You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1520 lines
44KB

  1. /*
  2. * This file is part of Libav.
  3. *
  4. * Libav is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2.1 of the License, or (at your option) any later version.
  8. *
  9. * Libav is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with Libav; if not, write to the Free Software
  16. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "libavutil/attributes.h"
  19. #include "libavutil/avassert.h"
  20. #include "bytestream.h"
  21. #include "cbs.h"
  22. #include "cbs_internal.h"
  23. #include "cbs_h264.h"
  24. #include "cbs_h265.h"
  25. #include "golomb.h"
  26. #include "h264.h"
  27. #include "h264_sei.h"
  28. #include "h2645_parse.h"
  29. #include "hevc.h"
  30. static int cbs_read_ue_golomb(CodedBitstreamContext *ctx, BitstreamContext *bc,
  31. const char *name, uint32_t *write_to,
  32. uint32_t range_min, uint32_t range_max)
  33. {
  34. uint32_t value;
  35. int position, i, j;
  36. unsigned int k;
  37. char bits[65];
  38. position = bitstream_tell(bc);
  39. for (i = 0; i < 32; i++) {
  40. if (bitstream_bits_left(bc) < i + 1) {
  41. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid ue-golomb code at "
  42. "%s: bitstream ended.\n", name);
  43. return AVERROR_INVALIDDATA;
  44. }
  45. k = bitstream_read_bit(bc);
  46. bits[i] = k ? '1' : '0';
  47. if (k)
  48. break;
  49. }
  50. if (i >= 32) {
  51. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid ue-golomb code at "
  52. "%s: more than 31 zeroes.\n", name);
  53. return AVERROR_INVALIDDATA;
  54. }
  55. value = 1;
  56. for (j = 0; j < i; j++) {
  57. k = bitstream_read_bit(bc);
  58. bits[i + j + 1] = k ? '1' : '0';
  59. value = value << 1 | k;
  60. }
  61. bits[i + j + 1] = 0;
  62. --value;
  63. if (ctx->trace_enable)
  64. ff_cbs_trace_syntax_element(ctx, position, name, bits, value);
  65. if (value < range_min || value > range_max) {
  66. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  67. "%"PRIu32", but must be in [%"PRIu32",%"PRIu32"].\n",
  68. name, value, range_min, range_max);
  69. return AVERROR_INVALIDDATA;
  70. }
  71. *write_to = value;
  72. return 0;
  73. }
  74. static int cbs_read_se_golomb(CodedBitstreamContext *ctx, BitstreamContext *bc,
  75. const char *name, int32_t *write_to,
  76. int32_t range_min, int32_t range_max)
  77. {
  78. int32_t value;
  79. int position, i, j;
  80. unsigned int k;
  81. uint32_t v;
  82. char bits[65];
  83. position = bitstream_tell(bc);
  84. for (i = 0; i < 32; i++) {
  85. if (bitstream_bits_left(bc) < i + 1) {
  86. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid se-golomb code at "
  87. "%s: bitstream ended.\n", name);
  88. return AVERROR_INVALIDDATA;
  89. }
  90. k = bitstream_read_bit(bc);
  91. bits[i] = k ? '1' : '0';
  92. if (k)
  93. break;
  94. }
  95. if (i >= 32) {
  96. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid se-golomb code at "
  97. "%s: more than 31 zeroes.\n", name);
  98. return AVERROR_INVALIDDATA;
  99. }
  100. v = 1;
  101. for (j = 0; j < i; j++) {
  102. k = bitstream_read_bit(bc);
  103. bits[i + j + 1] = k ? '1' : '0';
  104. v = v << 1 | k;
  105. }
  106. bits[i + j + 1] = 0;
  107. if (v & 1)
  108. value = -(int32_t)(v / 2);
  109. else
  110. value = v / 2;
  111. if (ctx->trace_enable)
  112. ff_cbs_trace_syntax_element(ctx, position, name, bits, value);
  113. if (value < range_min || value > range_max) {
  114. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  115. "%"PRId32", but must be in [%"PRId32",%"PRId32"].\n",
  116. name, value, range_min, range_max);
  117. return AVERROR_INVALIDDATA;
  118. }
  119. *write_to = value;
  120. return 0;
  121. }
  122. static int cbs_write_ue_golomb(CodedBitstreamContext *ctx, PutBitContext *pbc,
  123. const char *name, uint32_t value,
  124. uint32_t range_min, uint32_t range_max)
  125. {
  126. int len;
  127. if (value < range_min || value > range_max) {
  128. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  129. "%"PRIu32", but must be in [%"PRIu32",%"PRIu32"].\n",
  130. name, value, range_min, range_max);
  131. return AVERROR_INVALIDDATA;
  132. }
  133. av_assert0(value != UINT32_MAX);
  134. len = av_log2(value + 1);
  135. if (put_bits_left(pbc) < 2 * len + 1)
  136. return AVERROR(ENOSPC);
  137. if (ctx->trace_enable) {
  138. char bits[65];
  139. int i;
  140. for (i = 0; i < len; i++)
  141. bits[i] = '0';
  142. bits[len] = '1';
  143. for (i = 0; i < len; i++)
  144. bits[len + i + 1] = (value + 1) >> (len - i - 1) & 1 ? '1' : '0';
  145. bits[len + len + 1] = 0;
  146. ff_cbs_trace_syntax_element(ctx, put_bits_count(pbc), name, bits, value);
  147. }
  148. put_bits(pbc, len, 0);
  149. if (len + 1 < 32)
  150. put_bits(pbc, len + 1, value + 1);
  151. else
  152. put_bits32(pbc, value + 1);
  153. return 0;
  154. }
  155. static int cbs_write_se_golomb(CodedBitstreamContext *ctx, PutBitContext *pbc,
  156. const char *name, int32_t value,
  157. int32_t range_min, int32_t range_max)
  158. {
  159. int len;
  160. uint32_t uvalue;
  161. if (value < range_min || value > range_max) {
  162. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  163. "%"PRId32", but must be in [%"PRId32",%"PRId32"].\n",
  164. name, value, range_min, range_max);
  165. return AVERROR_INVALIDDATA;
  166. }
  167. av_assert0(value != INT32_MIN);
  168. if (value == 0)
