You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1004 lines
29KB

  1. /*
  2. * Duck/ON2 TrueMotion 2 Decoder
  3. * Copyright (c) 2005 Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Duck TrueMotion2 decoder.
  24. */
  25. #include <inttypes.h>
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "bswapdsp.h"
  29. #include "bytestream.h"
  30. #include "internal.h"
  31. #include "vlc.h"
  32. #define TM2_ESCAPE 0x80000000
  33. #define TM2_DELTAS 64
  34. /* Huffman-coded streams of different types of blocks */
  35. enum TM2_STREAMS {
  36. TM2_C_HI = 0,
  37. TM2_C_LO,
  38. TM2_L_HI,
  39. TM2_L_LO,
  40. TM2_UPD,
  41. TM2_MOT,
  42. TM2_TYPE,
  43. TM2_NUM_STREAMS
  44. };
  45. /* Block types */
  46. enum TM2_BLOCKS {
  47. TM2_HI_RES = 0,
  48. TM2_MED_RES,
  49. TM2_LOW_RES,
  50. TM2_NULL_RES,
  51. TM2_UPDATE,
  52. TM2_STILL,
  53. TM2_MOTION
  54. };
  55. typedef struct TM2Context {
  56. AVCodecContext *avctx;
  57. AVFrame *pic;
  58. BitstreamContext bc;
  59. BswapDSPContext bdsp;
  60. /* TM2 streams */
  61. int *tokens[TM2_NUM_STREAMS];
  62. int tok_lens[TM2_NUM_STREAMS];
  63. int tok_ptrs[TM2_NUM_STREAMS];
  64. int deltas[TM2_NUM_STREAMS][TM2_DELTAS];
  65. /* for blocks decoding */
  66. int D[4];
  67. int CD[4];
  68. int *last;
  69. int *clast;
  70. /* data for current and previous frame */
  71. int *Y1_base, *U1_base, *V1_base, *Y2_base, *U2_base, *V2_base;
  72. int *Y1, *U1, *V1, *Y2, *U2, *V2;
  73. int y_stride, uv_stride;
  74. int cur;
  75. } TM2Context;
  76. /**
  77. * Huffman codes for each of streams
  78. */
  79. typedef struct TM2Codes {
  80. VLC vlc; ///< table for Libav bitstream reader
  81. int bits;
  82. int *recode; ///< table for converting from code indexes to values
  83. int length;
  84. } TM2Codes;
  85. /**
  86. * structure for gathering Huffman codes information
  87. */
  88. typedef struct TM2Huff {
  89. int val_bits; ///< length of literal
  90. int max_bits; ///< maximum length of code
  91. int min_bits; ///< minimum length of code
  92. int nodes; ///< total number of nodes in tree
  93. int num; ///< current number filled
  94. int max_num; ///< total number of codes
  95. int *nums; ///< literals
  96. uint32_t *bits; ///< codes
  97. int *lens; ///< codelengths
  98. } TM2Huff;
  99. static int tm2_read_tree(TM2Context *ctx, uint32_t prefix, int length, TM2Huff *huff)
  100. {
  101. int ret;
  102. if (length > huff->max_bits) {
  103. av_log(ctx->avctx, AV_LOG_ERROR, "Tree exceeded its given depth (%i)\n",
  104. huff->max_bits);
  105. return AVERROR_INVALIDDATA;
  106. }
  107. if (!bitstream_read_bit(&ctx->bc)) { /* literal */
  108. if (length == 0) {
  109. length = 1;
  110. }
  111. if (huff->num >= huff->max_num) {
  112. av_log(ctx->avctx, AV_LOG_DEBUG, "Too many literals\n");
  113. return AVERROR_INVALIDDATA;
  114. }
  115. huff->nums[huff->num] = bitstream_read(&ctx->bc, huff->val_bits);
  116. huff->bits[huff->num] = prefix;
  117. huff->lens[huff->num] = length;
  118. huff->num++;
  119. return 0;
  120. } else { /* non-terminal node */
  121. if ((ret = tm2_read_tree(ctx, prefix << 1, length + 1, huff)) < 0)
  122. return ret;
  123. if ((ret = tm2_read_tree(ctx, (prefix << 1) | 1, length + 1, huff)) < 0)
  124. return ret;
  125. }
  126. return 0;
  127. }
  128. static int tm2_build_huff_table(TM2Context *ctx, TM2Codes *code)
  129. {
  130. TM2Huff huff;
  131. int res = 0;
  132. huff.val_bits = bitstream_read(&ctx->bc, 5);
  133. huff.max_bits = bitstream_read(&ctx->bc, 5);
  134. huff.min_bits = bitstream_read(&ctx->bc, 5);
  135. huff.nodes = bitstream_read(&ctx->bc, 17);
  136. huff.num = 0;
  137. /* check for correct codes parameters */
