You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3293 lines
90KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", and a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph has a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} functions defined in
  19. @file{libavfilter/avfilter.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance. It may have one of two forms:
  35. @itemize
  36. @item
  37. A ':'-separated list of @var{key=value} pairs.
  38. @item
  39. A ':'-separated list of @var{value}. In this case, the keys are assumed to be
  40. the option names in the order they are declared. E.g. the @code{fade} filter
  41. declares three options in this order -- @option{type}, @option{start_frame} and
  42. @option{nb_frames}. Then the parameter list @var{in:0:30} means that the value
  43. @var{in} is assigned to the option @option{type}, @var{0} to
  44. @option{start_frame} and @var{30} to @option{nb_frames}.
  45. @end itemize
  46. If the option value itself is a list of items (e.g. the @code{format} filter
  47. takes a list of pixel formats), the items in the list are usually separated by
  48. '|'.
  49. The list of arguments can be quoted using the character "'" as initial
  50. and ending mark, and the character '\' for escaping the characters
  51. within the quoted text; otherwise the argument string is considered
  52. terminated when the next special character (belonging to the set
  53. "[]=;,") is encountered.
  54. The name and arguments of the filter are optionally preceded and
  55. followed by a list of link labels.
  56. A link label allows to name a link and associate it to a filter output
  57. or input pad. The preceding labels @var{in_link_1}
  58. ... @var{in_link_N}, are associated to the filter input pads,
  59. the following labels @var{out_link_1} ... @var{out_link_M}, are
  60. associated to the output pads.
  61. When two link labels with the same name are found in the
  62. filtergraph, a link between the corresponding input and output pad is
  63. created.
  64. If an output pad is not labelled, it is linked by default to the first
  65. unlabelled input pad of the next filter in the filterchain.
  66. For example in the filterchain
  67. @example
  68. nullsrc, split[L1], [L2]overlay, nullsink
  69. @end example
  70. the split filter instance has two output pads, and the overlay filter
  71. instance two input pads. The first output pad of split is labelled
  72. "L1", the first input pad of overlay is labelled "L2", and the second
  73. output pad of split is linked to the second input pad of overlay,
  74. which are both unlabelled.
  75. In a complete filterchain all the unlabelled filter input and output
  76. pads must be connected. A filtergraph is considered valid if all the
  77. filter input and output pads of all the filterchains are connected.
  78. Libavfilter will automatically insert @ref{scale} filters where format
  79. conversion is required. It is possible to specify swscale flags
  80. for those automatically inserted scalers by prepending
  81. @code{sws_flags=@var{flags};}
  82. to the filtergraph description.
  83. Here is a BNF description of the filtergraph syntax:
  84. @example
  85. @var{NAME} ::= sequence of alphanumeric characters and '_'
  86. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  87. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  88. @var{FILTER_ARGUMENTS} ::= sequence of chars (possibly quoted)
  89. @var{FILTER} ::= [@var{LINKLABELS}] @var{NAME} ["=" @var{FILTER_ARGUMENTS}] [@var{LINKLABELS}]
  90. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  91. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  92. @end example
  93. @c man end FILTERGRAPH DESCRIPTION
  94. @chapter Audio Filters
  95. @c man begin AUDIO FILTERS
  96. When you configure your Libav build, you can disable any of the
  97. existing filters using --disable-filters.
  98. The configure output will show the audio filters included in your
  99. build.
  100. Below is a description of the currently available audio filters.
  101. @section aformat
  102. Convert the input audio to one of the specified formats. The framework will
  103. negotiate the most appropriate format to minimize conversions.
  104. It accepts the following parameters:
  105. @table @option
  106. @item sample_fmts
  107. A '|'-separated list of requested sample formats.
  108. @item sample_rates
  109. A '|'-separated list of requested sample rates.
  110. @item channel_layouts
  111. A '|'-separated list of requested channel layouts.
  112. @end table
  113. If a parameter is omitted, all values are allowed.
  114. Force the output to either unsigned 8-bit or signed 16-bit stereo
  115. @example
  116. aformat=sample_fmts=u8|s16:channel_layouts=stereo
  117. @end example
  118. @section amix
  119. Mixes multiple audio inputs into a single output.
  120. For example
  121. @example
  122. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  123. @end example
  124. will mix 3 input audio streams to a single output with the same duration as the
  125. first input and a dropout transition time of 3 seconds.
  126. It accepts the following parameters:
  127. @table @option
  128. @item inputs
  129. The number of inputs. If unspecified, it defaults to 2.
  130. @item duration
  131. How to determine the end-of-stream.
  132. @table @option
  133. @item longest
  134. The duration of the longest input. (default)
  135. @item shortest
  136. The duration of the shortest input.
  137. @item first
  138. The duration of the first input.
  139. @end table
  140. @item dropout_transition
  141. The transition time, in seconds, for volume renormalization when an input
  142. stream ends. The default value is 2 seconds.
  143. @end table
  144. @section anull
  145. Pass the audio source unchanged to the output.
  146. @section asetpts
  147. Change the PTS (presentation timestamp) of the input audio frames.
  148. It accepts the following parameters:
  149. @table @option
  150. @item expr
  151. The expression which is evaluated for each frame to construct its timestamp.
  152. @end table
  153. The expression is evaluated through the eval API and can contain the following
  154. constants:
  155. @table @option
  156. @item FRAME_RATE
  157. frame rate, only defined for constant frame-rate video
  158. @item PTS
  159. the presentation timestamp in input
  160. @item E, PI, PHI
  161. These are approximated values for the mathematical constants e
  162. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  163. @item N
  164. The number of audio samples passed through the filter so far, starting at 0.
  165. @item S
  166. The number of audio samples in the current frame.
  167. @item SR
  168. The audio sample rate.
  169. @item STARTPTS
  170. The PTS of the first frame.
  171. @item PREV_INPTS
  172. The previous input PTS.
  173. @item PREV_OUTPTS
  174. The previous output PTS.
  175. @item RTCTIME
  176. The wallclock (RTC) time in microseconds.
  177. @item RTCSTART
  178. The wallclock (RTC) time at the start of the movie in microseconds.
  179. @end table
  180. Some examples:
  181. @example
  182. # Start counting PTS from zero
  183. asetpts=expr=PTS-STARTPTS
  184. # Generate timestamps by counting samples
  185. asetpts=expr=N/SR/TB
  186. # Generate timestamps from a "live source" and rebase onto the current timebase
  187. asetpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  188. @end example
  189. @section asettb
  190. Set the timebase to use for the output frames timestamps.
  191. It is mainly useful for testing timebase configuration.
  192. This filter accepts the following parameters:
  193. @table @option
  194. @item expr
  195. The expression which is evaluated into the output timebase.
  196. @end table
  197. The expression can contain the constants @var{PI}, @var{E}, @var{PHI}, @var{AVTB} (the
  198. default timebase), @var{intb} (the input timebase), and @var{sr} (the sample rate,
  199. audio only).
  200. The default value for the input is @var{intb}.
  201. Some examples:
  202. @example
  203. # Set the timebase to 1/25:
  204. settb=1/25
  205. # Set the timebase to 1/10:
  206. settb=0.1
  207. # Set the timebase to 1001/1000:
  208. settb=1+0.001
  209. # Set the timebase to 2*intb:
  210. settb=2*intb
  211. # Set the default timebase value:
  212. settb=AVTB
  213. # Set the timebase to twice the sample rate:
  214. asettb=sr*2
  215. @end example
  216. @section ashowinfo
  217. Show a line containing various information for each input audio frame.
  218. The input audio is not modified.
  219. The shown line contains a sequence of key/value pairs of the form
  220. @var{key}:@var{value}.
  221. It accepts the following parameters:
  222. @table @option
  223. @item n
  224. The (sequential) number of the input frame, starting from 0.
  225. @item pts
  226. The presentation timestamp of the input frame, in time base units; the time base
  227. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  228. @item pts_time
  229. The presentation timestamp of the input frame in seconds.
  230. @item fmt
  231. The sample format.
  232. @item chlayout
  233. The channel layout.
  234. @item rate
  235. The sample rate for the audio frame.
  236. @item nb_samples
  237. The number of samples (per channel) in the frame.
  238. @item checksum
  239. The Adler-32 checksum (printed in hexadecimal) of the audio data. For planar
  240. audio, the data is treated as if all the planes were concatenated.
  241. @item plane_checksums
  242. A list of Adler-32 checksums for each data plane.
  243. @end table
  244. @section asplit
  245. Split input audio into several identical outputs.
  246. It accepts a single parameter, which specifies the number of outputs. If
  247. unspecified, it defaults to 2.
  248. For example,
  249. @example
  250. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  251. @end example
  252. will create 5 copies of the input audio.
  253. @section asyncts
  254. Synchronize audio data with timestamps by squeezing/stretching it and/or
  255. dropping samples/adding silence when needed.
  256. It accepts the following parameters:
  257. @table @option
  258. @item compensate
  259. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  260. by default. When disabled, time gaps are covered with silence.
  261. @item min_delta
  262. The minimum difference between timestamps and audio data (in seconds) to trigger
  263. adding/dropping samples. The default value is 0.1. If you get an imperfect
  264. sync with this filter, try setting this parameter to 0.
  265. @item max_comp
  266. The maximum compensation in samples per second. Only relevant with compensate=1.
  267. The default value is 500.
  268. @item first_pts
  269. Assume that the first PTS should be this value. The time base is 1 / sample
  270. rate. This allows for padding/trimming at the start of the stream. By default,
  271. no assumption is made about the first frame's expected PTS, so no padding or
  272. trimming is done. For example, this could be set to 0 to pad the beginning with
  273. silence if an audio stream starts after the video stream or to trim any samples
  274. with a negative PTS due to encoder delay.
  275. @end table
  276. @section atrim
  277. Trim the input so that the output contains one continuous subpart of the input.
  278. It accepts the following parameters:
  279. @table @option
  280. @item start
  281. Timestamp (in seconds) of the start of the section to keep. I.e. the audio
  282. sample with the timestamp @var{start} will be the first sample in the output.
  283. @item end
  284. Timestamp (in seconds) of the first audio sample that will be dropped. I.e. the
  285. audio sample immediately preceding the one with the timestamp @var{end} will be
  286. the last sample in the output.
  287. @item start_pts
  288. Same as @var{start}, except this option sets the start timestamp in samples
  289. instead of seconds.
  290. @item end_pts
  291. Same as @var{end}, except this option sets the end timestamp in samples instead
  292. of seconds.
  293. @item duration
  294. The maximum duration of the output in seconds.
  295. @item start_sample
  296. The number of the first sample that should be output.
  297. @item end_sample
  298. The number of the first sample that should be dropped.
  299. @end table
  300. Note that the first two sets of the start/end options and the @option{duration}
  301. option look at the frame timestamp, while the _sample options simply count the
  302. samples that pass through the filter. So start/end_pts and start/end_sample will
  303. give different results when the timestamps are wrong, inexact or do not start at
  304. zero. Also note that this filter does not modify the timestamps. If you wish
  305. to have the output timestamps start at zero, insert the asetpts filter after the
  306. atrim filter.
  307. If multiple start or end options are set, this filter tries to be greedy and
  308. keep all samples that match at least one of the specified constraints. To keep
  309. only the part that matches all the constraints at once, chain multiple atrim
  310. filters.
  311. The defaults are such that all the input is kept. So it is possible to set e.g.
  312. just the end values to keep everything before the specified time.
  313. Examples:
  314. @itemize
  315. @item
  316. Drop everything except the second minute of input:
  317. @example
  318. avconv -i INPUT -af atrim=60:120
  319. @end example
  320. @item
  321. Keep only the first 1000 samples:
  322. @example
  323. avconv -i INPUT -af atrim=end_sample=1000
  324. @end example
  325. @end itemize
  326. @section bs2b
  327. Bauer stereo to binaural transformation, which improves headphone listening of
  328. stereo audio records.