  169. uvalue = 0;
  170. else if (value > 0)
  171. uvalue = 2 * (uint32_t)value - 1;
  172. else
  173. uvalue = 2 * (uint32_t)-value;
  174. len = av_log2(uvalue + 1);
  175. if (put_bits_left(pbc) < 2 * len + 1)
  176. return AVERROR(ENOSPC);
  177. if (ctx->trace_enable) {
  178. char bits[65];
  179. int i;
  180. for (i = 0; i < len; i++)
  181. bits[i] = '0';
  182. bits[len] = '1';
  183. for (i = 0; i < len; i++)
  184. bits[len + i + 1] = (uvalue + 1) >> (len - i - 1) & 1 ? '1' : '0';
  185. bits[len + len + 1] = 0;
  186. ff_cbs_trace_syntax_element(ctx, put_bits_count(pbc), name, bits, value);
  187. }
  188. put_bits(pbc, len, 0);
  189. if (len + 1 < 32)
  190. put_bits(pbc, len + 1, uvalue + 1);
  191. else
  192. put_bits32(pbc, uvalue + 1);
  193. return 0;
  194. }
  195. #define HEADER(name) do { \
  196. ff_cbs_trace_header(ctx, name); \
  197. } while (0)
  198. #define CHECK(call) do { \
  199. err = (call); \
  200. if (err < 0) \
  201. return err; \
  202. } while (0)
  203. #define FUNC_NAME(rw, codec, name) cbs_ ## codec ## _ ## rw ## _ ## name
  204. #define FUNC_H264(rw, name) FUNC_NAME(rw, h264, name)
  205. #define FUNC_H265(rw, name) FUNC_NAME(rw, h265, name)
  206. #define READ
  207. #define READWRITE read
  208. #define RWContext BitstreamContext
  209. #define xu(width, name, var, range_min, range_max) do { \
  210. uint32_t value = range_min; \
  211. CHECK(ff_cbs_read_unsigned(ctx, rw, width, #name, \
  212. &value, range_min, range_max)); \
  213. var = value; \
  214. } while (0)
  215. #define xue(name, var, range_min, range_max) do { \
  216. uint32_t value = range_min; \
  217. CHECK(cbs_read_ue_golomb(ctx, rw, #name, \
  218. &value, range_min, range_max)); \
  219. var = value; \
  220. } while (0)
  221. #define xse(name, var, range_min, range_max) do { \
  222. int32_t value = range_min; \
  223. CHECK(cbs_read_se_golomb(ctx, rw, #name, \
  224. &value, range_min, range_max)); \
  225. var = value; \
  226. } while (0)
  227. #define u(width, name, range_min, range_max) \
  228. xu(width, name, current->name, range_min, range_max)
  229. #define flag(name) u(1, name, 0, 1)
  230. #define ue(name, range_min, range_max) \
  231. xue(name, current->name, range_min, range_max)
  232. #define se(name, range_min, range_max) \
  233. xse(name, current->name, range_min, range_max)
  234. #define infer(name, value) do { \
  235. current->name = value; \
  236. } while (0)
  237. static int cbs_h2645_read_more_rbsp_data(BitstreamContext *bc)
  238. {
  239. int bits_left = bitstream_bits_left(bc);
  240. if (bits_left > 8)
  241. return 1;
  242. if (bitstream_peek(bc, bits_left) == 1 << (bits_left - 1))
  243. return 0;
  244. return 1;
  245. }
  246. #define more_rbsp_data(var) ((var) = cbs_h2645_read_more_rbsp_data(rw))
  247. #define byte_alignment(rw) (bitstream_tell(rw) % 8)
  248. #define allocate(name, size) do { \
  249. name ## _ref = av_buffer_allocz(size); \
  250. if (!name ## _ref) \
  251. return AVERROR(ENOMEM); \
  252. name = name ## _ref->data; \
  253. } while (0)
  254. #define FUNC(name) FUNC_H264(READWRITE, name)
  255. #include "cbs_h264_syntax_template.c"
  256. #undef FUNC
  257. #define FUNC(name) FUNC_H265(READWRITE, name)
  258. #include "cbs_h265_syntax_template.c"
  259. #undef FUNC
  260. #undef READ
  261. #undef READWRITE
  262. #undef RWContext
  263. #undef xu
  264. #undef xue
  265. #undef xse
  266. #undef u
  267. #undef flag
  268. #undef ue
  269. #undef se
  270. #undef infer
  271. #undef more_rbsp_data
  272. #undef byte_alignment
  273. #undef allocate
  274. #define WRITE
  275. #define READWRITE write
  276. #define RWContext PutBitContext
  277. #define xu(width, name, var, range_min, range_max) do { \
  278. uint32_t value = var; \
  279. CHECK(ff_cbs_write_unsigned(ctx, rw, width, #name, \
  280. value, range_min, range_max)); \
  281. } while (0)
  282. #define xue(name, var, range_min, range_max) do { \
  283. uint32_t value = var; \
  284. CHECK(cbs_write_ue_golomb(ctx, rw, #name, \
  285. value, range_min, range_max)); \
  286. } while (0)
  287. #define xse(name, var, range_min, range_max) do { \
  288. int32_t value = var; \
  289. CHECK(cbs_write_se_golomb(ctx, rw, #name, \
  290. value, range_min, range_max)); \
  291. } while (0)
  292. #define u(width, name, range_min, range_max) \
  293. xu(width, name, current->name, range_min, range_max)
  294. #define flag(name) u(1, name, 0, 1)
  295. #define ue(name, range_min, range_max) \
  296. xue(name, current->name, range_min, range_max)
  297. #define se(name, range_min, range_max) \
  298. xse(name, current->name, range_min, range_max)
  299. #define infer(name, value) do { \
  300. if (current->name != (value)) { \
  301. av_log(ctx->log_ctx, AV_LOG_WARNING, "Warning: " \
  302. "%s does not match inferred value: " \
  303. "%"PRId64", but should be %"PRId64".\n", \
  304. #name, (int64_t)current->name, (int64_t)(value)); \
  305. } \
  306. } while (0)
  307. #define more_rbsp_data(var) (var)
  308. #define byte_alignment(rw) (put_bits_count(rw) % 8)
  309. #define allocate(name, size) do { \
  310. if (!name) { \
  311. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s must be set " \
  312. "for writing.\n", #name); \
  313. return AVERROR_INVALIDDATA; \
  314. } \
  315. } while (0)
  316. #define FUNC(name) FUNC_H264(READWRITE, name)
  317. #include "cbs_h264_syntax_template.c"