  138. if ((huff.val_bits < 1) || (huff.val_bits > 32) ||
  139. (huff.max_bits < 0) || (huff.max_bits > 25)) {
  140. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect tree parameters - literal "
  141. "length: %i, max code length: %i\n", huff.val_bits, huff.max_bits);
  142. return AVERROR_INVALIDDATA;
  143. }
  144. if ((huff.nodes <= 0) || (huff.nodes > 0x10000)) {
  145. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of Huffman tree "
  146. "nodes: %i\n", huff.nodes);
  147. return AVERROR_INVALIDDATA;
  148. }
  149. /* one-node tree */
  150. if (huff.max_bits == 0)
  151. huff.max_bits = 1;
  152. /* allocate space for codes - it is exactly ceil(nodes / 2) entries */
  153. huff.max_num = (huff.nodes + 1) >> 1;
  154. huff.nums = av_mallocz(huff.max_num * sizeof(int));
  155. huff.bits = av_mallocz(huff.max_num * sizeof(uint32_t));
  156. huff.lens = av_mallocz(huff.max_num * sizeof(int));
  157. if (!huff.nums || !huff.bits || !huff.lens) {
  158. res = AVERROR(ENOMEM);
  159. goto out;
  160. }
  161. res = tm2_read_tree(ctx, 0, 0, &huff);
  162. if (huff.num != huff.max_num) {
  163. av_log(ctx->avctx, AV_LOG_ERROR, "Got less codes than expected: %i of %i\n",
  164. huff.num, huff.max_num);
  165. res = AVERROR_INVALIDDATA;
  166. }
  167. /* convert codes to vlc_table */
  168. if (res >= 0) {
  169. int i;
  170. res = init_vlc(&code->vlc, huff.max_bits, huff.max_num,
  171. huff.lens, sizeof(int), sizeof(int),
  172. huff.bits, sizeof(uint32_t), sizeof(uint32_t), 0);
  173. if (res < 0)
  174. av_log(ctx->avctx, AV_LOG_ERROR, "Cannot build VLC table\n");
  175. else {
  176. code->bits = huff.max_bits;
  177. code->length = huff.max_num;
  178. code->recode = av_malloc(code->length * sizeof(int));
  179. if (!code->recode) {
  180. res = AVERROR(ENOMEM);
  181. goto out;
  182. }
  183. for (i = 0; i < code->length; i++)
  184. code->recode[i] = huff.nums[i];
  185. }
  186. }
  187. out:
  188. /* free allocated memory */
  189. av_free(huff.nums);
  190. av_free(huff.bits);
  191. av_free(huff.lens);
  192. return res;
  193. }
  194. static void tm2_free_codes(TM2Codes *code)
  195. {
  196. av_free(code->recode);
  197. if (code->vlc.table)
  198. ff_free_vlc(&code->vlc);
  199. }
  200. static inline int tm2_get_token(BitstreamContext *bc, TM2Codes *code)
  201. {
  202. int val;
  203. val = bitstream_read_vlc(bc, code->vlc.table, code->bits, 1);
  204. return code->recode[val];
  205. }
  206. #define TM2_OLD_HEADER_MAGIC 0x00000100
  207. #define TM2_NEW_HEADER_MAGIC 0x00000101
  208. static inline int tm2_read_header(TM2Context *ctx, const uint8_t *buf)
  209. {
  210. uint32_t magic = AV_RL32(buf);
  211. switch (magic) {
  212. case TM2_OLD_HEADER_MAGIC:
  213. avpriv_request_sample(ctx->avctx, "Old TM2 header");
  214. return 0;
  215. case TM2_NEW_HEADER_MAGIC:
  216. return 0;
  217. default:
  218. av_log(ctx->avctx, AV_LOG_ERROR, "Not a TM2 header: 0x%08"PRIX32"\n",
  219. magic);
  220. return AVERROR_INVALIDDATA;
  221. }
  222. }
  223. static int tm2_read_deltas(TM2Context *ctx, int stream_id)
  224. {
  225. int d, mb;
  226. int i, v;
  227. d = bitstream_read(&ctx->bc, 9);
  228. mb = bitstream_read(&ctx->bc, 5);
  229. if ((d < 1) || (d > TM2_DELTAS) || (mb < 1) || (mb > 32)) {
  230. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect delta table: %i deltas x %i bits\n", d, mb);
  231. return AVERROR_INVALIDDATA;
  232. }
  233. for (i = 0; i < d; i++) {
  234. v = bitstream_read(&ctx->bc, mb);
  235. if (v & (1 << (mb - 1)))
  236. ctx->deltas[stream_id][i] = v - (1 << mb);
  237. else
  238. ctx->deltas[stream_id][i] = v;
  239. }
  240. for (; i < TM2_DELTAS; i++)
