You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1106 lines
26KB

  1. ;******************************************************************************
  2. ;* FFT transform with SSE/3DNow optimizations
  3. ;* Copyright (c) 2008 Loren Merritt
  4. ;* Copyright (c) 2011 Vitor Sessak
  5. ;*
  6. ;* This algorithm (though not any of the implementation details) is
  7. ;* based on libdjbfft by D. J. Bernstein.
  8. ;*
  9. ;* This file is part of FFmpeg.
  10. ;*
  11. ;* FFmpeg is free software; you can redistribute it and/or
  12. ;* modify it under the terms of the GNU Lesser General Public
  13. ;* License as published by the Free Software Foundation; either
  14. ;* version 2.1 of the License, or (at your option) any later version.
  15. ;*
  16. ;* FFmpeg is distributed in the hope that it will be useful,
  17. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. ;* Lesser General Public License for more details.
  20. ;*
  21. ;* You should have received a copy of the GNU Lesser General Public
  22. ;* License along with FFmpeg; if not, write to the Free Software
  23. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. ;******************************************************************************
  25. ; These functions are not individually interchangeable with the C versions.
  26. ; While C takes arrays of FFTComplex, SSE/3DNow leave intermediate results
  27. ; in blocks as conventient to the vector size.
  28. ; i.e. {4x real, 4x imaginary, 4x real, ...} (or 2x respectively)
  29. %include "libavutil/x86/x86util.asm"
  30. %if ARCH_X86_64
  31. %define pointer resq
  32. %else
  33. %define pointer resd
  34. %endif
  35. SECTION_RODATA
  36. struc FFTContext
  37. .nbits: resd 1
  38. .reverse: resd 1
  39. .revtab: pointer 1
  40. .tmpbuf: pointer 1
  41. .mdctsize: resd 1
  42. .mdctbits: resd 1
  43. .tcos: pointer 1
  44. .tsin: pointer 1
  45. .fftperm: pointer 1
  46. .fftcalc: pointer 1
  47. .imdctcalc:pointer 1
  48. .imdcthalf:pointer 1
  49. endstruc
  50. %define M_SQRT1_2 0.70710678118654752440
  51. %define M_COS_PI_1_8 0.923879532511287
  52. %define M_COS_PI_3_8 0.38268343236509
  53. align 32
  54. ps_cos16_1: dd 1.0, M_COS_PI_1_8, M_SQRT1_2, M_COS_PI_3_8, 1.0, M_COS_PI_1_8, M_SQRT1_2, M_COS_PI_3_8
  55. ps_cos16_2: dd 0, M_COS_PI_3_8, M_SQRT1_2, M_COS_PI_1_8, 0, -M_COS_PI_3_8, -M_SQRT1_2, -M_COS_PI_1_8
  56. ps_root2: times 8 dd M_SQRT1_2
  57. ps_root2mppm: dd -M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, -M_SQRT1_2, -M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, -M_SQRT1_2
  58. ps_p1p1m1p1: dd 0, 0, 1<<31, 0, 0, 0, 1<<31, 0
  59. perm1: dd 0x00, 0x02, 0x03, 0x01, 0x03, 0x00, 0x02, 0x01
  60. perm2: dd 0x00, 0x01, 0x02, 0x03, 0x01, 0x00, 0x02, 0x03
  61. ps_p1p1m1p1root2: dd 1.0, 1.0, -1.0, 1.0, M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, M_SQRT1_2
  62. ps_m1m1p1m1p1m1m1m1: dd 1<<31, 1<<31, 0, 1<<31, 0, 1<<31, 1<<31, 1<<31
  63. ps_m1m1m1m1: times 4 dd 1<<31
  64. ps_m1p1: dd 1<<31, 0
  65. %assign i 16
  66. %rep 13
  67. cextern cos_ %+ i
  68. %assign i i<<1
  69. %endrep
  70. %if ARCH_X86_64
