->q_intra_matrix[index + 9] + (1<<15))>>16) ) ccp |= 1;
  204. if(ccp){
  205. for(;nc_count; nc_count--)
  206. put_bits(&a->pb, ccp_tab[0][1], ccp_tab[0][0]);
  207. put_bits(&a->pb, ccp_tab[ccp][1], ccp_tab[ccp][0]);
  208. if(ccp&8) asv1_put_level(&a->pb, block[index + 0]);
  209. if(ccp&4) asv1_put_level(&a->pb, block[index + 8]);
  210. if(ccp&2) asv1_put_level(&a->pb, block[index + 1]);
  211. if(ccp&1) asv1_put_level(&a->pb, block[index + 9]);
  212. }else{
  213. nc_count++;
  214. }
  215. }
  216. put_bits(&a->pb, ccp_tab[16][1], ccp_tab[16][0]);
  217. }
  218. static inline void asv2_encode_block(ASV1Context *a, DCTELEM block[64]){
  219. int i;
  220. int count=0;
  221. for(count=63; count>3; count--){
  222. const int index= scantab[count];
  223. if( (block[index]*a->q_intra_matrix[index] + (1<<15))>>16 )
  224. break;
  225. }
  226. count >>= 2;
  227. asv2_put_bits(&a->pb, 4, count);
  228. asv2_put_bits(&a->pb, 8, (block[0] + 32)>>6);
  229. block[0]= 0;
  230. for(i=0; i<=count; i++){
  231. const int index= scantab[4*i];
  232. int ccp=0;
  233. if( (block[index + 0] = (block[index + 0]*a->q_intra_matrix[index + 0] + (1<<15))>>16) ) ccp |= 8;
  234. if( (block[index + 8] = (block[index + 8]*a->q_intra_matrix[index + 8] + (1<<15))>>16) ) ccp |= 4;
  235. if( (block[index + 1] = (block[index + 1]*a->q_intra_matrix[index + 1] + (1<<15))>>16) ) ccp |= 2;
  236. if( (block[index + 9] = (block[index + 9]*a->q_intra_matrix[index + 9] + (1<<15))>>16) ) ccp |= 1;
  237. if(i) put_bits(&a->pb, ac_ccp_tab[ccp][1], ac_ccp_tab[ccp][0]);
  238. else put_bits(&a->pb, dc_ccp_tab[ccp][1], dc_ccp_tab[ccp][0]);
  239. if(ccp){
  240. if(ccp&8) asv2_put_level(&a->pb, block[index + 0]);
  241. if(ccp&4) asv2_put_level(&a->pb, block[index + 8]);
  242. if(ccp&2) asv2_put_level(&a->pb, block[index + 1]);
  243. if(ccp&1) asv2_put_level(&a->pb, block[index + 9]);
  244. }
  245. }
  246. }
  247. static inline int decode_mb(ASV1Context *a, DCTELEM block[6][64]){
  248. int i;
  249. a->dsp.clear_blocks(block[0]);
  250. if(a->avctx->codec_id == CODEC_ID_ASV1){
  251. for(i=0; i<6; i++){
  252. if( asv1_decode_block(a, block[i]) < 0)
  253. return -1;
  254. }
  255. }else{
  256. for(i=0; i<6; i++){
  257. if( asv2_decode_block(a, block[i]) < 0)
  258. return -1;
  259. }
  260. }
  261. return 0;
  262. }
  263. static inline int encode_mb(ASV1Context *a, DCTELEM block[6][64]){
  264. int i;
  265. if(a->pb.buf_end - a->pb.buf - (put_bits_count(&a->pb)>>3) < 30*16*16*3/2/8){
  266. av_log(a->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  267. return -1;
  268. }
  269. if(a->avctx->codec_id == CODEC_ID_ASV1){
  270. for(i=0; i<6; i++)
  271. asv1_encode_block(a, block[i]);
  272. }else{
  273. for(i=0; i<6; i++)
  274. asv2_encode_block(a, block[i]);
  275. }
  276. return 0;
  277. }
  278. static inline void idct_put(ASV1Context *a, int mb_x, int mb_y){