  241. ctx->deltas[stream_id][i] = 0;
  242. return 0;
  243. }
  244. static int tm2_read_stream(TM2Context *ctx, const uint8_t *buf, int stream_id, int buf_size)
  245. {
  246. int i, ret;
  247. int skip = 0;
  248. int len, toks, pos;
  249. TM2Codes codes;
  250. GetByteContext gb;
  251. /* get stream length in dwords */
  252. bytestream2_init(&gb, buf, buf_size);
  253. len = bytestream2_get_be32(&gb);
  254. skip = len * 4 + 4;
  255. if (len == 0)
  256. return 4;
  257. if (len >= INT_MAX / 4 - 1 || len < 0 || skip > buf_size) {
  258. av_log(ctx->avctx, AV_LOG_ERROR, "Error, invalid stream size.\n");
  259. return AVERROR_INVALIDDATA;
  260. }
  261. toks = bytestream2_get_be32(&gb);
  262. if (toks & 1) {
  263. len = bytestream2_get_be32(&gb);
  264. if (len == TM2_ESCAPE) {
  265. len = bytestream2_get_be32(&gb);
  266. }
  267. if (len > 0) {
  268. pos = bytestream2_tell(&gb);
  269. if (skip <= pos)
  270. return AVERROR_INVALIDDATA;
  271. bitstream_init8(&ctx->bc, buf + pos, skip - pos);
  272. if ((ret = tm2_read_deltas(ctx, stream_id)) < 0)
  273. return ret;
  274. bytestream2_skip(&gb, ((bitstream_tell(&ctx->bc) + 31) >> 5) << 2);
  275. }
  276. }
  277. /* skip unused fields */
  278. len = bytestream2_get_be32(&gb);
  279. if (len == TM2_ESCAPE) { /* some unknown length - could be escaped too */
  280. bytestream2_skip(&gb, 8); /* unused by decoder */
  281. } else {
  282. bytestream2_skip(&gb, 4); /* unused by decoder */
  283. }
  284. pos = bytestream2_tell(&gb);
  285. if (skip <= pos)
  286. return AVERROR_INVALIDDATA;
  287. bitstream_init8(&ctx->bc, buf + pos, skip - pos);
  288. if ((ret = tm2_build_huff_table(ctx, &codes)) < 0)
  289. return ret;
  290. bytestream2_skip(&gb, ((bitstream_tell(&ctx->bc) + 31) >> 5) << 2);
  291. toks >>= 1;
  292. /* check if we have sane number of tokens */
  293. if ((toks < 0) || (toks > 0xFFFFFF)) {
  294. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  295. tm2_free_codes(&codes);
  296. return AVERROR_INVALIDDATA;
  297. }
  298. ctx->tokens[stream_id] = av_realloc(ctx->tokens[stream_id], toks * sizeof(int));
  299. ctx->tok_lens[stream_id] = toks;
  300. len = bytestream2_get_be32(&gb);
  301. if (len > 0) {
  302. pos = bytestream2_tell(&gb);
  303. if (skip <= pos)
  304. return AVERROR_INVALIDDATA;
  305. bitstream_init8(&ctx->bc, buf + pos, skip - pos);
  306. for (i = 0; i < toks; i++) {
  307. if (bitstream_bits_left(&ctx->bc) <= 0) {
  308. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  309. return AVERROR_INVALIDDATA;
  310. }
  311. ctx->tokens[stream_id][i] = tm2_get_token(&ctx->bc, &codes);
  312. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  313. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  314. ctx->tokens[stream_id][i], stream_id, i);
  315. return AVERROR_INVALIDDATA;
  316. }
  317. }
  318. } else {
  319. for (i = 0; i < toks; i++) {
  320. ctx->tokens[stream_id][i] = codes.recode[0];
  321. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  322. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  323. ctx->tokens[stream_id][i], stream_id, i);
  324. return AVERROR_INVALIDDATA;
  325. }
  326. }
  327. }
  328. tm2_free_codes(&codes);
  329. return skip;
  330. }
  331. static inline int GET_TOK(TM2Context *ctx,int type)
  332. {
  333. if (ctx->tok_ptrs[type] >= ctx->tok_lens[type]) {
  334. av_log(ctx->avctx, AV_LOG_ERROR, "Read token from stream %i out of bounds (%i>=%i)\n", type, ctx->tok_ptrs[type], ctx->tok_lens[type]);
  335. return 0;
  336. }
  337. if (type <= TM2_MOT)
  338. return ctx->deltas[type][ctx->tokens[type][ctx->tok_ptrs[type]++]];
  339. return ctx->tokens[type][ctx->tok_ptrs[type]++];
  340. }