  329. It accepts the following parameters:
  330. @table @option
  331. @item profile
  332. Pre-defined crossfeed level.
  333. @table @option
  334. @item default
  335. Default level (fcut=700, feed=50).
  336. @item cmoy
  337. Chu Moy circuit (fcut=700, feed=60).
  338. @item jmeier
  339. Jan Meier circuit (fcut=650, feed=95).
  340. @end table
  341. @item fcut
  342. Cut frequency (in Hz).
  343. @item feed
  344. Feed level (in Hz).
  345. @end table
  346. @section channelsplit
  347. Split each channel from an input audio stream into a separate output stream.
  348. It accepts the following parameters:
  349. @table @option
  350. @item channel_layout
  351. The channel layout of the input stream. The default is "stereo".
  352. @end table
  353. For example, assuming a stereo input MP3 file,
  354. @example
  355. avconv -i in.mp3 -filter_complex channelsplit out.mkv
  356. @end example
  357. will create an output Matroska file with two audio streams, one containing only
  358. the left channel and the other the right channel.
  359. Split a 5.1 WAV file into per-channel files:
  360. @example
  361. avconv -i in.wav -filter_complex
  362. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  363. -map '[FL]' front_left.wav -map '[FR]' front_right.wav
  364. -map '[FC]' front_center.wav -map '[LFE]' low_frequency_effects.wav
  365. -map '[SL]' side_left.wav -map '[SR]' side_right.wav
  366. @end example
  367. @section channelmap
  368. Remap input channels to new locations.
  369. It accepts the following parameters:
  370. @table @option
  371. @item channel_layout
  372. The channel layout of the output stream.
  373. @item map
  374. Map channels from input to output. The argument is a '|'-separated list of
  375. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  376. @var{in_channel} form. @var{in_channel} can be either the name of the input
  377. channel (e.g. FL for front left) or its index in the input channel layout.
  378. @var{out_channel} is the name of the output channel or its index in the output
  379. channel layout. If @var{out_channel} is not given then it is implicitly an
  380. index, starting with zero and increasing by one for each mapping.
  381. @end table
  382. If no mapping is present, the filter will implicitly map input channels to
  383. output channels, preserving indices.
  384. For example, assuming a 5.1+downmix input MOV file,
  385. @example
  386. avconv -i in.mov -filter 'channelmap=map=DL-FL|DR-FR' out.wav
  387. @end example
  388. will create an output WAV file tagged as stereo from the downmix channels of
  389. the input.
  390. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  391. @example
  392. avconv -i in.wav -filter 'channelmap=1|2|0|5|3|4:5.1' out.wav
  393. @end example
  394. @section compand
  395. Compress or expand the audio's dynamic range.
  396. It accepts the following parameters:
  397. @table @option
  398. @item attacks
  399. @item decays
  400. A list of times in seconds for each channel over which the instantaneous level
  401. of the input signal is averaged to determine its volume. @var{attacks} refers to
  402. increase of volume and @var{decays} refers to decrease of volume. For most
  403. situations, the attack time (response to the audio getting louder) should be
  404. shorter than the decay time, because the human ear is more sensitive to sudden
  405. loud audio than sudden soft audio. A typical value for attack is 0.3 seconds and
  406. a typical value for decay is 0.8 seconds.
  407. @item points
  408. A list of points for the transfer function, specified in dB relative to the
  409. maximum possible signal amplitude. Each key points list must be defined using
  410. the following syntax: @code{x0/y0|x1/y1|x2/y2|....}
  411. The input values must be in strictly increasing order but the transfer function
  412. does not have to be monotonically rising. The point @code{0/0} is assumed but
  413. may be overridden (by @code{0/out-dBn}). Typical values for the transfer
  414. function are @code{-70/-70|-60/-20}.
  415. @item soft-knee
  416. Set the curve radius in dB for all joints. It defaults to 0.01.
  417. @item gain
  418. Set the additional gain in dB to be applied at all points on the transfer
  419. function. This allows for easy adjustment of the overall gain.
  420. It defaults to 0.
  421. @item volume
  422. Set an initial volume, in dB, to be assumed for each channel when filtering
  423. starts. This permits the user to supply a nominal level initially, so that, for
  424. example, a very large gain is not applied to initial signal levels before the
  425. companding has begun to operate. A typical value for audio which is initially
  426. quiet is -90 dB. It defaults to 0.
  427. @item delay
  428. Set a delay, in seconds. The input audio is analyzed immediately, but audio is
  429. delayed before being fed to the volume adjuster. Specifying a delay
  430. approximately equal to the attack/decay times allows the filter to effectively
  431. operate in predictive rather than reactive mode. It defaults to 0.
  432. @end table
  433. @subsection Examples
  434. @itemize
  435. @item
  436. Make music with both quiet and loud passages suitable for listening to in a
  437. noisy environment:
  438. @example
  439. compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2
  440. @end example
  441. @item
  442. A noise gate for when the noise is at a lower level than the signal:
  443. @example
  444. compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1
  445. @end example
  446. @item
  447. Here is another noise gate, this time for when the noise is at a higher level
  448. than the signal (making it, in some ways, similar to squelch):
  449. @example
  450. compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1
  451. @end example
  452. @end itemize
  453. @section join
  454. Join multiple input streams into one multi-channel stream.
  455. It accepts the following parameters:
  456. @table @option
  457. @item inputs
  458. The number of input streams. It defaults to 2.
  459. @item channel_layout
  460. The desired output channel layout. It defaults to stereo.
  461. @item map
  462. Map channels from inputs to output. The argument is a '|'-separated list of
  463. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  464. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  465. can be either the name of the input channel (e.g. FL for front left) or its
  466. index in the specified input stream. @var{out_channel} is the name of the output
  467. channel.
  468. @end table
  469. The filter will attempt to guess the mappings when they are not specified
  470. explicitly. It does so by first trying to find an unused matching input channel
  471. and if that fails it picks the first unused input channel.
  472. Join 3 inputs (with properly set channel layouts):
  473. @example
  474. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  475. @end example
  476. Build a 5.1 output from 6 single-channel streams:
  477. @example
  478. avconv -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  479. 'join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE'
  480. out
  481. @end example
  482. @section hdcd
  483. Decodes High Definition Compatible Digital (HDCD) data. A 16-bit PCM stream with
  484. embedded HDCD codes is expanded into a 20-bit PCM stream.
  485. The filter supports the Peak Extend and Low-level Gain Adjustment features
  486. of HDCD, and detects the Transient Filter flag.
  487. @example
  488. avconv -i HDCD16.flac -af hdcd OUT24.flac
  489. @end example
  490. When using the filter with WAV, note that the default encoding for WAV is 16-bit,
  491. so the resulting 20-bit stream will be truncated back to 16-bit. Use something
  492. like @command{-c:a pcm_s24le} after the filter to get 24-bit PCM output.
  493. @example
  494. avconv -i HDCD16.wav -af hdcd OUT16.wav
  495. avconv -i HDCD16.wav -af hdcd -c:a pcm_s24le OUT24.wav
  496. @end example
  497. The filter accepts the following options:
  498. @table @option
  499. @item analyze_mode
  500. Replace audio with a solid tone and adjust the amplitude to signal some
  501. specific aspect of the decoding process. The output file can be loaded in
  502. an audio editor alongside the original to aid analysis.
  503. Modes are:
  504. @table @samp
  505. @item 0, off
  506. Disabled
  507. @item 1, lle
  508. Gain adjustment level at each sample
  509. @item 2, pe
  510. Samples where peak extend occurs
  511. @item 3, cdt
  512. Samples where the code detect timer is active
  513. @item 4, tgm
  514. Samples where the target gain does not match between channels
  515. @item 5, pel
  516. Any samples above peak extend level
  517. @item 6, ltgm
  518. Gain adjustment level at each sample, in each channel
  519. @end table
  520. @end table
  521. @section resample
  522. Convert the audio sample format, sample rate and channel layout. It is
  523. not meant to be used directly; it is inserted automatically by libavfilter
  524. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  525. conversion.
  526. @section volume
  527. Adjust the input audio volume.
  528. It accepts the following parameters:
  529. @table @option
  530. @item volume
  531. This expresses how the audio volume will be increased or decreased.
  532. Output values are clipped to the maximum value.
  533. The output audio volume is given by the relation:
  534. @example
  535. @var{output_volume} = @var{volume} * @var{input_volume}
  536. @end example
  537. The default value for @var{volume} is 1.0.
  538. @item precision
  539. This parameter represents the mathematical precision.
  540. It determines which input sample formats will be allowed, which affects the
  541. precision of the volume scaling.
  542. @table @option
  543. @item fixed
  544. 8-bit fixed-point; this limits input sample format to U8, S16, and S32.
  545. @item float
  546. 32-bit floating-point; this limits input sample format to FLT. (default)
  547. @item double
  548. 64-bit floating-point; this limits input sample format to DBL.
  549. @end table
  550. @item replaygain
  551. Choose the behaviour on encountering ReplayGain side data in input frames.
  552. @table @option
  553. @item drop
  554. Remove ReplayGain side data, ignoring its contents (the default).
  555. @item ignore
  556. Ignore ReplayGain side data, but leave it in the frame.
  557. @item track
  558. Prefer the track gain, if present.
  559. @item album
  560. Prefer the album gain, if present.
  561. @end table
  562. @item replaygain_preamp
  563. Pre-amplification gain in dB to apply to the selected replaygain gain.
  564. Default value for @var{replaygain_preamp} is 0.0.
  565. @item replaygain_noclip
  566. Prevent clipping by limiting the gain applied.
  567. Default value for @var{replaygain_noclip} is 1.
  568. @end table
  569. @subsection Examples
  570. @itemize
  571. @item
  572. Halve the input audio volume:
  573. @example
  574. volume=volume=0.5
  575. volume=volume=1/2
  576. volume=volume=-6.0206dB
  577. @end example
  578. @item
  579. Increase input audio power by 6 decibels using fixed-point precision:
  580. @example
  581. volume=volume=6dB:precision=fixed
  582. @end example
  583. @end itemize
  584. @c man end AUDIO FILTERS
  585. @chapter Audio Sources
  586. @c man begin AUDIO SOURCES
  587. Below is a description of the currently available audio sources.
  588. @section anullsrc
  589. The null audio source; it never returns audio frames. It is mainly useful as a
  590. template and for use in analysis / debugging tools.
  591. It accepts, as an optional parameter, a string of the form
  592. @var{sample_rate}:@var{channel_layout}.
  593. @var{sample_rate} specifies the sample rate, and defaults to 44100.
  594. @var{channel_layout} specifies the channel layout, and can be either an
  595. integer or a string representing a channel layout. The default value
  596. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  597. Check the channel_layout_map definition in
  598. @file{libavutil/channel_layout.c} for the mapping between strings and
  599. channel layout values.
  600. Some examples:
  601. @example
  602. # Set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO
  603. anullsrc=48000:4
  604. # The same as above
  605. anullsrc=48000:mono
  606. @end example
  607. @section abuffer
  608. Buffer audio frames, and make them available to the filter chain.
  609. This source is not intended to be part of user-supplied graph descriptions; it
  610. is for insertion by calling programs, through the interface defined in
  611. @file{libavfilter/buffersrc.h}.
  612. It accepts the following parameters:
  613. @table @option
  614. @item time_base
  615. The timebase which will be used for timestamps of submitted frames. It must be
  616. either a floating-point number or in @var{numerator}/@var{denominator} form.
  617. @item sample_rate
  618. The audio sample rate.
  619. @item sample_fmt
  620. The name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  621. @item channel_layout
  622. The channel layout of the audio data, in the form that can be accepted by
  623. @code{av_get_channel_layout()}.