  318. #undef FUNC
  319. #define FUNC(name) FUNC_H265(READWRITE, name)
  320. #include "cbs_h265_syntax_template.c"
  321. #undef FUNC
  322. #undef WRITE
  323. #undef READWRITE
  324. #undef RWContext
  325. #undef xu
  326. #undef xue
  327. #undef xse
  328. #undef u
  329. #undef flag
  330. #undef ue
  331. #undef se
  332. #undef infer
  333. #undef more_rbsp_data
  334. #undef byte_alignment
  335. #undef allocate
  336. static void cbs_h264_free_pps(void *unit, uint8_t *content)
  337. {
  338. H264RawPPS *pps = (H264RawPPS*)content;
  339. av_buffer_unref(&pps->slice_group_id_ref);
  340. av_freep(&content);
  341. }
  342. static void cbs_h264_free_sei_payload(H264RawSEIPayload *payload)
  343. {
  344. switch (payload->payload_type) {
  345. case H264_SEI_TYPE_BUFFERING_PERIOD:
  346. case H264_SEI_TYPE_PIC_TIMING:
  347. case H264_SEI_TYPE_RECOVERY_POINT:
  348. case H264_SEI_TYPE_DISPLAY_ORIENTATION:
  349. break;
  350. case H264_SEI_TYPE_USER_DATA_REGISTERED:
  351. av_buffer_unref(&payload->payload.user_data_registered.data_ref);
  352. break;
  353. case H264_SEI_TYPE_USER_DATA_UNREGISTERED:
  354. av_buffer_unref(&payload->payload.user_data_unregistered.data_ref);
  355. break;
  356. default:
  357. av_buffer_unref(&payload->payload.other.data_ref);
  358. break;
  359. }
  360. }
  361. static void cbs_h264_free_sei(void *unit, uint8_t *content)
  362. {
  363. H264RawSEI *sei = (H264RawSEI*)content;
  364. int i;
  365. for (i = 0; i < sei->payload_count; i++)
  366. cbs_h264_free_sei_payload(&sei->payload[i]);
  367. av_freep(&content);
  368. }
  369. static void cbs_h264_free_slice(void *unit, uint8_t *content)
  370. {
  371. H264RawSlice *slice = (H264RawSlice*)content;
  372. av_buffer_unref(&slice->data_ref);
  373. av_freep(&content);
  374. }
  375. static void cbs_h265_free_vps(void *unit, uint8_t *content)
  376. {
  377. H265RawVPS *vps = (H265RawVPS*)content;
  378. av_buffer_unref(&vps->extension_data.data_ref);
  379. av_freep(&content);
  380. }
  381. static void cbs_h265_free_sps(void *unit, uint8_t *content)
  382. {
  383. H265RawSPS *sps = (H265RawSPS*)content;
  384. av_buffer_unref(&sps->extension_data.data_ref);
  385. av_freep(&content);
  386. }
  387. static void cbs_h265_free_pps(void *unit, uint8_t *content)
  388. {
  389. H265RawPPS *pps = (H265RawPPS*)content;
  390. av_buffer_unref(&pps->extension_data.data_ref);
  391. av_freep(&content);
  392. }
  393. static void cbs_h265_free_slice(void *unit, uint8_t *content)
  394. {
  395. H265RawSlice *slice = (H265RawSlice*)content;
  396. av_buffer_unref(&slice->data_ref);
  397. av_freep(&content);
  398. }
  399. static int cbs_h2645_fragment_add_nals(CodedBitstreamContext *ctx,
  400. CodedBitstreamFragment *frag,
  401. const H2645Packet *packet)
  402. {
  403. int err, i;
  404. for (i = 0; i < packet->nb_nals; i++) {
  405. const H2645NAL *nal = &packet->nals[i];
  406. size_t size = nal->size;
  407. uint8_t *data;
  408. // Remove trailing zeroes.
  409. while (size > 0 && nal->data[size - 1] == 0)
  410. --size;
  411. av_assert0(size > 0);
  412. data = av_malloc(size + AV_INPUT_BUFFER_PADDING_SIZE);
  413. if (!data)
  414. return AVERROR(ENOMEM);
  415. memcpy(data, nal->data, size);
  416. memset(data + size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  417. err = ff_cbs_insert_unit_data(ctx, frag, -1, nal->type,
  418. data, nal->size, NULL);
  419. if (err < 0) {
  420. av_freep(&data);
  421. return err;
  422. }
  423. }
  424. return 0;
  425. }
  426. static int cbs_h2645_split_fragment(CodedBitstreamContext *ctx,
  427. CodedBitstreamFragment *frag,
  428. int header)
  429. {
  430. enum AVCodecID codec_id = ctx->codec->codec_id;
  431. CodedBitstreamH2645Context *priv = ctx->priv_data;
  432. GetByteContext gbc;
  433. int err;
  434. av_assert0(frag->data && frag->nb_units == 0);
  435. if (frag->data_size == 0)
  436. return 0;
  437. if (header && frag->data[0] && codec_id == AV_CODEC_ID_H264) {
  438. // AVCC header.
  439. size_t size, start, end;
  440. int i, count, version;
  441. priv->mp4 = 1;
  442. bytestream2_init(&gbc, frag->data, frag->data_size);
  443. if (bytestream2_get_bytes_left(&gbc) < 6)
  444. return AVERROR_INVALIDDATA;
  445. version = bytestream2_get_byte(&gbc);
  446. if (version != 1) {
  447. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid AVCC header: "
  448. "first byte %u.", version);
  449. return AVERROR_INVALIDDATA;
  450. }
  451. bytestream2_skip(&gbc, 3);
  452. priv->nal_length_size = (bytestream2_get_byte(&gbc) & 3) + 1;
  453. // SPS array.
  454. count = bytestream2_get_byte(&gbc) & 0x1f;
  455. start = bytestream2_tell(&gbc);
  456. for (i = 0; i < count; i++) {
  457. if (bytestream2_get_bytes_left(&gbc) < 2 * (count - i))
  458. return AVERROR_INVALIDDATA;
  459. size = bytestream2_get_be16(&gbc);
  460. if (bytestream2_get_bytes_left(&gbc) < size)
  461. return AVERROR_INVALIDDATA;
  462. bytestream2_skip(&gbc, size);
  463. }
  464. end = bytestream2_tell(&gbc);
  465. err = ff_h2645_packet_split(&priv->read_packet,
  466. frag->data + start, end - start,
  467. ctx->log_ctx, 1, 2, AV_CODEC_ID_H264);
  468. if (err < 0) {
  469. av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split AVCC SPS array.\n");
  470. return err;
  471. }
  472. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  473. if (err < 0)
  474. return err;
  475. // PPS array.