  341. /* blocks decoding routines */
  342. /* common Y, U, V pointers initialisation */
  343. #define TM2_INIT_POINTERS() \
  344. int *last, *clast; \
  345. int *Y, *U, *V;\
  346. int Ystride, Ustride, Vstride;\
  347. \
  348. Ystride = ctx->y_stride;\
  349. Vstride = ctx->uv_stride;\
  350. Ustride = ctx->uv_stride;\
  351. Y = (ctx->cur?ctx->Y2:ctx->Y1) + by * 4 * Ystride + bx * 4;\
  352. V = (ctx->cur?ctx->V2:ctx->V1) + by * 2 * Vstride + bx * 2;\
  353. U = (ctx->cur?ctx->U2:ctx->U1) + by * 2 * Ustride + bx * 2;\
  354. last = ctx->last + bx * 4;\
  355. clast = ctx->clast + bx * 4;
  356. #define TM2_INIT_POINTERS_2() \
  357. int *Yo, *Uo, *Vo;\
  358. int oYstride, oUstride, oVstride;\
  359. \
  360. TM2_INIT_POINTERS();\
  361. oYstride = Ystride;\
  362. oVstride = Vstride;\
  363. oUstride = Ustride;\
  364. Yo = (ctx->cur?ctx->Y1:ctx->Y2) + by * 4 * oYstride + bx * 4;\
  365. Vo = (ctx->cur?ctx->V1:ctx->V2) + by * 2 * oVstride + bx * 2;\
  366. Uo = (ctx->cur?ctx->U1:ctx->U2) + by * 2 * oUstride + bx * 2;
  367. /* recalculate last and delta values for next blocks */
  368. #define TM2_RECALC_BLOCK(CHR, stride, last, CD) {\
  369. CD[0] = CHR[1] - last[1];\
  370. CD[1] = (int)CHR[stride + 1] - (int)CHR[1];\
  371. last[0] = (int)CHR[stride + 0];\
  372. last[1] = (int)CHR[stride + 1];}
  373. /* common operations - add deltas to 4x4 block of luma or 2x2 blocks of chroma */
  374. static inline void tm2_apply_deltas(TM2Context *ctx, int* Y, int stride, int *deltas, int *last)
  375. {
  376. int ct, d;
  377. int i, j;
  378. for (j = 0; j < 4; j++){
  379. ct = ctx->D[j];
  380. for (i = 0; i < 4; i++){
  381. d = deltas[i + j * 4];
  382. ct += d;
  383. last[i] += ct;
  384. Y[i] = av_clip_uint8(last[i]);
  385. }
  386. Y += stride;
  387. ctx->D[j] = ct;
  388. }
  389. }
  390. static inline void tm2_high_chroma(int *data, int stride, int *last, int *CD, int *deltas)
  391. {
  392. int i, j;
  393. for (j = 0; j < 2; j++) {
  394. for (i = 0; i < 2; i++) {
  395. CD[j] += deltas[i + j * 2];
  396. last[i] += CD[j];
  397. data[i] = last[i];
  398. }
  399. data += stride;
  400. }
  401. }
  402. static inline void tm2_low_chroma(int *data, int stride, int *clast, int *CD, int *deltas, int bx)
  403. {
  404. int t;
  405. int l;
  406. int prev;
  407. if (bx > 0)
  408. prev = clast[-3];
  409. else
  410. prev = 0;
  411. t = (CD[0] + CD[1]) >> 1;
  412. l = (prev - CD[0] - CD[1] + clast[1]) >> 1;
  413. CD[1] = CD[0] + CD[1] - t;
  414. CD[0] = t;
  415. clast[0] = l;
  416. tm2_high_chroma(data, stride, clast, CD, deltas);
  417. }
  418. static inline void tm2_hi_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  419. {
  420. int i;
  421. int deltas[16];
  422. TM2_INIT_POINTERS();
  423. /* hi-res chroma */
  424. for (i = 0; i < 4; i++) {
  425. deltas[i] = GET_TOK(ctx, TM2_C_HI);
  426. deltas[i + 4] = GET_TOK(ctx, TM2_C_HI);
  427. }
  428. tm2_high_chroma(U, Ustride, clast, ctx->CD, deltas);
  429. tm2_high_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas + 4);
  430. /* hi-res luma */
  431. for (i = 0; i < 16; i++)
  432. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  433. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  434. }
  435. static inline void tm2_med_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  436. {
  437. int i;
  438. int deltas[16];
  439. TM2_INIT_POINTERS();
  440. /* low-res chroma */
  441. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  442. deltas[1] = deltas[2] = deltas[3] = 0;
  443. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  444. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  445. deltas[1] = deltas[2] = deltas[3] = 0;