  624. @end table
  625. All the parameters need to be explicitly defined.
  626. @c man end AUDIO SOURCES
  627. @chapter Audio Sinks
  628. @c man begin AUDIO SINKS
  629. Below is a description of the currently available audio sinks.
  630. @section anullsink
  631. Null audio sink; do absolutely nothing with the input audio. It is
  632. mainly useful as a template and for use in analysis / debugging
  633. tools.
  634. @section abuffersink
  635. This sink is intended for programmatic use. Frames that arrive on this sink can
  636. be retrieved by the calling program, using the interface defined in
  637. @file{libavfilter/buffersink.h}.
  638. It does not accept any parameters.
  639. @c man end AUDIO SINKS
  640. @chapter Video Filters
  641. @c man begin VIDEO FILTERS
  642. When you configure your Libav build, you can disable any of the
  643. existing filters using --disable-filters.
  644. The configure output will show the video filters included in your
  645. build.
  646. Below is a description of the currently available video filters.
  647. @section blackframe
  648. Detect frames that are (almost) completely black. Can be useful to
  649. detect chapter transitions or commercials. Output lines consist of
  650. the frame number of the detected frame, the percentage of blackness,
  651. the position in the file if known or -1 and the timestamp in seconds.
  652. In order to display the output lines, you need to set the loglevel at
  653. least to the AV_LOG_INFO value.
  654. It accepts the following parameters:
  655. @table @option
  656. @item amount
  657. The percentage of the pixels that have to be below the threshold; it defaults to
  658. 98.
  659. @item threshold
  660. The threshold below which a pixel value is considered black; it defaults to 32.
  661. @end table
  662. @section boxblur
  663. Apply a boxblur algorithm to the input video.
  664. It accepts the following parameters:
  665. @table @option
  666. @item luma_radius
  667. @item luma_power
  668. @item chroma_radius
  669. @item chroma_power
  670. @item alpha_radius
  671. @item alpha_power
  672. @end table
  673. The chroma and alpha parameters are optional. If not specified, they default
  674. to the corresponding values set for @var{luma_radius} and
  675. @var{luma_power}.
  676. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  677. the radius in pixels of the box used for blurring the corresponding
  678. input plane. They are expressions, and can contain the following
  679. constants:
  680. @table @option
  681. @item w, h
  682. The input width and height in pixels.
  683. @item cw, ch
  684. The input chroma image width and height in pixels.
  685. @item hsub, vsub
  686. The horizontal and vertical chroma subsample values. For example, for the
  687. pixel format "yuv422p", @var{hsub} is 2 and @var{vsub} is 1.
  688. @end table
  689. The radius must be a non-negative number, and must not be greater than
  690. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  691. and of @code{min(cw,ch)/2} for the chroma planes.
  692. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  693. how many times the boxblur filter is applied to the corresponding
  694. plane.
  695. Some examples:
  696. @itemize
  697. @item
  698. Apply a boxblur filter with the luma, chroma, and alpha radii
  699. set to 2:
  700. @example
  701. boxblur=luma_radius=2:luma_power=1
  702. @end example
  703. @item
  704. Set the luma radius to 2, and alpha and chroma radius to 0:
  705. @example
  706. boxblur=2:1:0:0:0:0
  707. @end example
  708. @item
  709. Set the luma and chroma radii to a fraction of the video dimension:
  710. @example
  711. boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1
  712. @end example
  713. @end itemize
  714. @section copy
  715. Copy the input source unchanged to the output. This is mainly useful for
  716. testing purposes.
  717. @section crop
  718. Crop the input video to given dimensions.
  719. It accepts the following parameters:
  720. @table @option
  721. @item out_w
  722. The width of the output video.
  723. @item out_h
  724. The height of the output video.
  725. @item x
  726. The horizontal position, in the input video, of the left edge of the output
  727. video.
  728. @item y
  729. The vertical position, in the input video, of the top edge of the output video.
  730. @end table
  731. The parameters are expressions containing the following constants:
  732. @table @option
  733. @item E, PI, PHI
  734. These are approximated values for the mathematical constants e
  735. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  736. @item x, y
  737. The computed values for @var{x} and @var{y}. They are evaluated for
  738. each new frame.
  739. @item in_w, in_h
  740. The input width and height.
  741. @item iw, ih
  742. These are the same as @var{in_w} and @var{in_h}.
  743. @item out_w, out_h
  744. The output (cropped) width and height.
  745. @item ow, oh
  746. These are the same as @var{out_w} and @var{out_h}.
  747. @item n
  748. The number of the input frame, starting from 0.
  749. @item t
  750. The timestamp expressed in seconds. It's NAN if the input timestamp is unknown.
  751. @end table
  752. The @var{out_w} and @var{out_h} parameters specify the expressions for
  753. the width and height of the output (cropped) video. They are only
  754. evaluated during the configuration of the filter.
  755. The default value of @var{out_w} is "in_w", and the default value of
  756. @var{out_h} is "in_h".
  757. The expression for @var{out_w} may depend on the value of @var{out_h},
  758. and the expression for @var{out_h} may depend on @var{out_w}, but they
  759. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  760. evaluated after @var{out_w} and @var{out_h}.
  761. The @var{x} and @var{y} parameters specify the expressions for the
  762. position of the top-left corner of the output (non-cropped) area. They
  763. are evaluated for each frame. If the evaluated value is not valid, it
  764. is approximated to the nearest valid value.
  765. The default value of @var{x} is "(in_w-out_w)/2", and the default
  766. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  767. the center of the input image.
  768. The expression for @var{x} may depend on @var{y}, and the expression
  769. for @var{y} may depend on @var{x}.
  770. Some examples:
  771. @example
  772. # Crop the central input area with size 100x100
  773. crop=out_w=100:out_h=100
  774. # Crop the central input area with size 2/3 of the input video
  775. "crop=out_w=2/3*in_w:out_h=2/3*in_h"
  776. # Crop the input video central square
  777. crop=out_w=in_h
  778. # Delimit the rectangle with the top-left corner placed at position
  779. # 100:100 and the right-bottom corner corresponding to the right-bottom
  780. # corner of the input image
  781. crop=out_w=in_w-100:out_h=in_h-100:x=100:y=100
  782. # Crop 10 pixels from the left and right borders, and 20 pixels from
  783. # the top and bottom borders
  784. "crop=out_w=in_w-2*10:out_h=in_h-2*20"
  785. # Keep only the bottom right quarter of the input image
  786. "crop=out_w=in_w/2:out_h=in_h/2:x=in_w/2:y=in_h/2"
  787. # Crop height for getting Greek harmony
  788. "crop=out_w=in_w:out_h=1/PHI*in_w"
  789. # Trembling effect
  790. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  791. # Erratic camera effect depending on timestamp
  792. "crop=out_w=in_w/2:out_h=in_h/2:x=(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):y=(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  793. # Set x depending on the value of y
  794. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  795. @end example
  796. @section cropdetect
  797. Auto-detect the crop size.
  798. It calculates the necessary cropping parameters and prints the
  799. recommended parameters via the logging system. The detected dimensions
  800. correspond to the non-black area of the input video.
  801. It accepts the following parameters:
  802. @table @option
  803. @item limit
  804. The threshold, an optional parameter between nothing (0) and
  805. everything (255). It defaults to 24.
  806. @item round
  807. The value which the width/height should be divisible by. It defaults to
  808. 16. The offset is automatically adjusted to center the video. Use 2 to
  809. get only even dimensions (needed for 4:2:2 video). 16 is best when
  810. encoding to most video codecs.
  811. @item reset
  812. A counter that determines how many frames cropdetect will reset
  813. the previously detected largest video area after. It will then start over
  814. and detect the current optimal crop area. It defaults to 0.
  815. This can be useful when channel logos distort the video area. 0
  816. indicates 'never reset', and returns the largest area encountered during
  817. playback.
  818. @end table
  819. @section delogo
  820. Suppress a TV station logo by a simple interpolation of the surrounding
  821. pixels. Just set a rectangle covering the logo and watch it disappear
  822. (and sometimes something even uglier appear - your mileage may vary).
  823. It accepts the following parameters:
  824. @table @option
  825. @item x, y
  826. Specify the top left corner coordinates of the logo. They must be
  827. specified.
  828. @item w, h
  829. Specify the width and height of the logo to clear. They must be
  830. specified.
  831. @item band, t
  832. Specify the thickness of the fuzzy edge of the rectangle (added to
  833. @var{w} and @var{h}). The default value is 4.
  834. @item show
  835. When set to 1, a green rectangle is drawn on the screen to simplify
  836. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  837. @var{band} is set to 4. The default value is 0.
  838. @end table
  839. An example:
  840. @itemize
  841. @item
  842. Set a rectangle covering the area with top left corner coordinates 0,0
  843. and size 100x77, and a band of size 10:
  844. @example
  845. delogo=x=0:y=0:w=100:h=77:band=10
  846. @end example
  847. @end itemize
  848. @section drawbox
  849. Draw a colored box on the input image.
  850. It accepts the following parameters:
  851. @table @option
  852. @item x, y
  853. Specify the top left corner coordinates of the box. It defaults to 0.
  854. @item width, height
  855. Specify the width and height of the box; if 0 they are interpreted as
  856. the input width and height. It defaults to 0.
  857. @item color
  858. Specify the color of the box to write. It can be the name of a color
  859. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  860. @end table
  861. Some examples:
  862. @example
  863. # Draw a black box around the edge of the input image
  864. drawbox
  865. # Draw a box with color red and an opacity of 50%
  866. drawbox=x=10:y=20:width=200:height=60:color=red@@0.5"
  867. @end example
  868. @section drawtext
  869. Draw a text string or text from a specified file on top of a video, using the
  870. libfreetype library.
  871. To enable compilation of this filter, you need to configure Libav with
  872. @code{--enable-libfreetype}.
  873. To enable default font fallback and the @var{font} option you need to
  874. configure Libav with @code{--enable-libfontconfig}.
  875. The filter also recognizes strftime() sequences in the provided text
  876. and expands them accordingly. Check the documentation of strftime().
  877. It accepts the following parameters:
  878. @table @option
  879. @item font
  880. The font family to be used for drawing text. By default Sans.
  881. @item fontfile
  882. The font file to be used for drawing text. The path must be included.
  883. This parameter is mandatory if the fontconfig support is disabled.
  884. @item text
  885. The text string to be drawn. The text must be a sequence of UTF-8
  886. encoded characters.
  887. This parameter is mandatory if no file is specified with the parameter
  888. @var{textfile}.
  889. @item textfile
  890. A text file containing text to be drawn. The text must be a sequence
  891. of UTF-8 encoded characters.
  892. This parameter is mandatory if no text string is specified with the
  893. parameter @var{text}.
  894. If both text and textfile are specified, an error is thrown.
  895. @item x, y
  896. The offsets where text will be drawn within the video frame.
  897. It is relative to the top/left border of the output image.
  898. They accept expressions similar to the @ref{overlay} filter:
  899. @table @option
  900. @item x, y
  901. The computed values for @var{x} and @var{y}. They are evaluated for
  902. each new frame.
  903. @item main_w, main_h
  904. The main input width and height.
  905. @item W, H
  906. These are the same as @var{main_w} and @var{main_h}.
  907. @item text_w, text_h
  908. The rendered text's width and height.
  909. @item w, h
  910. These are the same as @var{text_w} and @var{text_h}.
  911. @item n
  912. The number of frames processed, starting from 0.
  913. @item t
  914. The timestamp, expressed in seconds. It's NAN if the input timestamp is unknown.
  915. @end table
  916. The default value of @var{x} and @var{y} is 0.
  917. @item draw
  918. Draw the text only if the expression evaluates as non-zero.
  919. The expression accepts the same variables @var{x, y} do.
  920. The default value is 1.
  921. @item alpha
  922. Draw the text applying alpha blending. The value can
  923. be either a number between 0.0 and 1.0
  924. The expression accepts the same variables @var{x, y} do.
  925. The default value is 1.
  926. @item fontsize
  927. The font size to be used for drawing text.
  928. The default value of @var{fontsize} is 16.
  929. @item fontcolor
  930. The color to be used for drawing fonts.
  931. It is either a string (e.g. "red"), or in 0xRRGGBB[AA] format
  932. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  933. The default value of @var{fontcolor} is "black".