  476. count = bytestream2_get_byte(&gbc);
  477. start = bytestream2_tell(&gbc);
  478. for (i = 0; i < count; i++) {
  479. if (bytestream2_get_bytes_left(&gbc) < 2 * (count - i))
  480. return AVERROR_INVALIDDATA;
  481. size = bytestream2_get_be16(&gbc);
  482. if (bytestream2_get_bytes_left(&gbc) < size)
  483. return AVERROR_INVALIDDATA;
  484. bytestream2_skip(&gbc, size);
  485. }
  486. end = bytestream2_tell(&gbc);
  487. err = ff_h2645_packet_split(&priv->read_packet,
  488. frag->data + start, end - start,
  489. ctx->log_ctx, 1, 2, AV_CODEC_ID_H264);
  490. if (err < 0) {
  491. av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split AVCC PPS array.\n");
  492. return err;
  493. }
  494. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  495. if (err < 0)
  496. return err;
  497. if (bytestream2_get_bytes_left(&gbc) > 0) {
  498. av_log(ctx->log_ctx, AV_LOG_WARNING, "%u bytes left at end of AVCC "
  499. "header.\n", bytestream2_get_bytes_left(&gbc));
  500. }
  501. } else if (header && frag->data[0] && codec_id == AV_CODEC_ID_HEVC) {
  502. // HVCC header.
  503. size_t size, start, end;
  504. int i, j, nb_arrays, nal_unit_type, nb_nals, version;
  505. priv->mp4 = 1;
  506. bytestream2_init(&gbc, frag->data, frag->data_size);
  507. if (bytestream2_get_bytes_left(&gbc) < 23)
  508. return AVERROR_INVALIDDATA;
  509. version = bytestream2_get_byte(&gbc);
  510. if (version != 1) {
  511. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid HVCC header: "
  512. "first byte %u.", version);
  513. return AVERROR_INVALIDDATA;
  514. }
  515. bytestream2_skip(&gbc, 20);
  516. priv->nal_length_size = (bytestream2_get_byte(&gbc) & 3) + 1;
  517. nb_arrays = bytestream2_get_byte(&gbc);
  518. for (i = 0; i < nb_arrays; i++) {
  519. nal_unit_type = bytestream2_get_byte(&gbc) & 0x3f;
  520. nb_nals = bytestream2_get_be16(&gbc);
  521. start = bytestream2_tell(&gbc);
  522. for (j = 0; j < nb_nals; j++) {
  523. if (bytestream2_get_bytes_left(&gbc) < 2)
  524. return AVERROR_INVALIDDATA;
  525. size = bytestream2_get_be16(&gbc);
  526. if (bytestream2_get_bytes_left(&gbc) < size)
  527. return AVERROR_INVALIDDATA;
  528. bytestream2_skip(&gbc, size);
  529. }
  530. end = bytestream2_tell(&gbc);
  531. err = ff_h2645_packet_split(&priv->read_packet,
  532. frag->data + start, end - start,
  533. ctx->log_ctx, 1, 2, AV_CODEC_ID_HEVC);
  534. if (err < 0) {
  535. av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split "
  536. "HVCC array %d (%d NAL units of type %d).\n",
  537. i, nb_nals, nal_unit_type);
  538. return err;
  539. }
  540. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  541. if (err < 0)
  542. return err;
  543. }
  544. } else {
  545. // Annex B, or later MP4 with already-known parameters.
  546. err = ff_h2645_packet_split(&priv->read_packet,
  547. frag->data, frag->data_size,
  548. ctx->log_ctx,
  549. priv->mp4, priv->nal_length_size,
  550. codec_id);
  551. if (err < 0)
  552. return err;
  553. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  554. if (err < 0)
  555. return err;
  556. }
  557. return 0;
  558. }
  559. #define cbs_h2645_replace_ps(h26n, ps_name, ps_var, id_element) \
  560. static int cbs_h26 ## h26n ## _replace_ ## ps_var(CodedBitstreamContext *ctx, \
  561. const H26 ## h26n ## Raw ## ps_name *ps_var) \
  562. { \
  563. CodedBitstreamH26 ## h26n ## Context *priv = ctx->priv_data; \
  564. unsigned int id = ps_var->id_element; \
  565. if (id > FF_ARRAY_ELEMS(priv->ps_var)) { \
  566. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid " #ps_name \
  567. " id : %d.\n", id); \
  568. return AVERROR_INVALIDDATA; \
  569. } \
  570. if (priv->ps_var[id] == priv->active_ ## ps_var) \
  571. priv->active_ ## ps_var = NULL ; \
  572. av_freep(&priv->ps_var[id]); \
  573. priv->ps_var[id] = av_malloc(sizeof(*ps_var)); \
  574. if (!priv->ps_var[id]) \
  575. return AVERROR(ENOMEM); \
  576. memcpy(priv->ps_var[id], ps_var, sizeof(*ps_var)); \
  577. return 0; \
  578. }
  579. cbs_h2645_replace_ps(4, SPS, sps, seq_parameter_set_id)
  580. cbs_h2645_replace_ps(4, PPS, pps, pic_parameter_set_id)
  581. cbs_h2645_replace_ps(5, VPS, vps, vps_video_parameter_set_id)
  582. cbs_h2645_replace_ps(5, SPS, sps, sps_seq_parameter_set_id)
  583. cbs_h2645_replace_ps(5, PPS, pps, pps_pic_parameter_set_id)
  584. static int cbs_h264_read_nal_unit(CodedBitstreamContext *ctx,
  585. CodedBitstreamUnit *unit)
  586. {
  587. BitstreamContext bc;
  588. int err;
  589. err = bitstream_init(&bc, unit->data, 8 * unit->data_size);
  590. if (err < 0)
  591. return err;
  592. switch (unit->type) {
  593. case H264_NAL_SPS:
  594. {
  595. H264RawSPS *sps;
  596. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*sps), NULL);
  597. if (err < 0)
  598. return err;
  599. sps = unit->content;
  600. err = cbs_h264_read_sps(ctx, &bc, sps);
  601. if (err < 0)
  602. return err;
  603. err = cbs_h264_replace_sps(ctx, sps);
  604. if (err < 0)
  605. return err;
  606. }
  607. break;
  608. case H264_NAL_SPS_EXT:
  609. {
  610. err = ff_cbs_alloc_unit_content(ctx, unit,
  611. sizeof(H264RawSPSExtension),
  612. NULL);
  613. if (err < 0)
  614. return err;
  615. err = cbs_h264_read_sps_extension(ctx, &bc, unit->content);
  616. if (err < 0)
  617. return err;
  618. }
  619. break;
  620. case H264_NAL_PPS:
  621. {
  622. H264RawPPS *pps;
  623. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*pps),