  446. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  447. /* hi-res luma */
  448. for (i = 0; i < 16; i++)
  449. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  450. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  451. }
  452. static inline void tm2_low_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  453. {
  454. int i;
  455. int t1, t2;
  456. int deltas[16];
  457. TM2_INIT_POINTERS();
  458. /* low-res chroma */
  459. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  460. deltas[1] = deltas[2] = deltas[3] = 0;
  461. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  462. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  463. deltas[1] = deltas[2] = deltas[3] = 0;
  464. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  465. /* low-res luma */
  466. for (i = 0; i < 16; i++)
  467. deltas[i] = 0;
  468. deltas[ 0] = GET_TOK(ctx, TM2_L_LO);
  469. deltas[ 2] = GET_TOK(ctx, TM2_L_LO);
  470. deltas[ 8] = GET_TOK(ctx, TM2_L_LO);
  471. deltas[10] = GET_TOK(ctx, TM2_L_LO);
  472. if (bx > 0)
  473. last[0] = (last[-1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3] + last[1]) >> 1;
  474. else
  475. last[0] = (last[1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3])>> 1;
  476. last[2] = (last[1] + last[3]) >> 1;
  477. t1 = ctx->D[0] + ctx->D[1];
  478. ctx->D[0] = t1 >> 1;
  479. ctx->D[1] = t1 - (t1 >> 1);
  480. t2 = ctx->D[2] + ctx->D[3];
  481. ctx->D[2] = t2 >> 1;
  482. ctx->D[3] = t2 - (t2 >> 1);
  483. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  484. }
  485. static inline void tm2_null_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  486. {
  487. int i;
  488. int ct;
  489. int left, right, diff;
  490. int deltas[16];
  491. TM2_INIT_POINTERS();
  492. /* null chroma */
  493. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  494. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  495. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  496. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  497. /* null luma */
  498. for (i = 0; i < 16; i++)
  499. deltas[i] = 0;
  500. ct = ctx->D[0] + ctx->D[1] + ctx->D[2] + ctx->D[3];
  501. if (bx > 0)
  502. left = last[-1] - ct;
  503. else
  504. left = 0;
  505. right = last[3];
  506. diff = right - left;
  507. last[0] = left + (diff >> 2);
  508. last[1] = left + (diff >> 1);
  509. last[2] = right - (diff >> 2);
  510. last[3] = right;
  511. {
  512. int tp = left;
  513. ctx->D[0] = (tp + (ct >> 2)) - left;
  514. left += ctx->D[0];
  515. ctx->D[1] = (tp + (ct >> 1)) - left;
  516. left += ctx->D[1];
  517. ctx->D[2] = ((tp + ct) - (ct >> 2)) - left;
  518. left += ctx->D[2];
  519. ctx->D[3] = (tp + ct) - left;
  520. }
  521. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  522. }
  523. static inline void tm2_still_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  524. {
  525. int i, j;
  526. TM2_INIT_POINTERS_2();
  527. /* update chroma */
  528. for (j = 0; j < 2; j++) {
  529. for (i = 0; i < 2; i++){
  530. U[i] = Uo[i];
  531. V[i] = Vo[i];
  532. }
  533. U += Ustride; V += Vstride;
  534. Uo += oUstride; Vo += oVstride;
  535. }
  536. U -= Ustride * 2;
  537. V -= Vstride * 2;
  538. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  539. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  540. /* update deltas */
  541. ctx->D[0] = Yo[3] - last[3];
  542. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  543. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  544. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  545. for (j = 0; j < 4; j++) {
  546. for (i = 0; i < 4; i++) {
  547. Y[i] = Yo[i];
  548. last[i] = Yo[i];
  549. }
  550. Y += Ystride;
  551. Yo += oYstride;