  934. @item boxcolor
  935. The color to be used for drawing box around text.
  936. It is either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  937. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  938. The default value of @var{boxcolor} is "white".
  939. @item box
  940. Used to draw a box around text using the background color.
  941. The value must be either 1 (enable) or 0 (disable).
  942. The default value of @var{box} is 0.
  943. @item shadowx, shadowy
  944. The x and y offsets for the text shadow position with respect to the
  945. position of the text. They can be either positive or negative
  946. values. The default value for both is "0".
  947. @item shadowcolor
  948. The color to be used for drawing a shadow behind the drawn text. It
  949. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  950. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  951. The default value of @var{shadowcolor} is "black".
  952. @item ft_load_flags
  953. The flags to be used for loading the fonts.
  954. The flags map the corresponding flags supported by libfreetype, and are
  955. a combination of the following values:
  956. @table @var
  957. @item default
  958. @item no_scale
  959. @item no_hinting
  960. @item render
  961. @item no_bitmap
  962. @item vertical_layout
  963. @item force_autohint
  964. @item crop_bitmap
  965. @item pedantic
  966. @item ignore_global_advance_width
  967. @item no_recurse
  968. @item ignore_transform
  969. @item monochrome
  970. @item linear_design
  971. @item no_autohint
  972. @item end table
  973. @end table
  974. Default value is "render".
  975. For more information consult the documentation for the FT_LOAD_*
  976. libfreetype flags.
  977. @item tabsize
  978. The size in number of spaces to use for rendering the tab.
  979. Default value is 4.
  980. @item fix_bounds
  981. If true, check and fix text coords to avoid clipping.
  982. @end table
  983. For example the command:
  984. @example
  985. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  986. @end example
  987. will draw "Test Text" with font FreeSerif, using the default values
  988. for the optional parameters.
  989. The command:
  990. @example
  991. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  992. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  993. @end example
  994. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  995. and y=50 (counting from the top-left corner of the screen), text is
  996. yellow with a red box around it. Both the text and the box have an
  997. opacity of 20%.
  998. Note that the double quotes are not necessary if spaces are not used
  999. within the parameter list.
  1000. For more information about libfreetype, check:
  1001. @url{http://www.freetype.org/}.
  1002. @section fade
  1003. Apply a fade-in/out effect to the input video.
  1004. It accepts the following parameters:
  1005. @table @option
  1006. @item type
  1007. The effect type can be either "in" for a fade-in, or "out" for a fade-out
  1008. effect.
  1009. @item start_frame
  1010. The number of the frame to start applying the fade effect at.
  1011. @item nb_frames
  1012. The number of frames that the fade effect lasts. At the end of the
  1013. fade-in effect, the output video will have the same intensity as the input video.
  1014. At the end of the fade-out transition, the output video will be completely black.
  1015. @end table
  1016. Some examples:
  1017. @example
  1018. # Fade in the first 30 frames of video
  1019. fade=type=in:nb_frames=30
  1020. # Fade out the last 45 frames of a 200-frame video
  1021. fade=type=out:start_frame=155:nb_frames=45
  1022. # Fade in the first 25 frames and fade out the last 25 frames of a 1000-frame video
  1023. fade=type=in:start_frame=0:nb_frames=25, fade=type=out:start_frame=975:nb_frames=25
  1024. # Make the first 5 frames black, then fade in from frame 5-24
  1025. fade=type=in:start_frame=5:nb_frames=20
  1026. @end example
  1027. @section fieldorder
  1028. Transform the field order of the input video.
  1029. It accepts the following parameters:
  1030. @table @option
  1031. @item order
  1032. The output field order. Valid values are @var{tff} for top field first or @var{bff}
  1033. for bottom field first.
  1034. @end table
  1035. The default value is "tff".
  1036. The transformation is done by shifting the picture content up or down
  1037. by one line, and filling the remaining line with appropriate picture content.
  1038. This method is consistent with most broadcast field order converters.
  1039. If the input video is not flagged as being interlaced, or it is already
  1040. flagged as being of the required output field order, then this filter does
  1041. not alter the incoming video.
  1042. It is very useful when converting to or from PAL DV material,
  1043. which is bottom field first.
  1044. For example:
  1045. @example
  1046. ./avconv -i in.vob -vf "fieldorder=order=bff" out.dv
  1047. @end example
  1048. @section fifo
  1049. Buffer input images and send them when they are requested.
  1050. It is mainly useful when auto-inserted by the libavfilter
  1051. framework.
  1052. It does not take parameters.
  1053. @section format
  1054. Convert the input video to one of the specified pixel formats.
  1055. Libavfilter will try to pick one that is suitable as input to
  1056. the next filter.
  1057. It accepts the following parameters:
  1058. @table @option
  1059. @item pix_fmts
  1060. A '|'-separated list of pixel format names, such as
  1061. "pix_fmts=yuv420p|monow|rgb24".
  1062. @end table
  1063. Some examples:
  1064. @example
  1065. # Convert the input video to the "yuv420p" format
  1066. format=pix_fmts=yuv420p
  1067. # Convert the input video to any of the formats in the list
  1068. format=pix_fmts=yuv420p|yuv444p|yuv410p
  1069. @end example
  1070. @anchor{fps}
  1071. @section fps
  1072. Convert the video to specified constant framerate by duplicating or dropping
  1073. frames as necessary.
  1074. It accepts the following parameters:
  1075. @table @option
  1076. @item fps
  1077. The desired output framerate.
  1078. @item start_time
  1079. Assume the first PTS should be the given value, in seconds. This allows for
  1080. padding/trimming at the start of stream. By default, no assumption is made
  1081. about the first frame's expected PTS, so no padding or trimming is done.
  1082. For example, this could be set to 0 to pad the beginning with duplicates of
  1083. the first frame if a video stream starts after the audio stream or to trim any
  1084. frames with a negative PTS.
  1085. @end table
  1086. @section framepack
  1087. Pack two different video streams into a stereoscopic video, setting proper
  1088. metadata on supported codecs. The two views should have the same size and
  1089. framerate and processing will stop when the shorter video ends. Please note
  1090. that you may conveniently adjust view properties with the @ref{scale} and
  1091. @ref{fps} filters.
  1092. It accepts the following parameters:
  1093. @table @option
  1094. @item format
  1095. The desired packing format. Supported values are:
  1096. @table @option
  1097. @item sbs
  1098. The views are next to each other (default).
  1099. @item tab
  1100. The views are on top of each other.
  1101. @item lines
  1102. The views are packed by line.
  1103. @item columns
  1104. The views are packed by column.
  1105. @item frameseq
  1106. The views are temporally interleaved.
  1107. @end table
  1108. @end table
  1109. Some examples:
  1110. @example
  1111. # Convert left and right views into a frame-sequential video
  1112. avconv -i LEFT -i RIGHT -filter_complex framepack=frameseq OUTPUT
  1113. # Convert views into a side-by-side video with the same output resolution as the input
  1114. avconv -i LEFT -i RIGHT -filter_complex [0:v]scale=w=iw/2[left],[1:v]scale=w=iw/2[right],[left][right]framepack=sbs OUTPUT
  1115. @end example
  1116. @anchor{frei0r}
  1117. @section frei0r
  1118. Apply a frei0r effect to the input video.
  1119. To enable the compilation of this filter, you need to install the frei0r
  1120. header and configure Libav with --enable-frei0r.
  1121. It accepts the following parameters:
  1122. @table @option
  1123. @item filter_name
  1124. The name of the frei0r effect to load. If the environment variable
  1125. @env{FREI0R_PATH} is defined, the frei0r effect is searched for in each of the
  1126. directories specified by the colon-separated list in @env{FREIOR_PATH}.
  1127. Otherwise, the standard frei0r paths are searched, in this order:
  1128. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  1129. @file{/usr/lib/frei0r-1/}.
  1130. @item filter_params
  1131. A '|'-separated list of parameters to pass to the frei0r effect.
  1132. @end table
  1133. A frei0r effect parameter can be a boolean (its value is either
  1134. "y" or "n"), a double, a color (specified as
  1135. @var{R}/@var{G}/@var{B}, where @var{R}, @var{G}, and @var{B} are floating point
  1136. numbers between 0.0 and 1.0, inclusive) or by an @code{av_parse_color()} color
  1137. description), a position (specified as @var{X}/@var{Y}, where
  1138. @var{X} and @var{Y} are floating point numbers) and/or a string.
  1139. The number and types of parameters depend on the loaded effect. If an
  1140. effect parameter is not specified, the default value is set.
  1141. Some examples:
  1142. @example
  1143. # Apply the distort0r effect, setting the first two double parameters
  1144. frei0r=filter_name=distort0r:filter_params=0.5|0.01
  1145. # Apply the colordistance effect, taking a color as the first parameter
  1146. frei0r=colordistance:0.2/0.3/0.4
  1147. frei0r=colordistance:violet
  1148. frei0r=colordistance:0x112233
  1149. # Apply the perspective effect, specifying the top left and top right
  1150. # image positions
  1151. frei0r=perspective:0.2/0.2|0.8/0.2
  1152. @end example
  1153. For more information, see
  1154. @url{http://piksel.org/frei0r}
  1155. @section gradfun
  1156. Fix the banding artifacts that are sometimes introduced into nearly flat
  1157. regions by truncation to 8-bit colordepth.
  1158. Interpolate the gradients that should go where the bands are, and
  1159. dither them.
  1160. It is designed for playback only. Do not use it prior to
  1161. lossy compression, because compression tends to lose the dither and
  1162. bring back the bands.
  1163. It accepts the following parameters:
  1164. @table @option
  1165. @item strength
  1166. The maximum amount by which the filter will change any one pixel. This is also
  1167. the threshold for detecting nearly flat regions. Acceptable values range from
  1168. .51 to 64; the default value is 1.2. Out-of-range values will be clipped to the
  1169. valid range.
  1170. @item radius
  1171. The neighborhood to fit the gradient to. A larger radius makes for smoother
  1172. gradients, but also prevents the filter from modifying the pixels near detailed
  1173. regions. Acceptable values are 8-32; the default value is 16. Out-of-range
  1174. values will be clipped to the valid range.
  1175. @end table
  1176. @example
  1177. # Default parameters
  1178. gradfun=strength=1.2:radius=16
  1179. # Omitting the radius
  1180. gradfun=1.2
  1181. @end example
  1182. @section hflip
  1183. Flip the input video horizontally.
  1184. For example, to horizontally flip the input video with @command{avconv}:
  1185. @example
  1186. avconv -i in.avi -vf "hflip" out.avi
  1187. @end example
  1188. @section hqdn3d
  1189. This is a high precision/quality 3d denoise filter. It aims to reduce
  1190. image noise, producing smooth images and making still images really
  1191. still. It should enhance compressibility.
  1192. It accepts the following optional parameters:
  1193. @table @option
  1194. @item luma_spatial
  1195. A non-negative floating point number which specifies spatial luma strength.
  1196. It defaults to 4.0.
  1197. @item chroma_spatial
  1198. A non-negative floating point number which specifies spatial chroma strength.
  1199. It defaults to 3.0*@var{luma_spatial}/4.0.
  1200. @item luma_tmp
  1201. A floating point number which specifies luma temporal strength. It defaults to
  1202. 6.0*@var{luma_spatial}/4.0.