  624. &cbs_h264_free_pps);
  625. if (err < 0)
  626. return err;
  627. pps = unit->content;
  628. err = cbs_h264_read_pps(ctx, &bc, pps);
  629. if (err < 0)
  630. return err;
  631. err = cbs_h264_replace_pps(ctx, pps);
  632. if (err < 0)
  633. return err;
  634. }
  635. break;
  636. case H264_NAL_SLICE:
  637. case H264_NAL_IDR_SLICE:
  638. case H264_NAL_AUXILIARY_SLICE:
  639. {
  640. H264RawSlice *slice;
  641. int pos, len;
  642. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*slice),
  643. &cbs_h264_free_slice);
  644. if (err < 0)
  645. return err;
  646. slice = unit->content;
  647. err = cbs_h264_read_slice_header(ctx, &bc, &slice->header);
  648. if (err < 0)
  649. return err;
  650. pos = bitstream_tell(&bc);
  651. len = unit->data_size;
  652. if (!unit->data[len - 1]) {
  653. int z;
  654. for (z = 0; z < len && !unit->data[len - z - 1]; z++);
  655. av_log(ctx->log_ctx, AV_LOG_DEBUG, "Deleted %d trailing zeroes "
  656. "from slice data.\n", z);
  657. len -= z;
  658. }
  659. slice->data_size = len - pos / 8;
  660. slice->data_ref = av_buffer_alloc(slice->data_size +
  661. AV_INPUT_BUFFER_PADDING_SIZE);
  662. if (!slice->data_ref)
  663. return AVERROR(ENOMEM);
  664. slice->data = slice->data_ref->data;
  665. memcpy(slice->data,
  666. unit->data + pos / 8, slice->data_size);
  667. memset(slice->data + slice->data_size, 0,
  668. AV_INPUT_BUFFER_PADDING_SIZE);
  669. slice->data_bit_start = pos % 8;
  670. }
  671. break;
  672. case H264_NAL_AUD:
  673. {
  674. err = ff_cbs_alloc_unit_content(ctx, unit,
  675. sizeof(H264RawAUD), NULL);
  676. if (err < 0)
  677. return err;
  678. err = cbs_h264_read_aud(ctx, &bc, unit->content);
  679. if (err < 0)
  680. return err;
  681. }
  682. break;
  683. case H264_NAL_SEI:
  684. {
  685. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(H264RawSEI),
  686. &cbs_h264_free_sei);
  687. if (err < 0)
  688. return err;
  689. err = cbs_h264_read_sei(ctx, &bc, unit->content);
  690. if (err < 0)
  691. return err;
  692. }
  693. break;
  694. case H264_NAL_FILLER_DATA:
  695. {
  696. err = ff_cbs_alloc_unit_content(ctx, unit,
  697. sizeof(H264RawFiller), NULL);
  698. if (err < 0)
  699. return err;
  700. err = cbs_h264_read_filler(ctx, &bc, unit->content);
  701. if (err < 0)
  702. return err;
  703. }
  704. break;
  705. default:
  706. return AVERROR(ENOSYS);
  707. }
  708. return 0;
  709. }
  710. static int cbs_h265_read_nal_unit(CodedBitstreamContext *ctx,
  711. CodedBitstreamUnit *unit)
  712. {
  713. BitstreamContext bc;
  714. int err;
  715. err = bitstream_init(&bc, unit->data, 8 * unit->data_size);
  716. if (err < 0)
  717. return err;
  718. switch (unit->type) {
  719. case HEVC_NAL_VPS:
  720. {
  721. H265RawVPS *vps;
  722. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*vps),
  723. &cbs_h265_free_vps);
  724. if (err < 0)
  725. return err;
  726. vps = unit->content;
  727. err = cbs_h265_read_vps(ctx, &bc, vps);
  728. if (err < 0)
  729. return err;
  730. err = cbs_h265_replace_vps(ctx, vps);
  731. if (err < 0)
  732. return err;
  733. }
  734. break;
  735. case HEVC_NAL_SPS:
  736. {
  737. H265RawSPS *sps;
  738. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*sps),
  739. &cbs_h265_free_sps);
  740. if (err < 0)
  741. return err;
  742. sps = unit->content;
  743. err = cbs_h265_read_sps(ctx, &bc, sps);
  744. if (err < 0)
  745. return err;
  746. err = cbs_h265_replace_sps(ctx, sps);
  747. if (err < 0)
  748. return err;
  749. }
  750. break;
  751. case HEVC_NAL_PPS:
  752. {
  753. H265RawPPS *pps;
  754. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*pps),
  755. &cbs_h265_free_pps);
  756. if (err < 0)
  757. return err;
  758. pps = unit->content;
  759. err = cbs_h265_read_pps(ctx, &bc, pps);
  760. if (err < 0)
  761. return err;
  762. err = cbs_h265_replace_pps(ctx, pps);
  763. if (err < 0)
  764. return err;
  765. }
  766. break;
  767. case HEVC_NAL_TRAIL_N:
  768. case HEVC_NAL_TRAIL_R:
  769. case HEVC_NAL_TSA_N:
  770. case HEVC_NAL_TSA_R:
  771. case HEVC_NAL_STSA_N:
  772. case HEVC_NAL_STSA_R:
  773. case HEVC_NAL_RADL_N:
  774. case HEVC_NAL_RADL_R:
  775. case HEVC_NAL_RASL_N:
  776. case HEVC_NAL_RASL_R:
  777. case HEVC_NAL_BLA_W_LP:
  778. case HEVC_NAL_BLA_W_RADL:
  779. case HEVC_NAL_BLA_N_LP:
  780. case HEVC_NAL_IDR_W_RADL:
  781. case HEVC_NAL_IDR_N_LP:
  782. case HEVC_NAL_CRA_NUT:
  783. {
  784. H265RawSlice *slice;
  785. int pos, len;
  786. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*slice),
  787. &cbs_h265_free_slice);
  788. if (err < 0)
  789. return err;
  790. slice = unit->content;
  791. err = cbs_h265_read_slice_segment_header(ctx, &bc, &slice->header);
  792. if (err < 0)
  793. return err;
  794. pos = bitstream_tell(&bc);
  795. len = unit->data_size;
  796. if (!unit->data[len - 1]) {
  797. int z;
  798. for (z = 0; z < len && !unit->data[len - z - 1]; z++);
  799. av_log(ctx->log_ctx, AV_LOG_DEBUG, "Deleted %d trailing zeroes "
  800. "from slice data.\n", z);
  801. len -= z;
  802. }
  803. slice->data_size = len - pos / 8;
  804. slice->data_ref = av_buffer_alloc(slice->data_size +
  805. AV_INPUT_BUFFER_PADDING_SIZE);
  806. if (!slice->data_ref)
  807. return AVERROR(ENOMEM);
  808. slice->data = slice->data_ref->data;
  809. memcpy(slice->data,
  810. unit->data + pos / 8, slice->data_size);