  552. }
  553. }
  554. static inline void tm2_update_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  555. {
  556. int i, j;
  557. int d;
  558. TM2_INIT_POINTERS_2();
  559. /* update chroma */
  560. for (j = 0; j < 2; j++) {
  561. for (i = 0; i < 2; i++) {
  562. U[i] = Uo[i] + GET_TOK(ctx, TM2_UPD);
  563. V[i] = Vo[i] + GET_TOK(ctx, TM2_UPD);
  564. }
  565. U += Ustride;
  566. V += Vstride;
  567. Uo += oUstride;
  568. Vo += oVstride;
  569. }
  570. U -= Ustride * 2;
  571. V -= Vstride * 2;
  572. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  573. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  574. /* update deltas */
  575. ctx->D[0] = Yo[3] - last[3];
  576. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  577. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  578. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  579. for (j = 0; j < 4; j++) {
  580. d = last[3];
  581. for (i = 0; i < 4; i++) {
  582. Y[i] = Yo[i] + GET_TOK(ctx, TM2_UPD);
  583. last[i] = Y[i];
  584. }
  585. ctx->D[j] = last[3] - d;
  586. Y += Ystride;
  587. Yo += oYstride;
  588. }
  589. }
  590. static inline void tm2_motion_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  591. {
  592. int i, j;
  593. int mx, my;
  594. TM2_INIT_POINTERS_2();
  595. mx = GET_TOK(ctx, TM2_MOT);
  596. my = GET_TOK(ctx, TM2_MOT);
  597. mx = av_clip(mx, -(bx * 4 + 4), ctx->avctx->width - bx * 4);
  598. my = av_clip(my, -(by * 4 + 4), ctx->avctx->height - by * 4);
  599. Yo += my * oYstride + mx;
  600. Uo += (my >> 1) * oUstride + (mx >> 1);
  601. Vo += (my >> 1) * oVstride + (mx >> 1);
  602. /* copy chroma */
  603. for (j = 0; j < 2; j++) {
  604. for (i = 0; i < 2; i++) {
  605. U[i] = Uo[i];
  606. V[i] = Vo[i];
  607. }
  608. U += Ustride;
  609. V += Vstride;
  610. Uo += oUstride;
  611. Vo += oVstride;
  612. }
  613. U -= Ustride * 2;
  614. V -= Vstride * 2;
  615. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  616. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  617. /* copy luma */
  618. for (j = 0; j < 4; j++) {
  619. for (i = 0; i < 4; i++) {
  620. Y[i] = Yo[i];
  621. }
  622. Y += Ystride;
  623. Yo += oYstride;
  624. }
  625. /* calculate deltas */
  626. Y -= Ystride * 4;
  627. ctx->D[0] = Y[3] - last[3];
  628. ctx->D[1] = Y[3 + Ystride] - Y[3];
  629. ctx->D[2] = Y[3 + Ystride * 2] - Y[3 + Ystride];
  630. ctx->D[3] = Y[3 + Ystride * 3] - Y[3 + Ystride * 2];
  631. for (i = 0; i < 4; i++)
  632. last[i] = Y[i + Ystride * 3];
  633. }
  634. static int tm2_decode_blocks(TM2Context *ctx, AVFrame *p)
  635. {
  636. int i, j;
  637. int w = ctx->avctx->width, h = ctx->avctx->height, bw = w >> 2, bh = h >> 2, cw = w >> 1;
  638. int type;
  639. int keyframe = 1;
  640. int *Y, *U, *V;
  641. uint8_t *dst;
  642. for (i = 0; i < TM2_NUM_STREAMS; i++)
  643. ctx->tok_ptrs[i] = 0;
  644. if (ctx->tok_lens[TM2_TYPE]<bw*bh) {
  645. av_log(ctx->avctx,AV_LOG_ERROR,"Got %i tokens for %i blocks\n",ctx->tok_lens[TM2_TYPE],bw*bh);
  646. return AVERROR_INVALIDDATA;
  647. }
  648. memset(ctx->last, 0, 4 * bw * sizeof(int));
  649. memset(ctx->clast, 0, 4 * bw * sizeof(int));
  650. for (j = 0; j < bh; j++) {
  651. memset(ctx->D, 0, 4 * sizeof(int));
  652. memset(ctx->CD, 0, 4 * sizeof(int));
  653. for (i = 0; i < bw; i++) {
  654. type = GET_TOK(ctx, TM2_TYPE);
  655. switch(type) {
  656. case TM2_HI_RES:
  657. tm2_hi_res_block(ctx, p, i, j);
  658. break;
  659. case TM2_MED_RES:
  660. tm2_med_res_block(ctx, p, i, j);
  661. break;
  662. case TM2_LOW_RES:
  663. tm2_low_res_block(ctx, p, i, j);
  664. break;
  665. case TM2_NULL_RES:
  666. tm2_null_res_block(ctx, p, i, j);
  667. break;