  1203. @item chroma_tmp
  1204. A floating point number which specifies chroma temporal strength. It defaults to
  1205. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}.
  1206. @end table
  1207. @section hwdownload
  1208. Download hardware frames to system memory.
  1209. The input must be in hardware frames, and the output a non-hardware format.
  1210. Not all formats will be supported on the output - it may be necessary to insert
  1211. an additional @option{format} filter immediately following in the graph to get
  1212. the output in a supported format.
  1213. @section hwmap
  1214. Map hardware frames to system memory or to another device.
  1215. This filter has several different modes of operation; which one is used depends
  1216. on the input and output formats:
  1217. @itemize
  1218. @item
  1219. Hardware frame input, normal frame output
  1220. Map the input frames to system memory and pass them to the output. If the
  1221. original hardware frame is later required (for example, after overlaying
  1222. something else on part of it), the @option{hwmap} filter can be used again
  1223. in the next mode to retrieve it.
  1224. @item
  1225. Normal frame input, hardware frame output
  1226. If the input is actually a software-mapped hardware frame, then unmap it -
  1227. that is, return the original hardware frame.
  1228. Otherwise, a device must be provided. Create new hardware surfaces on that
  1229. device for the output, then map them back to the software format at the input
  1230. and give those frames to the preceding filter. This will then act like the
  1231. @option{hwupload} filter, but may be able to avoid an additional copy when
  1232. the input is already in a compatible format.
  1233. @item
  1234. Hardware frame input and output
  1235. A device must be supplied for the output, either directly or with the
  1236. @option{derive_device} option. The input and output devices must be of
  1237. different types and compatible - the exact meaning of this is
  1238. system-dependent, but typically it means that they must refer to the same
  1239. underlying hardware context (for example, refer to the same graphics card).
  1240. If the input frames were originally created on the output device, then unmap
  1241. to retrieve the original frames.
  1242. Otherwise, map the frames to the output device - create new hardware frames
  1243. on the output corresponding to the frames on the input.
  1244. @end itemize
  1245. The following additional parameters are accepted:
  1246. @table @option
  1247. @item mode
  1248. Set the frame mapping mode. Some combination of:
  1249. @table @var
  1250. @item read
  1251. The mapped frame should be readable.
  1252. @item write
  1253. The mapped frame should be writeable.
  1254. @item overwrite
  1255. The mapping will always overwrite the entire frame.
  1256. This may improve performance in some cases, as the original contents of the
  1257. frame need not be loaded.
  1258. @item direct
  1259. The mapping must not involve any copying.
  1260. Indirect mappings to copies of frames are created in some cases where either
  1261. direct mapping is not possible or it would have unexpected properties.
  1262. Setting this flag ensures that the mapping is direct and will fail if that is
  1263. not possible.
  1264. @end table
  1265. Defaults to @var{read+write} if not specified.
  1266. @item derive_device @var{type}
  1267. Rather than using the device supplied at initialisation, instead derive a new
  1268. device of type @var{type} from the device the input frames exist on.
  1269. @item reverse
  1270. In a hardware to hardware mapping, map in reverse - create frames in the sink
  1271. and map them back to the source. This may be necessary in some cases where
  1272. a mapping in one direction is required but only the opposite direction is
  1273. supported by the devices being used.
  1274. This option is dangerous - it may break the preceding filter in undefined
  1275. ways if there are any additional constraints on that filter's output.
  1276. Do not use it without fully understanding the implications of its use.
  1277. @end table
  1278. @section hwupload
  1279. Upload system memory frames to hardware surfaces.
  1280. The device to upload to must be supplied when the filter is initialised. If
  1281. using avconv, select the appropriate device with the @option{-filter_hw_device}
  1282. option.
  1283. @section hwupload_cuda
  1284. Upload system memory frames to a CUDA device.
  1285. It accepts the following optional parameters:
  1286. @table @option
  1287. @item device
  1288. The number of the CUDA device to use
  1289. @end table
  1290. @section interlace
  1291. Simple interlacing filter from progressive contents. This interleaves upper (or
  1292. lower) lines from odd frames with lower (or upper) lines from even frames,
  1293. halving the frame rate and preserving image height.
  1294. @example
  1295. Original Original New Frame
  1296. Frame 'j' Frame 'j+1' (tff)
  1297. ========== =========== ==================
  1298. Line 0 --------------------> Frame 'j' Line 0
  1299. Line 1 Line 1 ----> Frame 'j+1' Line 1
  1300. Line 2 ---------------------> Frame 'j' Line 2
  1301. Line 3 Line 3 ----> Frame 'j+1' Line 3
  1302. ... ... ...
  1303. New Frame + 1 will be generated by Frame 'j+2' and Frame 'j+3' and so on
  1304. @end example
  1305. It accepts the following optional parameters:
  1306. @table @option
  1307. @item scan
  1308. This determines whether the interlaced frame is taken from the even
  1309. (tff - default) or odd (bff) lines of the progressive frame.
  1310. @item lowpass
  1311. Enable (default) or disable the vertical lowpass filter to avoid twitter
  1312. interlacing and reduce moire patterns.
  1313. @end table
  1314. @section lut, lutrgb, lutyuv
  1315. Compute a look-up table for binding each pixel component input value
  1316. to an output value, and apply it to the input video.
  1317. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1318. to an RGB input video.
  1319. These filters accept the following parameters:
  1320. @table @option
  1321. @item @var{c0} (first pixel component)
  1322. @item @var{c1} (second pixel component)
  1323. @item @var{c2} (third pixel component)
  1324. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  1325. @item @var{r} (red component)
  1326. @item @var{g} (green component)
  1327. @item @var{b} (blue component)
  1328. @item @var{a} (alpha component)
  1329. @item @var{y} (Y/luminance component)
  1330. @item @var{u} (U/Cb component)
  1331. @item @var{v} (V/Cr component)
  1332. @end table
  1333. Each of them specifies the expression to use for computing the lookup table for
  1334. the corresponding pixel component values.
  1335. The exact component associated to each of the @var{c*} options depends on the
  1336. format in input.
  1337. The @var{lut} filter requires either YUV or RGB pixel formats in input,
  1338. @var{lutrgb} requires RGB pixel formats in input, and @var{lutyuv} requires YUV.
  1339. The expressions can contain the following constants and functions:
  1340. @table @option
  1341. @item E, PI, PHI
  1342. These are approximated values for the mathematical constants e
  1343. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1344. @item w, h
  1345. The input width and height.
  1346. @item val
  1347. The input value for the pixel component.
  1348. @item clipval
  1349. The input value, clipped to the @var{minval}-@var{maxval} range.
  1350. @item maxval
  1351. The maximum value for the pixel component.
  1352. @item minval
  1353. The minimum value for the pixel component.
  1354. @item negval
  1355. The negated value for the pixel component value, clipped to the
  1356. @var{minval}-@var{maxval} range; it corresponds to the expression
  1357. "maxval-clipval+minval".
  1358. @item clip(val)
  1359. The computed value in @var{val}, clipped to the
  1360. @var{minval}-@var{maxval} range.
  1361. @item gammaval(gamma)
  1362. The computed gamma correction value of the pixel component value,
  1363. clipped to the @var{minval}-@var{maxval} range. It corresponds to the
  1364. expression
  1365. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1366. @end table
  1367. All expressions default to "val".
  1368. Some examples:
  1369. @example
  1370. # Negate input video
  1371. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1372. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1373. # The above is the same as
  1374. lutrgb="r=negval:g=negval:b=negval"
  1375. lutyuv="y=negval:u=negval:v=negval"
  1376. # Negate luminance
  1377. lutyuv=negval
  1378. # Remove chroma components, turning the video into a graytone image
  1379. lutyuv="u=128:v=128"
  1380. # Apply a luma burning effect
  1381. lutyuv="y=2*val"
  1382. # Remove green and blue components
  1383. lutrgb="g=0:b=0"
  1384. # Set a constant alpha channel value on input
  1385. format=rgba,lutrgb=a="maxval-minval/2"
  1386. # Correct luminance gamma by a factor of 0.5
  1387. lutyuv=y=gammaval(0.5)
  1388. @end example
  1389. @section negate
  1390. Negate input video.
  1391. It accepts an integer in input; if non-zero it negates the
  1392. alpha component (if available). The default value in input is 0.
  1393. @section noformat
  1394. Force libavfilter not to use any of the specified pixel formats for the
  1395. input to the next filter.
  1396. It accepts the following parameters:
  1397. @table @option
  1398. @item pix_fmts
  1399. A '|'-separated list of pixel format names, such as
  1400. apix_fmts=yuv420p|monow|rgb24".
  1401. @end table
  1402. Some examples:
  1403. @example
  1404. # Force libavfilter to use a format different from "yuv420p" for the
  1405. # input to the vflip filter
  1406. noformat=pix_fmts=yuv420p,vflip
  1407. # Convert the input video to any of the formats not contained in the list
  1408. noformat=yuv420p|yuv444p|yuv410p
  1409. @end example
  1410. @section null
  1411. Pass the video source unchanged to the output.
  1412. @section ocv
  1413. Apply a video transform using libopencv.
  1414. To enable this filter, install the libopencv library and headers and
  1415. configure Libav with --enable-libopencv.
  1416. It accepts the following parameters:
  1417. @table @option
  1418. @item filter_name
  1419. The name of the libopencv filter to apply.
  1420. @item filter_params
  1421. The parameters to pass to the libopencv filter. If not specified, the default
  1422. values are assumed.
  1423. @end table
  1424. Refer to the official libopencv documentation for more precise
  1425. information:
  1426. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1427. Several libopencv filters are supported; see the following subsections.
  1428. @anchor{dilate}
  1429. @subsection dilate
  1430. Dilate an image by using a specific structuring element.
  1431. It corresponds to the libopencv function @code{cvDilate}.
  1432. It accepts the parameters: @var{struct_el}|@var{nb_iterations}.
  1433. @var{struct_el} represents a structuring element, and has the syntax:
  1434. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1435. @var{cols} and @var{rows} represent the number of columns and rows of
  1436. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1437. point, and @var{shape} the shape for the structuring element. @var{shape}
  1438. must be "rect", "cross", "ellipse", or "custom".
  1439. If the value for @var{shape} is "custom", it must be followed by a
  1440. string of the form "=@var{filename}". The file with name
  1441. @var{filename} is assumed to represent a binary image, with each
  1442. printable character corresponding to a bright pixel. When a custom
  1443. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1444. or columns and rows of the read file are assumed instead.
  1445. The default value for @var{struct_el} is "3x3+0x0/rect".
  1446. @var{nb_iterations} specifies the number of times the transform is
  1447. applied to the image, and defaults to 1.
  1448. Some examples:
  1449. @example
  1450. # Use the default values
  1451. ocv=dilate
  1452. # Dilate using a structuring element with a 5x5 cross, iterating two times
  1453. ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2
  1454. # Read the shape from the file diamond.shape, iterating two times.
  1455. # The file diamond.shape may contain a pattern of characters like this
  1456. # *
  1457. # ***
  1458. # *****
  1459. # ***
  1460. # *
  1461. # The specified columns and rows are ignored
  1462. # but the anchor point coordinates are not
  1463. ocv=dilate:0x0+2x2/custom=diamond.shape|2
  1464. @end example
  1465. @subsection erode
  1466. Erode an image by using a specific structuring element.
  1467. It corresponds to the libopencv function @code{cvErode}.
  1468. It accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1469. with the same syntax and semantics as the @ref{dilate} filter.
  1470. @subsection smooth
  1471. Smooth the input video.
  1472. The filter takes the following parameters:
  1473. @var{type}|@var{param1}|@var{param2}|@var{param3}|@var{param4}.
  1474. @var{type} is the type of smooth filter to apply, and must be one of
  1475. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1476. or "bilateral". The default value is "gaussian".