  811. memset(slice->data + slice->data_size, 0,
  812. AV_INPUT_BUFFER_PADDING_SIZE);
  813. slice->data_bit_start = pos % 8;
  814. }
  815. break;
  816. case HEVC_NAL_AUD:
  817. {
  818. err = ff_cbs_alloc_unit_content(ctx, unit,
  819. sizeof(H265RawAUD), NULL);
  820. if (err < 0)
  821. return err;
  822. err = cbs_h265_read_aud(ctx, &bc, unit->content);
  823. if (err < 0)
  824. return err;
  825. }
  826. break;
  827. default:
  828. return AVERROR(ENOSYS);
  829. }
  830. return 0;
  831. }
  832. static int cbs_h264_write_nal_unit(CodedBitstreamContext *ctx,
  833. CodedBitstreamUnit *unit,
  834. PutBitContext *pbc)
  835. {
  836. int err;
  837. switch (unit->type) {
  838. case H264_NAL_SPS:
  839. {
  840. H264RawSPS *sps = unit->content;
  841. err = cbs_h264_write_sps(ctx, pbc, sps);
  842. if (err < 0)
  843. return err;
  844. err = cbs_h264_replace_sps(ctx, sps);
  845. if (err < 0)
  846. return err;
  847. }
  848. break;
  849. case H264_NAL_SPS_EXT:
  850. {
  851. H264RawSPSExtension *sps_ext = unit->content;
  852. err = cbs_h264_write_sps_extension(ctx, pbc, sps_ext);
  853. if (err < 0)
  854. return err;
  855. }
  856. break;
  857. case H264_NAL_PPS:
  858. {
  859. H264RawPPS *pps = unit->content;
  860. err = cbs_h264_write_pps(ctx, pbc, pps);
  861. if (err < 0)
  862. return err;
  863. err = cbs_h264_replace_pps(ctx, pps);
  864. if (err < 0)
  865. return err;
  866. }
  867. break;
  868. case H264_NAL_SLICE:
  869. case H264_NAL_IDR_SLICE:
  870. case H264_NAL_AUXILIARY_SLICE:
  871. {
  872. H264RawSlice *slice = unit->content;
  873. BitstreamContext bc;
  874. int bits_left, end, zeroes;
  875. err = cbs_h264_write_slice_header(ctx, pbc, &slice->header);
  876. if (err < 0)
  877. return err;
  878. if (slice->data) {
  879. if (slice->data_size * 8 + 8 > put_bits_left(pbc))
  880. return AVERROR(ENOSPC);
  881. bitstream_init(&bc, slice->data, slice->data_size * 8);
  882. bitstream_skip(&bc, slice->data_bit_start);
  883. // Copy in two-byte blocks, but stop before copying the
  884. // rbsp_stop_one_bit in the final byte.
  885. while (bitstream_bits_left(&bc) > 23)
  886. put_bits(pbc, 16, bitstream_read(&bc, 16));
  887. bits_left = bitstream_bits_left(&bc);
  888. end = bitstream_read(&bc, bits_left);
  889. // rbsp_stop_one_bit must be present here.
  890. av_assert0(end);
  891. zeroes = ff_ctz(end);
  892. if (bits_left > zeroes + 1)
  893. put_bits(pbc, bits_left - zeroes - 1,
  894. end >> (zeroes + 1));
  895. put_bits(pbc, 1, 1);
  896. while (put_bits_count(pbc) % 8 != 0)
  897. put_bits(pbc, 1, 0);
  898. } else {
  899. // No slice data - that was just the header.
  900. // (Bitstream may be unaligned!)
  901. }
  902. }
  903. break;
  904. case H264_NAL_AUD:
  905. {
  906. err = cbs_h264_write_aud(ctx, pbc, unit->content);
  907. if (err < 0)
  908. return err;
  909. }
  910. break;
  911. case H264_NAL_SEI:
  912. {
  913. err = cbs_h264_write_sei(ctx, pbc, unit->content);
  914. if (err < 0)
  915. return err;
  916. }
  917. break;
  918. case H264_NAL_FILLER_DATA:
  919. {
  920. err = cbs_h264_write_filler(ctx, pbc, unit->content);
  921. if (err < 0)
  922. return err;
  923. }
  924. break;
  925. default:
  926. av_log(ctx->log_ctx, AV_LOG_ERROR, "Write unimplemented for "
  927. "NAL unit type %"PRIu32".\n", unit->type);
  928. return AVERROR_PATCHWELCOME;
  929. }
  930. return 0;
  931. }
  932. static int cbs_h265_write_nal_unit(CodedBitstreamContext *ctx,
  933. CodedBitstreamUnit *unit,
  934. PutBitContext *pbc)
  935. {
  936. int err;
  937. switch (unit->type) {
  938. case HEVC_NAL_VPS:
  939. {
  940. H265RawVPS *vps = unit->content;
  941. err = cbs_h265_write_vps(ctx, pbc, vps);
  942. if (err < 0)
  943. return err;
  944. err = cbs_h265_replace_vps(ctx, vps);
  945. if (err < 0)
  946. return err;
  947. }
  948. break;
  949. case HEVC_NAL_SPS:
  950. {
  951. H265RawSPS *sps = unit->content;
  952. err = cbs_h265_write_sps(ctx, pbc, sps);
  953. if (err < 0)
  954. return err;
  955. err = cbs_h265_replace_sps(ctx, sps);
  956. if (err < 0)
  957. return err;
  958. }
  959. break;
  960. case HEVC_NAL_PPS:
  961. {
  962. H265RawPPS *pps = unit->content;
  963. err = cbs_h265_write_pps(ctx, pbc, pps);
  964. if (err < 0)
  965. return err;
  966. err = cbs_h265_replace_pps(ctx, pps);
  967. if (err < 0)
  968. return err;
  969. }
  970. break;
  971. case HEVC_NAL_TRAIL_N:
  972. case HEVC_NAL_TRAIL_R:
  973. case HEVC_NAL_TSA_N:
  974. case HEVC_NAL_TSA_R:
  975. case HEVC_NAL_STSA_N:
  976. case HEVC_NAL_STSA_R:
  977. case HEVC_NAL_RADL_N:
  978. case HEVC_NAL_RADL_R:
  979. case HEVC_NAL_RASL_N:
  980. case HEVC_NAL_RASL_R:
  981. case HEVC_NAL_BLA_W_LP:
  982. case HEVC_NAL_BLA_W_RADL:
  983. case HEVC_NAL_BLA_N_LP:
  984. case HEVC_NAL_IDR_W_RADL:
  985. case HEVC_NAL_IDR_N_LP:
  986. case HEVC_NAL_CRA_NUT:
  987. {
  988. H265RawSlice *slice = unit->content;
  989. BitstreamContext bc;
  990. int bits_left, end, zeroes;
  991. err = cbs_h265_write_slice_segment_header(ctx, pbc, &slice->header);
  992. if (err < 0)
  993. return err;
  994. if (slice->data) {
  995. if (slice->data_size * 8 + 8 > put_bits_left(pbc))
  996. return AVERROR(ENOSPC);
  997. bitstream_init(&bc, slice->data, slice->data_size * 8);
  998. bitstream_skip(&bc, slice->data_bit_start);
  999. // Copy in two-byte blocks, but stop before copying the
  1000. // rbsp_stop_one_bit in the final byte.