  668. case TM2_UPDATE:
  669. tm2_update_block(ctx, p, i, j);
  670. keyframe = 0;
  671. break;
  672. case TM2_STILL:
  673. tm2_still_block(ctx, p, i, j);
  674. keyframe = 0;
  675. break;
  676. case TM2_MOTION:
  677. tm2_motion_block(ctx, p, i, j);
  678. keyframe = 0;
  679. break;
  680. default:
  681. av_log(ctx->avctx, AV_LOG_ERROR, "Skipping unknown block type %i\n", type);
  682. }
  683. }
  684. }
  685. /* copy data from our buffer to AVFrame */
  686. Y = (ctx->cur?ctx->Y2:ctx->Y1);
  687. U = (ctx->cur?ctx->U2:ctx->U1);
  688. V = (ctx->cur?ctx->V2:ctx->V1);
  689. dst = p->data[0];
  690. for (j = 0; j < h; j++) {
  691. for (i = 0; i < w; i++) {
  692. int y = Y[i], u = U[i >> 1], v = V[i >> 1];
  693. dst[3*i+0] = av_clip_uint8(y + v);
  694. dst[3*i+1] = av_clip_uint8(y);
  695. dst[3*i+2] = av_clip_uint8(y + u);
  696. }
  697. /* horizontal edge extension */
  698. Y[-4] = Y[-3] = Y[-2] = Y[-1] = Y[0];
  699. Y[w + 3] = Y[w + 2] = Y[w + 1] = Y[w] = Y[w - 1];
  700. /* vertical edge extension */
  701. if (j == 0) {
  702. memcpy(Y - 4 - 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  703. memcpy(Y - 4 - 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  704. memcpy(Y - 4 - 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  705. memcpy(Y - 4 - 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  706. } else if (j == h - 1) {
  707. memcpy(Y - 4 + 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  708. memcpy(Y - 4 + 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  709. memcpy(Y - 4 + 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  710. memcpy(Y - 4 + 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  711. }
  712. Y += ctx->y_stride;
  713. if (j & 1) {
  714. /* horizontal edge extension */
  715. U[-2] = U[-1] = U[0];
  716. V[-2] = V[-1] = V[0];
  717. U[cw + 1] = U[cw] = U[cw - 1];
  718. V[cw + 1] = V[cw] = V[cw - 1];
  719. /* vertical edge extension */
  720. if (j == 1) {
  721. memcpy(U - 2 - 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  722. memcpy(V - 2 - 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  723. memcpy(U - 2 - 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  724. memcpy(V - 2 - 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  725. } else if (j == h - 1) {
  726. memcpy(U - 2 + 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  727. memcpy(V - 2 + 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  728. memcpy(U - 2 + 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  729. memcpy(V - 2 + 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  730. }
  731. U += ctx->uv_stride;
  732. V += ctx->uv_stride;
  733. }
  734. dst += p->linesize[0];
  735. }
  736. return keyframe;
  737. }
  738. static const int tm2_stream_order[TM2_NUM_STREAMS] = {
  739. TM2_C_HI, TM2_C_LO, TM2_L_HI, TM2_L_LO, TM2_UPD, TM2_MOT, TM2_TYPE
  740. };
  741. #define TM2_HEADER_SIZE 40
  742. static int decode_frame(AVCodecContext *avctx,
  743. void *data, int *got_frame,
  744. AVPacket *avpkt)
  745. {
  746. TM2Context * const l = avctx->priv_data;
  747. const uint8_t *buf = avpkt->data;
  748. int buf_size = avpkt->size & ~3;
  749. AVFrame * const p = l->pic;
  750. int offset = TM2_HEADER_SIZE;
  751. int i, t, ret;
  752. uint8_t *swbuf;
  753. swbuf = av_malloc(buf_size + AV_INPUT_BUFFER_PADDING_SIZE);
  754. if (!swbuf) {
  755. av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
  756. return AVERROR(ENOMEM);
  757. }
  758. if ((ret = ff_reget_buffer(avctx, p)) < 0) {
  759. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  760. av_free(swbuf);
  761. return ret;
  762. }
  763. l->bdsp.bswap_buf((uint32_t *) swbuf, (const uint32_t *) buf,