  1477. The meaning of @var{param1}, @var{param2}, @var{param3}, and @var{param4}
  1478. depend on the smooth type. @var{param1} and
  1479. @var{param2} accept integer positive values or 0. @var{param3} and
  1480. @var{param4} accept floating point values.
  1481. The default value for @var{param1} is 3. The default value for the
  1482. other parameters is 0.
  1483. These parameters correspond to the parameters assigned to the
  1484. libopencv function @code{cvSmooth}.
  1485. @anchor{overlay}
  1486. @section overlay
  1487. Overlay one video on top of another.
  1488. It takes two inputs and has one output. The first input is the "main"
  1489. video on which the second input is overlaid.
  1490. It accepts the following parameters:
  1491. @table @option
  1492. @item x
  1493. The horizontal position of the left edge of the overlaid video on the main video.
  1494. @item y
  1495. The vertical position of the top edge of the overlaid video on the main video.
  1496. @end table
  1497. The parameters are expressions containing the following parameters:
  1498. @table @option
  1499. @item main_w, main_h
  1500. The main input width and height.
  1501. @item W, H
  1502. These are the same as @var{main_w} and @var{main_h}.
  1503. @item overlay_w, overlay_h
  1504. The overlay input width and height.
  1505. @item w, h
  1506. These are the same as @var{overlay_w} and @var{overlay_h}.
  1507. @item eof_action
  1508. The action to take when EOF is encountered on the secondary input; it accepts
  1509. one of the following values:
  1510. @table @option
  1511. @item repeat
  1512. Repeat the last frame (the default).
  1513. @item endall
  1514. End both streams.
  1515. @item pass
  1516. Pass the main input through.
  1517. @end table
  1518. @end table
  1519. Be aware that frames are taken from each input video in timestamp
  1520. order, hence, if their initial timestamps differ, it is a a good idea
  1521. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1522. have them begin in the same zero timestamp, as the example for
  1523. the @var{movie} filter does.
  1524. Some examples:
  1525. @example
  1526. # Draw the overlay at 10 pixels from the bottom right
  1527. # corner of the main video
  1528. overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10
  1529. # Insert a transparent PNG logo in the bottom left corner of the input
  1530. avconv -i input -i logo -filter_complex 'overlay=x=10:y=main_h-overlay_h-10' output
  1531. # Insert 2 different transparent PNG logos (second logo on bottom
  1532. # right corner)
  1533. avconv -i input -i logo1 -i logo2 -filter_complex
  1534. 'overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10' output
  1535. # Add a transparent color layer on top of the main video;
  1536. # WxH specifies the size of the main input to the overlay filter
  1537. color=red@.3:WxH [over]; [in][over] overlay [out]
  1538. # Mask 10-20 seconds of a video by applying the delogo filter to a section
  1539. avconv -i test.avi -codec:v:0 wmv2 -ar 11025 -b:v 9000k
  1540. -vf '[in]split[split_main][split_delogo];[split_delogo]trim=start=360:end=371,delogo=0:0:640:480[delogoed];[split_main][delogoed]overlay=eof_action=pass[out]'
  1541. masked.avi
  1542. @end example
  1543. You can chain together more overlays but the efficiency of such
  1544. approach is yet to be tested.
  1545. @section pad
  1546. Add paddings to the input image, and place the original input at the
  1547. provided @var{x}, @var{y} coordinates.
  1548. It accepts the following parameters:
  1549. @table @option
  1550. @item width, height
  1551. Specify the size of the output image with the paddings added. If the
  1552. value for @var{width} or @var{height} is 0, the corresponding input size
  1553. is used for the output.
  1554. The @var{width} expression can reference the value set by the
  1555. @var{height} expression, and vice versa.
  1556. The default value of @var{width} and @var{height} is 0.
  1557. @item x, y
  1558. Specify the offsets to place the input image at within the padded area,
  1559. with respect to the top/left border of the output image.
  1560. The @var{x} expression can reference the value set by the @var{y}
  1561. expression, and vice versa.
  1562. The default value of @var{x} and @var{y} is 0.
  1563. @item color
  1564. Specify the color of the padded area. It can be the name of a color
  1565. (case insensitive match) or an 0xRRGGBB[AA] sequence.
  1566. The default value of @var{color} is "black".
  1567. @end table
  1568. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1569. expressions containing the following constants:
  1570. @table @option
  1571. @item E, PI, PHI
  1572. These are approximated values for the mathematical constants e
  1573. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1574. @item in_w, in_h
  1575. The input video width and height.
  1576. @item iw, ih
  1577. These are the same as @var{in_w} and @var{in_h}.
  1578. @item out_w, out_h
  1579. The output width and height (the size of the padded area), as
  1580. specified by the @var{width} and @var{height} expressions.
  1581. @item ow, oh
  1582. These are the same as @var{out_w} and @var{out_h}.
  1583. @item x, y
  1584. The x and y offsets as specified by the @var{x} and @var{y}
  1585. expressions, or NAN if not yet specified.
  1586. @item a
  1587. The input display aspect ratio, same as @var{iw} / @var{ih}.
  1588. @item hsub, vsub
  1589. The horizontal and vertical chroma subsample values. For example for the
  1590. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1591. @end table
  1592. Some examples:
  1593. @example
  1594. # Add paddings with the color "violet" to the input video. The output video
  1595. # size is 640x480, and the top-left corner of the input video is placed at
  1596. # column 0, row 40
  1597. pad=width=640:height=480:x=0:y=40:color=violet
  1598. # Pad the input to get an output with dimensions increased by 3/2,
  1599. # and put the input video at the center of the padded area
  1600. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1601. # Pad the input to get a squared output with size equal to the maximum
  1602. # value between the input width and height, and put the input video at
  1603. # the center of the padded area
  1604. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1605. # Pad the input to get a final w/h ratio of 16:9
  1606. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1607. # Double the output size and put the input video in the bottom-right
  1608. # corner of the output padded area
  1609. pad="2*iw:2*ih:ow-iw:oh-ih"
  1610. @end example
  1611. @section pixdesctest
  1612. Pixel format descriptor test filter, mainly useful for internal
  1613. testing. The output video should be equal to the input video.
  1614. For example:
  1615. @example
  1616. format=monow, pixdesctest
  1617. @end example
  1618. can be used to test the monowhite pixel format descriptor definition.
  1619. @anchor{scale}
  1620. @section scale
  1621. Scale the input video and/or convert the image format.
  1622. It accepts the following parameters:
  1623. @table @option
  1624. @item w
  1625. The output video width.
  1626. @item h
  1627. The output video height.
  1628. @end table
  1629. The parameters @var{w} and @var{h} are expressions containing
  1630. the following constants:
  1631. @table @option
  1632. @item E, PI, PHI
  1633. These are approximated values for the mathematical constants e
  1634. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1635. @item in_w, in_h
  1636. The input width and height.
  1637. @item iw, ih
  1638. These are the same as @var{in_w} and @var{in_h}.
  1639. @item out_w, out_h
  1640. The output (cropped) width and height.
  1641. @item ow, oh
  1642. These are the same as @var{out_w} and @var{out_h}.
  1643. @item a
  1644. This is the same as @var{iw} / @var{ih}.
  1645. @item sar
  1646. input sample aspect ratio
  1647. @item dar
  1648. The input display aspect ratio; it is the same as
  1649. (@var{iw} / @var{ih}) * @var{sar}.
  1650. @item hsub, vsub
  1651. The horizontal and vertical chroma subsample values. For example, for the
  1652. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1653. @end table
  1654. If the input image format is different from the format requested by
  1655. the next filter, the scale filter will convert the input to the
  1656. requested format.
  1657. If the value for @var{w} or @var{h} is 0, the respective input
  1658. size is used for the output.
  1659. If the value for @var{w} or @var{h} is -1, the scale filter will use, for the
  1660. respective output size, a value that maintains the aspect ratio of the input
  1661. image.
  1662. The default value of @var{w} and @var{h} is 0.
  1663. Some examples:
  1664. @example
  1665. # Scale the input video to a size of 200x100
  1666. scale=w=200:h=100
  1667. # Scale the input to 2x
  1668. scale=w=2*iw:h=2*ih
  1669. # The above is the same as
  1670. scale=2*in_w:2*in_h
  1671. # Scale the input to half the original size
  1672. scale=w=iw/2:h=ih/2
  1673. # Increase the width, and set the height to the same size
  1674. scale=3/2*iw:ow
  1675. # Seek Greek harmony
  1676. scale=iw:1/PHI*iw
  1677. scale=ih*PHI:ih
  1678. # Increase the height, and set the width to 3/2 of the height
  1679. scale=w=3/2*oh:h=3/5*ih
  1680. # Increase the size, making the size a multiple of the chroma
  1681. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1682. # Increase the width to a maximum of 500 pixels,
  1683. # keeping the same aspect ratio as the input
  1684. scale=w='min(500\, iw*3/2):h=-1'
  1685. @end example
  1686. @section scale_npp
  1687. Use the NVIDIA Performance Primitives (libnpp) to perform scaling and/or pixel
  1688. format conversion on CUDA video frames. Setting the output width and height
  1689. works in the same way as for the @var{scale} filter.
  1690. The following additional options are accepted:
  1691. @table @option
  1692. @item format
  1693. The pixel format of the output CUDA frames. If set to the string "same" (the
  1694. default), the input format will be kept. Note that automatic format negotiation
  1695. and conversion is not yet supported for hardware frames
  1696. @item interp_algo
  1697. The interpolation algorithm used for resizing. One of the following:
  1698. @table @option
  1699. @item nn
  1700. Nearest neighbour.
  1701. @item linear
  1702. @item cubic
  1703. @item cubic2p_bspline
  1704. 2-parameter cubic (B=1, C=0)
  1705. @item cubic2p_catmullrom
  1706. 2-parameter cubic (B=0, C=1/2)
  1707. @item cubic2p_b05c03
  1708. 2-parameter cubic (B=1/2, C=3/10)
  1709. @item super
  1710. Supersampling
  1711. @item lanczos
  1712. @end table
  1713. @end table
  1714. @section select
  1715. Select frames to pass in output.
  1716. It accepts the following parameters:
  1717. @table @option
  1718. @item expr
  1719. An expression, which is evaluated for each input frame. If the expression is
  1720. evaluated to a non-zero value, the frame is selected and passed to the output,
  1721. otherwise it is discarded.
  1722. @end table
  1723. The expression can contain the following constants:
  1724. @table @option
  1725. @item E, PI, PHI
  1726. These are approximated values for the mathematical constants e
  1727. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1728. @item n
  1729. The (sequential) number of the filtered frame, starting from 0.
  1730. @item selected_n
  1731. The (sequential) number of the selected frame, starting from 0.
  1732. @item prev_selected_n
  1733. The sequential number of the last selected frame. It's NAN if undefined.
  1734. @item TB
  1735. The timebase of the input timestamps.
  1736. @item pts
  1737. The PTS (Presentation TimeStamp) of the filtered video frame,
  1738. expressed in @var{TB} units. It's NAN if undefined.
  1739. @item t
  1740. The PTS of the filtered video frame,
  1741. expressed in seconds. It's NAN if undefined.