  279. DCTELEM (*block)[64]= a->block;
  280. int linesize= a->picture.linesize[0];
  281. uint8_t *dest_y = a->picture.data[0] + (mb_y * 16* linesize ) + mb_x * 16;
  282. uint8_t *dest_cb = a->picture.data[1] + (mb_y * 8 * a->picture.linesize[1]) + mb_x * 8;
  283. uint8_t *dest_cr = a->picture.data[2] + (mb_y * 8 * a->picture.linesize[2]) + mb_x * 8;
  284. a->dsp.idct_put(dest_y , linesize, block[0]);
  285. a->dsp.idct_put(dest_y + 8, linesize, block[1]);
  286. a->dsp.idct_put(dest_y + 8*linesize , linesize, block[2]);
  287. a->dsp.idct_put(dest_y + 8*linesize + 8, linesize, block[3]);
  288. if(!(a->avctx->flags&CODEC_FLAG_GRAY)){
  289. a->dsp.idct_put(dest_cb, a->picture.linesize[1], block[4]);
  290. a->dsp.idct_put(dest_cr, a->picture.linesize[2], block[5]);
  291. }
  292. }
  293. static inline void dct_get(ASV1Context *a, int mb_x, int mb_y){
  294. DCTELEM (*block)[64]= a->block;
  295. int linesize= a->picture.linesize[0];
  296. int i;
  297. uint8_t *ptr_y = a->picture.data[0] + (mb_y * 16* linesize ) + mb_x * 16;
  298. uint8_t *ptr_cb = a->picture.data[1] + (mb_y * 8 * a->picture.linesize[1]) + mb_x * 8;
  299. uint8_t *ptr_cr = a->picture.data[2] + (mb_y * 8 * a->picture.linesize[2]) + mb_x * 8;
  300. a->dsp.get_pixels(block[0], ptr_y , linesize);
  301. a->dsp.get_pixels(block[1], ptr_y + 8, linesize);
  302. a->dsp.get_pixels(block[2], ptr_y + 8*linesize , linesize);
  303. a->dsp.get_pixels(block[3], ptr_y + 8*linesize + 8, linesize);
  304. for(i=0; i<4; i++)
  305. a->dsp.fdct(block[i]);
  306. if(!(a->avctx->flags&CODEC_FLAG_GRAY)){
  307. a->dsp.get_pixels(block[4], ptr_cb, a->picture.linesize[1]);
  308. a->dsp.get_pixels(block[5], ptr_cr, a->picture.linesize[2]);
  309. for(i=4; i<6; i++)
  310. a->dsp.fdct(block[i]);
  311. }
  312. }
  313. static int decode_frame(AVCodecContext *avctx,
  314. void *data, int *data_size,
  315. uint8_t *buf, int buf_size)
  316. {
  317. ASV1Context * const a = avctx->priv_data;
  318. AVFrame *picture = data;
  319. AVFrame * const p= (AVFrame*)&a->picture;
  320. int mb_x, mb_y;
  321. if(p->data[0])
  322. avctx->release_buffer(avctx, p);
  323. p->reference= 0;
  324. if(avctx->get_buffer(avctx, p) < 0){
  325. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  326. return -1;
  327. }
  328. p->pict_type= I_TYPE;
  329. p->key_frame= 1;
  330. a->bitstream_buffer= av_fast_realloc(a->bitstream_buffer, &a->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  331. if(avctx->codec_id == CODEC_ID_ASV1)
  332. a->dsp.bswap_buf((uint32_t*)a->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  333. else{
  334. int i;
  335. for(i=0; i<buf_size; i++)
  336. a->bitstream_buffer[i]= ff_reverse[ buf[i] ];
  337. }
  338. init_get_bits(&a->gb, a->bitstream_buffer, buf_size*8);
  339. for(mb_y=0; mb_y<a->mb_height2; mb_y++){