  764. buf_size >> 2);
  765. if ((ret = tm2_read_header(l, swbuf)) < 0) {
  766. av_free(swbuf);
  767. return ret;
  768. }
  769. for (i = 0; i < TM2_NUM_STREAMS; i++) {
  770. if (offset >= buf_size) {
  771. av_free(swbuf);
  772. return AVERROR_INVALIDDATA;
  773. }
  774. t = tm2_read_stream(l, swbuf + offset, tm2_stream_order[i],
  775. buf_size - offset);
  776. if (t < 0) {
  777. av_free(swbuf);
  778. return t;
  779. }
  780. offset += t;
  781. }
  782. p->key_frame = tm2_decode_blocks(l, p);
  783. if (p->key_frame)
  784. p->pict_type = AV_PICTURE_TYPE_I;
  785. else
  786. p->pict_type = AV_PICTURE_TYPE_P;
  787. l->cur = !l->cur;
  788. *got_frame = 1;
  789. ret = av_frame_ref(data, l->pic);
  790. av_free(swbuf);
  791. return (ret < 0) ? ret : buf_size;
  792. }
  793. static av_cold int decode_init(AVCodecContext *avctx)
  794. {
  795. TM2Context * const l = avctx->priv_data;
  796. int i, w = avctx->width, h = avctx->height;
  797. if ((avctx->width & 3) || (avctx->height & 3)) {
  798. av_log(avctx, AV_LOG_ERROR, "Width and height must be multiple of 4\n");
  799. return AVERROR(EINVAL);
  800. }
  801. l->avctx = avctx;
  802. avctx->pix_fmt = AV_PIX_FMT_BGR24;
  803. l->pic = av_frame_alloc();
  804. if (!l->pic)
  805. return AVERROR(ENOMEM);
  806. ff_bswapdsp_init(&l->bdsp);
  807. l->last = av_malloc(4 * sizeof(*l->last) * (w >> 2));
  808. l->clast = av_malloc(4 * sizeof(*l->clast) * (w >> 2));
  809. for (i = 0; i < TM2_NUM_STREAMS; i++) {
  810. l->tokens[i] = NULL;
  811. l->tok_lens[i] = 0;
  812. }
  813. w += 8;
  814. h += 8;
  815. l->Y1_base = av_malloc(sizeof(*l->Y1_base) * w * h);
  816. l->Y2_base = av_malloc(sizeof(*l->Y2_base) * w * h);
  817. l->y_stride = w;
  818. w = (w + 1) >> 1;
  819. h = (h + 1) >> 1;
  820. l->U1_base = av_malloc(sizeof(*l->U1_base) * w * h);
  821. l->V1_base = av_malloc(sizeof(*l->V1_base) * w * h);
  822. l->U2_base = av_malloc(sizeof(*l->U2_base) * w * h);
  823. l->V2_base = av_malloc(sizeof(*l->V1_base) * w * h);
  824. l->uv_stride = w;
  825. l->cur = 0;
  826. if (!l->Y1_base || !l->Y2_base || !l->U1_base ||
  827. !l->V1_base || !l->U2_base || !l->V2_base ||
  828. !l->last || !l->clast) {
  829. av_freep(&l->Y1_base);
  830. av_freep(&l->Y2_base);
  831. av_freep(&l->U1_base);
  832. av_freep(&l->U2_base);
  833. av_freep(&l->V1_base);
  834. av_freep(&l->V2_base);
  835. av_freep(&l->last);
  836. av_freep(&l->clast);
  837. return AVERROR(ENOMEM);
  838. }
  839. l->Y1 = l->Y1_base + l->y_stride * 4 + 4;
  840. l->Y2 = l->Y2_base + l->y_stride * 4 + 4;
  841. l->U1 = l->U1_base + l->uv_stride * 2 + 2;
  842. l->U2 = l->U2_base + l->uv_stride * 2 + 2;
  843. l->V1 = l->V1_base + l->uv_stride * 2 + 2;
  844. l->V2 = l->V2_base + l->uv_stride * 2 + 2;
  845. return 0;
  846. }
  847. static av_cold int decode_end(AVCodecContext *avctx)
  848. {
  849. TM2Context * const l = avctx->priv_data;
  850. int i;
  851. av_free(l->last);
  852. av_free(l->clast);
  853. for (i = 0; i < TM2_NUM_STREAMS; i++)
  854. av_free(l->tokens[i]);
  855. if (l->Y1) {
  856. av_free(l->Y1_base);
  857. av_free(l->U1_base);
  858. av_free(l->V1_base);
  859. av_free(l->Y2_base);
  860. av_free(l->U2_base);
  861. av_free(l->V2_base);
  862. }
  863. av_frame_free(&l->pic);
  864. return 0;
  865. }
  866. AVCodec ff_truemotion2_decoder = {
  867. .name = "truemotion2",
  868. .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 2.0"),
  869. .type = AVMEDIA_TYPE_VIDEO,
  870. .id = AV_CODEC_ID_TRUEMOTION2,
  871. .priv_data_size = sizeof(TM2Context),
  872. .init = decode_init,
  873. .close = decode_end,
  874. .decode = decode_frame,
  875. .capabilities = AV_CODEC_CAP_DR1,
  876. };