  1742. @item prev_pts
  1743. The PTS of the previously filtered video frame. It's NAN if undefined.
  1744. @item prev_selected_pts
  1745. The PTS of the last previously filtered video frame. It's NAN if undefined.
  1746. @item prev_selected_t
  1747. The PTS of the last previously selected video frame. It's NAN if undefined.
  1748. @item start_pts
  1749. The PTS of the first video frame in the video. It's NAN if undefined.
  1750. @item start_t
  1751. The time of the first video frame in the video. It's NAN if undefined.
  1752. @item pict_type
  1753. The type of the filtered frame. It can assume one of the following
  1754. values:
  1755. @table @option
  1756. @item I
  1757. @item P
  1758. @item B
  1759. @item S
  1760. @item SI
  1761. @item SP
  1762. @item BI
  1763. @end table
  1764. @item interlace_type
  1765. The frame interlace type. It can assume one of the following values:
  1766. @table @option
  1767. @item PROGRESSIVE
  1768. The frame is progressive (not interlaced).
  1769. @item TOPFIRST
  1770. The frame is top-field-first.
  1771. @item BOTTOMFIRST
  1772. The frame is bottom-field-first.
  1773. @end table
  1774. @item key
  1775. This is 1 if the filtered frame is a key-frame, 0 otherwise.
  1776. @end table
  1777. The default value of the select expression is "1".
  1778. Some examples:
  1779. @example
  1780. # Select all the frames in input
  1781. select
  1782. # The above is the same as
  1783. select=expr=1
  1784. # Skip all frames
  1785. select=expr=0
  1786. # Select only I-frames
  1787. select='expr=eq(pict_type\,I)'
  1788. # Select one frame per 100
  1789. select='not(mod(n\,100))'
  1790. # Select only frames contained in the 10-20 time interval
  1791. select='gte(t\,10)*lte(t\,20)'
  1792. # Select only I-frames contained in the 10-20 time interval
  1793. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1794. # Select frames with a minimum distance of 10 seconds
  1795. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1796. @end example
  1797. @anchor{setdar}
  1798. @section setdar
  1799. Set the Display Aspect Ratio for the filter output video.
  1800. This is done by changing the specified Sample (aka Pixel) Aspect
  1801. Ratio, according to the following equation:
  1802. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1803. Keep in mind that this filter does not modify the pixel dimensions of
  1804. the video frame. Also, the display aspect ratio set by this filter may
  1805. be changed by later filters in the filterchain, e.g. in case of
  1806. scaling or if another "setdar" or a "setsar" filter is applied.
  1807. It accepts the following parameters:
  1808. @table @option
  1809. @item dar
  1810. The output display aspect ratio.
  1811. @end table
  1812. The parameter @var{dar} is an expression containing
  1813. the following constants:
  1814. @table @option
  1815. @item E, PI, PHI
  1816. These are approximated values for the mathematical constants e
  1817. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1818. @item w, h
  1819. The input width and height.
  1820. @item a
  1821. This is the same as @var{w} / @var{h}.
  1822. @item sar
  1823. The input sample aspect ratio.
  1824. @item dar
  1825. The input display aspect ratio. It is the same as
  1826. (@var{w} / @var{h}) * @var{sar}.
  1827. @item hsub, vsub
  1828. The horizontal and vertical chroma subsample values. For example, for the
  1829. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1830. @end table
  1831. To change the display aspect ratio to 16:9, specify:
  1832. @example
  1833. setdar=dar=16/9
  1834. # The above is equivalent to
  1835. setdar=dar=1.77777
  1836. @end example
  1837. Also see the the @ref{setsar} filter documentation.
  1838. @section setpts
  1839. Change the PTS (presentation timestamp) of the input video frames.
  1840. It accepts the following parameters:
  1841. @table @option
  1842. @item expr
  1843. The expression which is evaluated for each frame to construct its timestamp.
  1844. @end table
  1845. The expression is evaluated through the eval API and can contain the following
  1846. constants:
  1847. @table @option
  1848. @item PTS
  1849. The presentation timestamp in input.
  1850. @item E, PI, PHI
  1851. These are approximated values for the mathematical constants e
  1852. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1853. @item N
  1854. The count of the input frame, starting from 0.
  1855. @item STARTPTS
  1856. The PTS of the first video frame.
  1857. @item INTERLACED
  1858. State whether the current frame is interlaced.
  1859. @item PREV_INPTS
  1860. The previous input PTS.
  1861. @item PREV_OUTPTS
  1862. The previous output PTS.
  1863. @item RTCTIME
  1864. The wallclock (RTC) time in microseconds.
  1865. @item RTCSTART
  1866. The wallclock (RTC) time at the start of the movie in microseconds.
  1867. @item TB
  1868. The timebase of the input timestamps.
  1869. @end table
  1870. Some examples:
  1871. @example
  1872. # Start counting the PTS from zero
  1873. setpts=expr=PTS-STARTPTS
  1874. # Fast motion
  1875. setpts=expr=0.5*PTS
  1876. # Slow motion
  1877. setpts=2.0*PTS
  1878. # Fixed rate 25 fps
  1879. setpts=N/(25*TB)
  1880. # Fixed rate 25 fps with some jitter
  1881. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1882. # Generate timestamps from a "live source" and rebase onto the current timebase
  1883. setpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  1884. @end example
  1885. @anchor{setsar}
  1886. @section setsar
  1887. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1888. Note that as a consequence of the application of this filter, the
  1889. output display aspect ratio will change according to the following
  1890. equation:
  1891. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1892. Keep in mind that the sample aspect ratio set by this filter may be
  1893. changed by later filters in the filterchain, e.g. if another "setsar"
  1894. or a "setdar" filter is applied.
  1895. It accepts the following parameters:
  1896. @table @option
  1897. @item sar
  1898. The output sample aspect ratio.
  1899. @end table
  1900. The parameter @var{sar} is an expression containing
  1901. the following constants:
  1902. @table @option
  1903. @item E, PI, PHI
  1904. These are approximated values for the mathematical constants e
  1905. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  1906. @item w, h
  1907. The input width and height.
  1908. @item a
  1909. These are the same as @var{w} / @var{h}.
  1910. @item sar
  1911. The input sample aspect ratio.
  1912. @item dar
  1913. The input display aspect ratio. It is the same as
  1914. (@var{w} / @var{h}) * @var{sar}.
  1915. @item hsub, vsub
  1916. Horizontal and vertical chroma subsample values. For example, for the
  1917. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1918. @end table
  1919. To change the sample aspect ratio to 10:11, specify:
  1920. @example
  1921. setsar=sar=10/11
  1922. @end example
  1923. @section settb
  1924. Set the timebase to use for the output frames timestamps.
  1925. It is mainly useful for testing timebase configuration.
  1926. It accepts the following parameters:
  1927. @table @option
  1928. @item expr
  1929. The expression which is evaluated into the output timebase.
  1930. @end table
  1931. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1932. default timebase), and "intb" (the input timebase).
  1933. The default value for the input is "intb".
  1934. Some examples:
  1935. @example
  1936. # Set the timebase to 1/25
  1937. settb=expr=1/25
  1938. # Set the timebase to 1/10
  1939. settb=expr=0.1
  1940. # Set the timebase to 1001/1000
  1941. settb=1+0.001
  1942. #Set the timebase to 2*intb
  1943. settb=2*intb
  1944. #Set the default timebase value
  1945. settb=AVTB
  1946. @end example
  1947. @section showinfo
  1948. Show a line containing various information for each input video frame.
  1949. The input video is not modified.
  1950. The shown line contains a sequence of key/value pairs of the form
  1951. @var{key}:@var{value}.
  1952. It accepts the following parameters:
  1953. @table @option
  1954. @item n
  1955. The (sequential) number of the input frame, starting from 0.
  1956. @item pts
  1957. The Presentation TimeStamp of the input frame, expressed as a number of
  1958. time base units. The time base unit depends on the filter input pad.
  1959. @item pts_time
  1960. The Presentation TimeStamp of the input frame, expressed as a number of
  1961. seconds.
  1962. @item pos
  1963. The position of the frame in the input stream, or -1 if this information is
  1964. unavailable and/or meaningless (for example in case of synthetic video).
  1965. @item fmt
  1966. The pixel format name.
  1967. @item sar
  1968. The sample aspect ratio of the input frame, expressed in the form
  1969. @var{num}/@var{den}.
  1970. @item s
  1971. The size of the input frame, expressed in the form
  1972. @var{width}x@var{height}.
  1973. @item i
  1974. The type of interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1975. for bottom field first).
  1976. @item iskey
  1977. This is 1 if the frame is a key frame, 0 otherwise.
  1978. @item type
  1979. The picture type of the input frame ("I" for an I-frame, "P" for a
  1980. P-frame, "B" for a B-frame, or "?" for an unknown type).
  1981. Also refer to the documentation of the @code{AVPictureType} enum and of
  1982. the @code{av_get_picture_type_char} function defined in
  1983. @file{libavutil/avutil.h}.
  1984. @item checksum
  1985. The Adler-32 checksum of all the planes of the input frame.
  1986. @item plane_checksum
  1987. The Adler-32 checksum of each plane of the input frame, expressed in the form
  1988. "[@var{c0} @var{c1} @var{c2} @var{c3}]".
  1989. @end table
  1990. @section shuffleplanes
  1991. Reorder and/or duplicate video planes.
  1992. It accepts the following parameters:
  1993. @table @option
  1994. @item map0
  1995. The index of the input plane to be used as the first output plane.
  1996. @item map1
  1997. The index of the input plane to be used as the second output plane.
  1998. @item map2
  1999. The index of the input plane to be used as the third output plane.
  2000. @item map3
  2001. The index of the input plane to be used as the fourth output plane.
  2002. @end table
  2003. The first plane has the index 0. The default is to keep the input unchanged.
  2004. Swap the second and third planes of the input:
  2005. @example
  2006. avconv -i INPUT -vf shuffleplanes=0:2:1:3 OUTPUT
  2007. @end example
  2008. @section split
  2009. Split input video into several identical outputs.
  2010. It accepts a single parameter, which specifies the number of outputs. If
  2011. unspecified, it defaults to 2.
  2012. Create 5 copies of the input video:
  2013. @example
  2014. avconv -i INPUT -filter_complex split=5 OUTPUT
  2015. @end example
  2016. @section transpose
  2017. Transpose rows with columns in the input video and optionally flip it.
  2018. It accepts the following parameters:
  2019. @table @option
  2020. @item dir
  2021. The direction of the transpose.
  2022. @end table
  2023. The direction can assume the following values:
  2024. @table @samp
  2025. @item cclock_flip
  2026. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2027. @example
  2028. L.R L.l
  2029. . . -> . .
  2030. l.r R.r
  2031. @end example
  2032. @item clock
  2033. Rotate by 90 degrees clockwise, that is:
  2034. @example
  2035. L.R l.L
  2036. . . -> . .
  2037. l.r r.R
  2038. @end example
  2039. @item cclock
  2040. Rotate by 90 degrees counterclockwise, that is:
  2041. @example
  2042. L.R R.r
  2043. . . -> . .
  2044. l.r L.l
  2045. @end example
  2046. @item clock_flip
  2047. Rotate by 90 degrees clockwise and vertically flip, that is:
  2048. @example
  2049. L.R r.R
  2050. . . -> . .
  2051. l.r l.L
  2052. @end example
  2053. @end table
  2054. @section trim
  2055. Trim the input so that the output contains one continuous subpart of the input.
  2056. It accepts the following parameters:
  2057. @table @option
  2058. @item start
  2059. The timestamp (in seconds) of the start of the kept section. The frame with the
  2060. timestamp @var{start} will be the first frame in the output.
  2061. @item end
  2062. The timestamp (in seconds) of the first frame that will be dropped. The frame
  2063. immediately preceding the one with the timestamp @var{end} will be the last
  2064. frame in the output.
  2065. @item start_pts
  2066. This is the same as @var{start}, except this option sets the start timestamp
  2067. in timebase units instead of seconds.
  2068. @item end_pts
  2069. This is the same as @var{end}, except this option sets the end timestamp
  2070. in timebase units instead of seconds.