  340. for(mb_x=0; mb_x<a->mb_width2; mb_x++){
  341. if( decode_mb(a, a->block) <0)
  342. return -1;
  343. idct_put(a, mb_x, mb_y);
  344. }
  345. }
  346. if(a->mb_width2 != a->mb_width){
  347. mb_x= a->mb_width2;
  348. for(mb_y=0; mb_y<a->mb_height2; mb_y++){
  349. if( decode_mb(a, a->block) <0)
  350. return -1;
  351. idct_put(a, mb_x, mb_y);
  352. }
  353. }
  354. if(a->mb_height2 != a->mb_height){
  355. mb_y= a->mb_height2;
  356. for(mb_x=0; mb_x<a->mb_width; mb_x++){
  357. if( decode_mb(a, a->block) <0)
  358. return -1;
  359. idct_put(a, mb_x, mb_y);
  360. }
  361. }
  362. #if 0
  363. int i;
  364. printf("%d %d\n", 8*buf_size, get_bits_count(&a->gb));
  365. for(i=get_bits_count(&a->gb); i<8*buf_size; i++){
  366. printf("%d", get_bits1(&a->gb));
  367. }
  368. for(i=0; i<s->avctx->extradata_size; i++){
  369. printf("%c\n", ((uint8_t*)s->avctx->extradata)[i]);
  370. }
  371. #endif
  372. *picture= *(AVFrame*)&a->picture;
  373. *data_size = sizeof(AVPicture);
  374. emms_c();
  375. return (get_bits_count(&a->gb)+31)/32*4;
  376. }
  377. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  378. ASV1Context * const a = avctx->priv_data;
  379. AVFrame *pict = data;
  380. AVFrame * const p= (AVFrame*)&a->picture;
  381. int size;
  382. int mb_x, mb_y;
  383. init_put_bits(&a->pb, buf, buf_size);
  384. *p = *pict;
  385. p->pict_type= I_TYPE;
  386. p->key_frame= 1;
  387. for(mb_y=0; mb_y<a->mb_height2; mb_y++){
  388. for(mb_x=0; mb_x<a->mb_width2; mb_x++){
  389. dct_get(a, mb_x, mb_y);
  390. encode_mb(a, a->block);
  391. }
  392. }
  393. if(a->mb_width2 != a->mb_width){
  394. mb_x= a->mb_width2;
  395. for(mb_y=0; mb_y<a->mb_height2; mb_y++){
  396. dct_get(a, mb_x, mb_y);
  397. encode_mb(a, a->block);
  398. }
  399. }
  400. if(a->mb_height2 != a->mb_height){
  401. mb_y= a->mb_height2;
  402. for(mb_x=0; mb_x<a->mb_width; mb_x++){
  403. dct_get(a, mb_x, mb_y);
  404. encode_mb(a, a->block);
  405. }
  406. }
  407. emms_c();
  408. align_put_bits(&a->pb);
  409. while(put_bits_count(&a->pb)&31)
  410. put_bits(&a->pb, 8, 0);
  411. size= put_bits_count(&a->pb)/32;
  412. if(avctx->codec_id == CODEC_ID_ASV1)
  413. a->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  414. else{
  415. int i;
  416. for(i=0; i<4*size; i++)
  417. buf[i]= ff_reverse[ buf[i] ];
  418. }
  419. return size*4;
  420. }
  421. static void common_init(AVCodecContext *avctx){
  422. ASV1Context * const a = avctx->priv_data;
  423. dsputil_init(&a->dsp, avctx);
  424. a->mb_width = (avctx->width + 15) / 16;
  425. a->mb_height = (avctx->height + 15) / 16;
  426. a->mb_width2 = (avctx->width + 0) / 16;
  427. a->mb_height2 = (avctx->height + 0) / 16;
  428. avctx->coded_frame= (AVFrame*)&a->picture;
  429. a->avctx= avctx;
  430. }
  431. static int decode_init(AVCodecContext *avctx){
  432. ASV1Context * const a = avctx->priv_data;