  1001. while (bitstream_bits_left(&bc) > 23)
  1002. put_bits(pbc, 16, bitstream_read(&bc, 16));
  1003. bits_left = bitstream_bits_left(&bc);
  1004. end = bitstream_read(&bc, bits_left);
  1005. // rbsp_stop_one_bit must be present here.
  1006. av_assert0(end);
  1007. zeroes = ff_ctz(end);
  1008. if (bits_left > zeroes + 1)
  1009. put_bits(pbc, bits_left - zeroes - 1,
  1010. end >> (zeroes + 1));
  1011. put_bits(pbc, 1, 1);
  1012. while (put_bits_count(pbc) % 8 != 0)
  1013. put_bits(pbc, 1, 0);
  1014. } else {
  1015. // No slice data - that was just the header.
  1016. }
  1017. }
  1018. break;
  1019. case HEVC_NAL_AUD:
  1020. {
  1021. err = cbs_h265_write_aud(ctx, pbc, unit->content);
  1022. if (err < 0)
  1023. return err;
  1024. }
  1025. break;
  1026. default:
  1027. av_log(ctx->log_ctx, AV_LOG_ERROR, "Write unimplemented for "
  1028. "NAL unit type %"PRIu32".\n", unit->type);
  1029. return AVERROR_PATCHWELCOME;
  1030. }
  1031. return 0;
  1032. }
  1033. static int cbs_h2645_write_nal_unit(CodedBitstreamContext *ctx,
  1034. CodedBitstreamUnit *unit)
  1035. {
  1036. CodedBitstreamH2645Context *priv = ctx->priv_data;
  1037. enum AVCodecID codec_id = ctx->codec->codec_id;
  1038. PutBitContext pbc;
  1039. int err;
  1040. if (!priv->write_buffer) {
  1041. // Initial write buffer size is 1MB.
  1042. priv->write_buffer_size = 1024 * 1024;
  1043. reallocate_and_try_again:
  1044. err = av_reallocp(&priv->write_buffer, priv->write_buffer_size);
  1045. if (err < 0) {
  1046. av_log(ctx->log_ctx, AV_LOG_ERROR, "Unable to allocate a "
  1047. "sufficiently large write buffer (last attempt "
  1048. "%zu bytes).\n", priv->write_buffer_size);
  1049. return err;
  1050. }
  1051. }
  1052. init_put_bits(&pbc, priv->write_buffer, priv->write_buffer_size);
  1053. if (codec_id == AV_CODEC_ID_H264)
  1054. err = cbs_h264_write_nal_unit(ctx, unit, &pbc);
  1055. else
  1056. err = cbs_h265_write_nal_unit(ctx, unit, &pbc);
  1057. if (err == AVERROR(ENOSPC)) {
  1058. // Overflow.
  1059. priv->write_buffer_size *= 2;
  1060. goto reallocate_and_try_again;
  1061. }
  1062. // Overflow but we didn't notice.
  1063. av_assert0(put_bits_count(&pbc) <= 8 * priv->write_buffer_size);
  1064. if (err < 0) {
  1065. // Write failed for some other reason.
  1066. return err;
  1067. }
  1068. if (put_bits_count(&pbc) % 8)
  1069. unit->data_bit_padding = 8 - put_bits_count(&pbc) % 8;
  1070. else
  1071. unit->data_bit_padding = 0;
  1072. unit->data_size = (put_bits_count(&pbc) + 7) / 8;
  1073. flush_put_bits(&pbc);
  1074. err = ff_cbs_alloc_unit_data(ctx, unit, unit->data_size);
  1075. if (err < 0)
  1076. return err;
  1077. memcpy(unit->data, priv->write_buffer, unit->data_size);
  1078. return 0;
  1079. }
  1080. static int cbs_h2645_assemble_fragment(CodedBitstreamContext *ctx,
  1081. CodedBitstreamFragment *frag)
  1082. {
  1083. uint8_t *data;
  1084. size_t max_size, dp, sp;
  1085. int err, i, zero_run;
  1086. for (i = 0; i < frag->nb_units; i++) {
  1087. // Data should already all have been written when we get here.
  1088. av_assert0(frag->units[i].data);
  1089. }
  1090. max_size = 0;
  1091. for (i = 0; i < frag->nb_units; i++) {
  1092. // Start code + content with worst-case emulation prevention.