  2071. @item duration
  2072. The maximum duration of the output in seconds.
  2073. @item start_frame
  2074. The number of the first frame that should be passed to the output.
  2075. @item end_frame
  2076. The number of the first frame that should be dropped.
  2077. @end table
  2078. Note that the first two sets of the start/end options and the @option{duration}
  2079. option look at the frame timestamp, while the _frame variants simply count the
  2080. frames that pass through the filter. Also note that this filter does not modify
  2081. the timestamps. If you wish for the output timestamps to start at zero, insert a
  2082. setpts filter after the trim filter.
  2083. If multiple start or end options are set, this filter tries to be greedy and
  2084. keep all the frames that match at least one of the specified constraints. To keep
  2085. only the part that matches all the constraints at once, chain multiple trim
  2086. filters.
  2087. The defaults are such that all the input is kept. So it is possible to set e.g.
  2088. just the end values to keep everything before the specified time.
  2089. Examples:
  2090. @itemize
  2091. @item
  2092. Drop everything except the second minute of input:
  2093. @example
  2094. avconv -i INPUT -vf trim=60:120
  2095. @end example
  2096. @item
  2097. Keep only the first second:
  2098. @example
  2099. avconv -i INPUT -vf trim=duration=1
  2100. @end example
  2101. @end itemize
  2102. @section unsharp
  2103. Sharpen or blur the input video.
  2104. It accepts the following parameters:
  2105. @table @option
  2106. @item luma_msize_x
  2107. Set the luma matrix horizontal size. It must be an integer between 3
  2108. and 13. The default value is 5.
  2109. @item luma_msize_y
  2110. Set the luma matrix vertical size. It must be an integer between 3
  2111. and 13. The default value is 5.
  2112. @item luma_amount
  2113. Set the luma effect strength. It must be a floating point number between -2.0
  2114. and 5.0. The default value is 1.0.
  2115. @item chroma_msize_x
  2116. Set the chroma matrix horizontal size. It must be an integer between 3
  2117. and 13. The default value is 5.
  2118. @item chroma_msize_y
  2119. Set the chroma matrix vertical size. It must be an integer between 3
  2120. and 13. The default value is 5.
  2121. @item chroma_amount
  2122. Set the chroma effect strength. It must be a floating point number between -2.0
  2123. and 5.0. The default value is 0.0.
  2124. @end table
  2125. Negative values for the amount will blur the input video, while positive
  2126. values will sharpen. All parameters are optional and default to the
  2127. equivalent of the string '5:5:1.0:5:5:0.0'.
  2128. @example
  2129. # Strong luma sharpen effect parameters
  2130. unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5
  2131. # A strong blur of both luma and chroma parameters
  2132. unsharp=7:7:-2:7:7:-2
  2133. # Use the default values with @command{avconv}
  2134. ./avconv -i in.avi -vf "unsharp" out.mp4
  2135. @end example
  2136. @section vflip
  2137. Flip the input video vertically.
  2138. @example
  2139. ./avconv -i in.avi -vf "vflip" out.avi
  2140. @end example
  2141. @section yadif
  2142. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2143. filter").
  2144. It accepts the following parameters:
  2145. @table @option
  2146. @item mode
  2147. The interlacing mode to adopt. It accepts one of the following values:
  2148. @table @option
  2149. @item 0
  2150. Output one frame for each frame.
  2151. @item 1
  2152. Output one frame for each field.
  2153. @item 2
  2154. Like 0, but it skips the spatial interlacing check.
  2155. @item 3
  2156. Like 1, but it skips the spatial interlacing check.
  2157. @end table
  2158. The default value is 0.
  2159. @item parity
  2160. The picture field parity assumed for the input interlaced video. It accepts one
  2161. of the following values:
  2162. @table @option
  2163. @item 0
  2164. Assume the top field is first.
  2165. @item 1
  2166. Assume the bottom field is first.
  2167. @item -1
  2168. Enable automatic detection of field parity.
  2169. @end table
  2170. The default value is -1.
  2171. If the interlacing is unknown or the decoder does not export this information,
  2172. top field first will be assumed.
  2173. @item auto
  2174. Whether the deinterlacer should trust the interlaced flag and only deinterlace
  2175. frames marked as interlaced.
  2176. @table @option
  2177. @item 0
  2178. Deinterlace all frames.
  2179. @item 1
  2180. Only deinterlace frames marked as interlaced.
  2181. @end table
  2182. The default value is 0.
  2183. @end table
  2184. @c man end VIDEO FILTERS
  2185. @chapter Video Sources
  2186. @c man begin VIDEO SOURCES
  2187. Below is a description of the currently available video sources.
  2188. @section buffer
  2189. Buffer video frames, and make them available to the filter chain.
  2190. This source is mainly intended for a programmatic use, in particular
  2191. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2192. It accepts the following parameters:
  2193. @table @option
  2194. @item width
  2195. The input video width.
  2196. @item height
  2197. The input video height.
  2198. @item pix_fmt
  2199. The name of the input video pixel format.
  2200. @item time_base
  2201. The time base used for input timestamps.
  2202. @item sar
  2203. The sample (pixel) aspect ratio of the input video.
  2204. @item hw_frames_ctx
  2205. When using a hardware pixel format, this should be a reference to an
  2206. AVHWFramesContext describing input frames.
  2207. @end table
  2208. For example:
  2209. @example
  2210. buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1
  2211. @end example
  2212. will instruct the source to accept video frames with size 320x240 and
  2213. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2214. square pixels (1:1 sample aspect ratio).
  2215. @section color
  2216. Provide an uniformly colored input.
  2217. It accepts the following parameters:
  2218. @table @option
  2219. @item color
  2220. Specify the color of the source. It can be the name of a color (case
  2221. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2222. alpha specifier. The default value is "black".
  2223. @item size
  2224. Specify the size of the sourced video, it may be a string of the form
  2225. @var{width}x@var{height}, or the name of a size abbreviation. The
  2226. default value is "320x240".
  2227. @item framerate
  2228. Specify the frame rate of the sourced video, as the number of frames
  2229. generated per second. It has to be a string in the format
  2230. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a floating point
  2231. number or a valid video frame rate abbreviation. The default value is
  2232. "25".
  2233. @end table
  2234. The following graph description will generate a red source
  2235. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2236. frames per second, which will be overlaid over the source connected
  2237. to the pad with identifier "in":
  2238. @example
  2239. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2240. @end example
  2241. @section movie
  2242. Read a video stream from a movie container.
  2243. Note that this source is a hack that bypasses the standard input path. It can be
  2244. useful in applications that do not support arbitrary filter graphs, but its use
  2245. is discouraged in those that do. It should never be used with
  2246. @command{avconv}; the @option{-filter_complex} option fully replaces it.
  2247. It accepts the following parameters:
  2248. @table @option
  2249. @item filename
  2250. The name of the resource to read (not necessarily a file; it can also be a
  2251. device or a stream accessed through some protocol).
  2252. @item format_name, f
  2253. Specifies the format assumed for the movie to read, and can be either
  2254. the name of a container or an input device. If not specified, the
  2255. format is guessed from @var{movie_name} or by probing.
  2256. @item seek_point, sp
  2257. Specifies the seek point in seconds. The frames will be output
  2258. starting from this seek point. The parameter is evaluated with
  2259. @code{av_strtod}, so the numerical value may be suffixed by an IS
  2260. postfix. The default value is "0".
  2261. @item stream_index, si
  2262. Specifies the index of the video stream to read. If the value is -1,
  2263. the most suitable video stream will be automatically selected. The default
  2264. value is "-1".
  2265. @end table
  2266. It allows overlaying a second video on top of the main input of
  2267. a filtergraph, as shown in this graph:
  2268. @example
  2269. input -----------> deltapts0 --> overlay --> output
  2270. ^
  2271. |
  2272. movie --> scale--> deltapts1 -------+
  2273. @end example
  2274. Some examples:
  2275. @example
  2276. # Skip 3.2 seconds from the start of the AVI file in.avi, and overlay it
  2277. # on top of the input labelled "in"
  2278. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2279. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2280. # Read from a video4linux2 device, and overlay it on top of the input
  2281. # labelled "in"
  2282. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2283. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2284. @end example
  2285. @section nullsrc
  2286. Null video source: never return images. It is mainly useful as a
  2287. template and to be employed in analysis / debugging tools.
  2288. It accepts a string of the form
  2289. @var{width}:@var{height}:@var{timebase} as an optional parameter.
  2290. @var{width} and @var{height} specify the size of the configured
  2291. source. The default values of @var{width} and @var{height} are
  2292. respectively 352 and 288 (corresponding to the CIF size format).
  2293. @var{timebase} specifies an arithmetic expression representing a
  2294. timebase. The expression can contain the constants "PI", "E", "PHI", and
  2295. "AVTB" (the default timebase), and defaults to the value "AVTB".
  2296. @section frei0r_src
  2297. Provide a frei0r source.
  2298. To enable compilation of this filter you need to install the frei0r
  2299. header and configure Libav with --enable-frei0r.
  2300. This source accepts the following parameters:
  2301. @table @option
  2302. @item size
  2303. The size of the video to generate. It may be a string of the form
  2304. @var{width}x@var{height} or a frame size abbreviation.
  2305. @item framerate
  2306. The framerate of the generated video. It may be a string of the form
  2307. @var{num}/@var{den} or a frame rate abbreviation.
  2308. @item filter_name
  2309. The name to the frei0r source to load. For more information regarding frei0r and
  2310. how to set the parameters, read the @ref{frei0r} section in the video filters
  2311. documentation.
  2312. @item filter_params
  2313. A '|'-separated list of parameters to pass to the frei0r source.
  2314. @end table
  2315. An example:
  2316. @example
  2317. # Generate a frei0r partik0l source with size 200x200 and framerate 10
  2318. # which is overlaid on the overlay filter's main input
  2319. frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay
  2320. @end example
  2321. @section rgbtestsrc, testsrc
  2322. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2323. detecting RGB vs BGR issues. You should see a red, green and blue
  2324. stripe from top to bottom.
  2325. The @code{testsrc} source generates a test video pattern, showing a
  2326. color pattern, a scrolling gradient and a timestamp. This is mainly
  2327. intended for testing purposes.
  2328. The sources accept the following parameters:
  2329. @table @option
  2330. @item size, s
  2331. Specify the size of the sourced video, it may be a string of the form
  2332. @var{width}x@var{height}, or the name of a size abbreviation. The
  2333. default value is "320x240".
  2334. @item rate, r
  2335. Specify the frame rate of the sourced video, as the number of frames
  2336. generated per second. It has to be a string in the format
  2337. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a floating point
  2338. number or a valid video frame rate abbreviation. The default value is
  2339. "25".
  2340. @item sar
  2341. Set the sample aspect ratio of the sourced video.
  2342. @item duration
  2343. Set the video duration of the sourced video. The accepted syntax is:
  2344. @example
  2345. [-]HH[:MM[:SS[.m...]]]
  2346. [-]S+[.m...]
  2347. @end example
  2348. Also see the the @code{av_parse_time()} function.
  2349. If not specified, or the expressed duration is negative, the video is
  2350. supposed to be generated forever.
  2351. @end table
  2352. For example the following:
  2353. @example
  2354. testsrc=duration=5.3:size=qcif:rate=10
  2355. @end example
  2356. will generate a video with a duration of 5.3 seconds, with size
  2357. 176x144 and a framerate of 10 frames per second.
  2358. @c man end VIDEO SOURCES
  2359. @chapter Video Sinks
  2360. @c man begin VIDEO SINKS
  2361. Below is a description of the currently available video sinks.
  2362. @section buffersink
  2363. Buffer video frames, and make them available to the end of the filter
  2364. graph.
  2365. This sink is intended for programmatic use through the interface defined in
  2366. @file{libavfilter/buffersink.h}.
  2367. @section nullsink
  2368. Null video sink: do absolutely nothing with the input video. It is
  2369. mainly useful as a template and for use in analysis / debugging
  2370. tools.
  2371. @c man end VIDEO SINKS