  433. AVFrame *p= (AVFrame*)&a->picture;
  434. int i;
  435. const int scale= avctx->codec_id == CODEC_ID_ASV1 ? 1 : 2;
  436. common_init(avctx);
  437. init_vlcs(a);
  438. ff_init_scantable(a->dsp.idct_permutation, &a->scantable, scantab);
  439. avctx->pix_fmt= PIX_FMT_YUV420P;
  440. a->inv_qscale= ((uint8_t*)avctx->extradata)[0];
  441. if(a->inv_qscale == 0){
  442. av_log(avctx, AV_LOG_ERROR, "illegal qscale 0\n");
  443. if(avctx->codec_id == CODEC_ID_ASV1)
  444. a->inv_qscale= 6;
  445. else
  446. a->inv_qscale= 10;
  447. }
  448. for(i=0; i<64; i++){
  449. int index= scantab[i];
  450. a->intra_matrix[i]= 64*scale*ff_mpeg1_default_intra_matrix[index] / a->inv_qscale;
  451. }
  452. p->qstride= a->mb_width;
  453. p->qscale_table= av_malloc( p->qstride * a->mb_height);
  454. p->quality= (32*scale + a->inv_qscale/2)/a->inv_qscale;
  455. memset(p->qscale_table, p->quality, p->qstride*a->mb_height);
  456. return 0;
  457. }
  458. static int encode_init(AVCodecContext *avctx){
  459. ASV1Context * const a = avctx->priv_data;
  460. int i;
  461. const int scale= avctx->codec_id == CODEC_ID_ASV1 ? 1 : 2;
  462. common_init(avctx);
  463. if(avctx->global_quality == 0) avctx->global_quality= 4*FF_QUALITY_SCALE;
  464. a->inv_qscale= (32*scale*FF_QUALITY_SCALE + avctx->global_quality/2) / avctx->global_quality;
  465. avctx->extradata= av_mallocz(8);
  466. avctx->extradata_size=8;
  467. ((uint32_t*)avctx->extradata)[0]= le2me_32(a->inv_qscale);
  468. ((uint32_t*)avctx->extradata)[1]= le2me_32(ff_get_fourcc("ASUS"));
  469. for(i=0; i<64; i++){
  470. int q= 32*scale*ff_mpeg1_default_intra_matrix[i];
  471. a->q_intra_matrix[i]= ((a->inv_qscale<<16) + q/2) / q;
  472. }
  473. return 0;
  474. }
  475. static int decode_end(AVCodecContext *avctx){
  476. ASV1Context * const a = avctx->priv_data;
  477. av_freep(&a->bitstream_buffer);
  478. av_freep(&a->picture.qscale_table);
  479. a->bitstream_buffer_size=0;
  480. return 0;
  481. }
  482. AVCodec asv1_decoder = {
  483. "asv1",
  484. CODEC_TYPE_VIDEO,
  485. CODEC_ID_ASV1,
  486. sizeof(ASV1Context),
  487. decode_init,
  488. NULL,
  489. decode_end,
  490. decode_frame,
  491. CODEC_CAP_DR1,
  492. };
  493. AVCodec asv2_decoder = {
  494. "asv2",
  495. CODEC_TYPE_VIDEO,
  496. CODEC_ID_ASV2,
  497. sizeof(ASV1Context),
  498. decode_init,
  499. NULL,
  500. decode_end,
  501. decode_frame,
  502. CODEC_CAP_DR1,
  503. };
  504. #ifdef CONFIG_ENCODERS
  505. AVCodec asv1_encoder = {
  506. "asv1",
  507. CODEC_TYPE_VIDEO,
  508. CODEC_ID_ASV1,
  509. sizeof(ASV1Context),
  510. encode_init,
  511. encode_frame,
  512. //encode_end,
  513. };
  514. AVCodec asv2_encoder = {
  515. "asv2",
  516. CODEC_TYPE_VIDEO,
  517. CODEC_ID_ASV2,
  518. sizeof(ASV1Context),
  519. encode_init,
  520. encode_frame,
  521. //encode_end,
  522. };
  523. #endif //CONFIG_ENCODERS