  1093. max_size += 3 + frag->units[i].data_size * 3 / 2;
  1094. }
  1095. data = av_malloc(max_size);
  1096. if (!data)
  1097. return AVERROR(ENOMEM);
  1098. dp = 0;
  1099. for (i = 0; i < frag->nb_units; i++) {
  1100. CodedBitstreamUnit *unit = &frag->units[i];
  1101. if (unit->data_bit_padding > 0) {
  1102. if (i < frag->nb_units - 1)
  1103. av_log(ctx->log_ctx, AV_LOG_WARNING, "Probably invalid "
  1104. "unaligned padding on non-final NAL unit.\n");
  1105. else
  1106. frag->data_bit_padding = unit->data_bit_padding;
  1107. }
  1108. if ((ctx->codec->codec_id == AV_CODEC_ID_H264 &&
  1109. (unit->type == H264_NAL_SPS ||
  1110. unit->type == H264_NAL_PPS)) ||
  1111. (ctx->codec->codec_id == AV_CODEC_ID_HEVC &&
  1112. (unit->type == HEVC_NAL_VPS ||
  1113. unit->type == HEVC_NAL_SPS ||
  1114. unit->type == HEVC_NAL_PPS)) ||
  1115. i == 0 /* (Assume this is the start of an access unit.) */) {
  1116. // zero_byte
  1117. data[dp++] = 0;
  1118. }
  1119. // start_code_prefix_one_3bytes
  1120. data[dp++] = 0;
  1121. data[dp++] = 0;
  1122. data[dp++] = 1;
  1123. zero_run = 0;
  1124. for (sp = 0; sp < unit->data_size; sp++) {
  1125. if (zero_run < 2) {
  1126. if (unit->data[sp] == 0)
  1127. ++zero_run;
  1128. else
  1129. zero_run = 0;
  1130. } else {
  1131. if ((unit->data[sp] & ~3) == 0) {
  1132. // emulation_prevention_three_byte
  1133. data[dp++] = 3;
  1134. }
  1135. zero_run = unit->data[sp] == 0;
  1136. }
  1137. data[dp++] = unit->data[sp];
  1138. }
  1139. }
  1140. av_assert0(dp <= max_size);
  1141. err = av_reallocp(&data, dp);
  1142. if (err)
  1143. return err;
  1144. frag->data_ref = av_buffer_create(data, dp, NULL, NULL, 0);
  1145. if (!frag->data_ref) {
  1146. av_freep(&data);
  1147. return AVERROR(ENOMEM);
  1148. }
  1149. frag->data = data;
  1150. frag->data_size = dp;
  1151. return 0;
  1152. }
  1153. static void cbs_h264_close(CodedBitstreamContext *ctx)
  1154. {
  1155. CodedBitstreamH264Context *h264 = ctx->priv_data;
  1156. int i;
  1157. ff_h2645_packet_uninit(&h264->common.read_packet);
  1158. av_freep(&h264->common.write_buffer);
  1159. for (i = 0; i < FF_ARRAY_ELEMS(h264->sps); i++)
  1160. av_freep(&h264->sps[i]);
  1161. for (i = 0; i < FF_ARRAY_ELEMS(h264->pps); i++)
  1162. av_freep(&h264->pps[i]);
  1163. }
  1164. static void cbs_h265_close(CodedBitstreamContext *ctx)
  1165. {
  1166. CodedBitstreamH265Context *h265 = ctx->priv_data;
  1167. int i;
  1168. ff_h2645_packet_uninit(&h265->common.read_packet);
  1169. av_freep(&h265->common.write_buffer);
  1170. for (i = 0; i < FF_ARRAY_ELEMS(h265->vps); i++)
  1171. av_freep(&h265->vps[i]);
  1172. for (i = 0; i < FF_ARRAY_ELEMS(h265->sps); i++)
  1173. av_freep(&h265->sps[i]);
  1174. for (i = 0; i < FF_ARRAY_ELEMS(h265->pps); i++)
  1175. av_freep(&h265->pps[i]);
  1176. }
  1177. const CodedBitstreamType ff_cbs_type_h264 = {
  1178. .codec_id = AV_CODEC_ID_H264,
  1179. .priv_data_size = sizeof(CodedBitstreamH264Context),
  1180. .split_fragment = &cbs_h2645_split_fragment,
  1181. .read_unit = &cbs_h264_read_nal_unit,
  1182. .write_unit = &cbs_h2645_write_nal_unit,
  1183. .assemble_fragment = &cbs_h2645_assemble_fragment,
  1184. .close = &cbs_h264_close,
  1185. };
  1186. const CodedBitstreamType ff_cbs_type_h265 = {
  1187. .codec_id = AV_CODEC_ID_HEVC,
  1188. .priv_data_size = sizeof(CodedBitstreamH265Context),
  1189. .split_fragment = &cbs_h2645_split_fragment,
  1190. .read_unit = &cbs_h265_read_nal_unit,
  1191. .write_unit = &cbs_h2645_write_nal_unit,
  1192. .assemble_fragment = &cbs_h2645_assemble_fragment,
  1193. .close = &cbs_h265_close,
  1194. };
  1195. int ff_cbs_h264_add_sei_message(CodedBitstreamContext *ctx,
  1196. CodedBitstreamFragment *au,
  1197. const H264RawSEIPayload *payload)
  1198. {
  1199. H264RawSEI *sei;
  1200. CodedBitstreamUnit *nal = NULL;
  1201. int err, i;
  1202. // Find an existing SEI NAL unit to add to.
  1203. for (i = 0; i < au->nb_units; i++) {
  1204. if (au->units[i].type == H264_NAL_SEI) {
  1205. nal = &au->units[i];
  1206. break;
  1207. }
  1208. }
  1209. if (nal) {
  1210. sei = nal->content;
  1211. } else {
  1212. // Need to make a new SEI NAL unit. Insert it before the first
  1213. // slice data NAL unit; if no slice data, add at the end.
  1214. AVBufferRef *sei_ref;
  1215. sei = av_mallocz(sizeof(*sei));
  1216. if (!sei)
  1217. return AVERROR(ENOMEM);
  1218. sei->nal_unit_header.nal_unit_type = H264_NAL_SEI;
  1219. sei->nal_unit_header.nal_ref_idc = 0;
  1220. sei_ref = av_buffer_create((uint8_t*)sei, sizeof(*sei),
  1221. &cbs_h264_free_sei, ctx, 0);
  1222. if (!sei_ref) {
  1223. av_freep(&sei);
  1224. return AVERROR(ENOMEM);
  1225. }
  1226. for (i = 0; i < au->nb_units; i++) {
  1227. if (au->units[i].type == H264_NAL_SLICE ||
  1228. au->units[i].type == H264_NAL_IDR_SLICE)
  1229. break;
  1230. }
  1231. err = ff_cbs_insert_unit_content(ctx, au, i, H264_NAL_SEI,
  1232. sei, sei_ref);
  1233. av_buffer_unref(&sei_ref);
  1234. if (err < 0)
  1235. return err;
  1236. }
  1237. if (sei->payload_count >= H264_MAX_SEI_PAYLOADS) {
  1238. av_log(ctx->log_ctx, AV_LOG_ERROR, "Too many payloads in "
  1239. "SEI NAL unit.\n");
  1240. return AVERROR(EINVAL);
  1241. }
  1242. memcpy(&sei->payload[sei->payload_count], payload, sizeof(*payload));
  1243. ++sei->payload_count;
  1244. return 0;
  1245. }
  1246. int ff_cbs_h264_delete_sei_message(CodedBitstreamContext *ctx,
  1247. CodedBitstreamFragment *au,
  1248. CodedBitstreamUnit *nal,
  1249. int position)
  1250. {
  1251. H264RawSEI *sei = nal->content;
  1252. av_assert0(nal->type == H264_NAL_SEI);
  1253. av_assert0(position >= 0 && position < sei->payload_count);
  1254. if (position == 0 && sei->payload_count == 1) {
  1255. // Deleting NAL unit entirely.
  1256. int i;
  1257. for (i = 0; i < au->nb_units; i++) {
  1258. if (&au->units[i] == nal)
  1259. break;
  1260. }
  1261. av_assert0(i < au->nb_units && "NAL unit not in access unit.");
  1262. return ff_cbs_delete_unit(ctx, au, i);
  1263. } else {
  1264. cbs_h264_free_sei_payload(&sei->payload[position]);
  1265. --sei->payload_count;
  1266. memmove(sei->payload + position,
  1267. sei->payload + position + 1,
  1268. (sei->payload_count - position) * sizeof(*sei->payload));
  1269. return 0;
  1270. }
  1271. }