  71. %define pointer dq
  72. %else
  73. %define pointer dd
  74. %endif
  75. %macro IF0 1+
  76. %endmacro
  77. %macro IF1 1+
  78. %1
  79. %endmacro
  80. SECTION_TEXT
  81. %macro T2_3DNOW 4 ; z0, z1, mem0, mem1
  82. mova %1, %3
  83. mova %2, %1
  84. pfadd %1, %4
  85. pfsub %2, %4
  86. %endmacro
  87. %macro T4_3DNOW 6 ; z0, z1, z2, z3, tmp0, tmp1
  88. mova %5, %3
  89. pfsub %3, %4
  90. pfadd %5, %4 ; {t6,t5}
  91. pxor %3, [ps_m1p1] ; {t8,t7}
  92. mova %6, %1
  93. PSWAPD %3, %3
  94. pfadd %1, %5 ; {r0,i0}
  95. pfsub %6, %5 ; {r2,i2}
  96. mova %4, %2
  97. pfadd %2, %3 ; {r1,i1}
  98. pfsub %4, %3 ; {r3,i3}
  99. SWAP %3, %6
  100. %endmacro
  101. ; in: %1 = {r0,i0,r2,i2,r4,i4,r6,i6}
  102. ; %2 = {r1,i1,r3,i3,r5,i5,r7,i7}
  103. ; %3, %4, %5 tmp
  104. ; out: %1 = {r0,r1,r2,r3,i0,i1,i2,i3}
  105. ; %2 = {r4,r5,r6,r7,i4,i5,i6,i7}
  106. %macro T8_AVX 5
  107. vsubps %5, %1, %2 ; v = %1 - %2
  108. vaddps %3, %1, %2 ; w = %1 + %2
  109. vmulps %2, %5, [ps_p1p1m1p1root2] ; v *= vals1
  110. vpermilps %2, %2, [perm1]
  111. vblendps %1, %2, %3, 0x33 ; q = {w1,w2,v4,v2,w5,w6,v7,v6}
  112. vshufps %5, %3, %2, 0x4e ; r = {w3,w4,v1,v3,w7,w8,v8,v5}
  113. vsubps %4, %5, %1 ; s = r - q
  114. vaddps %1, %5, %1 ; u = r + q
  115. vpermilps %1, %1, [perm2] ; k = {u1,u2,u3,u4,u6,u5,u7,u8}
  116. vshufps %5, %4, %1, 0xbb
  117. vshufps %3, %4, %1, 0xee
  118. vperm2f128 %3, %3, %5, 0x13
  119. vxorps %4, %4, [ps_m1m1p1m1p1m1m1m1] ; s *= {1,1,-1,-1,1,-1,-1,-1}
  120. vshufps %2, %1, %4, 0xdd
  121. vshufps %1, %1, %4, 0x88
  122. vperm2f128 %4, %2, %1, 0x02 ; v = {k1,k3,s1,s3,k2,k4,s2,s4}
  123. vperm2f128 %1, %1, %2, 0x13 ; w = {k6,k8,s6,s8,k5,k7,s5,s7}
  124. vsubps %5, %1, %3
  125. vblendps %1, %5, %1, 0x55 ; w -= {0,s7,0,k7,0,s8,0,k8}
  126. vsubps %2, %4, %1 ; %2 = v - w
  127. vaddps %1, %4, %1 ; %1 = v + w
  128. %endmacro
  129. ; In SSE mode do one fft4 transforms
  130. ; in: %1={r0,i0,r2,i2} %2={r1,i1,r3,i3}
  131. ; out: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3}
  132. ;
  133. ; In AVX mode do two fft4 transforms
  134. ; in: %1={r0,i0,r2,i2,r4,i4,r6,i6} %2={r1,i1,r3,i3,r5,i5,r7,i7}
  135. ; out: %1={r0,r1,r2,r3,r4,r5,r6,r7} %2={i0,i1,i2,i3,i4,i5,i6,i7}
  136. %macro T4_SSE 3
  137. subps %3, %1, %2 ; {t3,t4,-t8,t7}
  138. addps %1, %1, %2 ; {t1,t2,t6,t5}
  139. xorps %3, %3, [ps_p1p1m1p1]
  140. shufps %2, %1, %3, 0xbe ; {t6,t5,t7,t8}
  141. shufps %1, %1, %3, 0x44 ; {t1,t2,t3,t4}
  142. subps %3, %1, %2 ; {r2,i2,r3,i3}
  143. addps %1, %1, %2 ; {r0,i0,r1,i1}
  144. shufps %2, %1, %3, 0xdd ; {i0,i1,i2,i3}
  145. shufps %1, %1, %3, 0x88 ; {r0,r1,r2,r3}
  146. %endmacro
  147. ; In SSE mode do one FFT8
  148. ; in: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3} %3={r4,i4,r6,i6} %4={r5,i5,r7,i7}
  149. ; out: %1={r0,r1,r2,r3} %2={i0,i1,i2,i3} %1={r4,r5,r6,r7} %2={i4,i5,i6,i7}
  150. ;
  151. ; In AVX mode do two FFT8
  152. ; in: %1={r0,i0,r2,i2,r8, i8, r10,i10} %2={r1,i1,r3,i3,r9, i9, r11,i11}
  153. ; %3={r4,i4,r6,i6,r12,i12,r14,i14} %4={r5,i5,r7,i7,r13,i13,r15,i15}
  154. ; out: %1={r0,r1,r2,r3,r8, r9, r10,r11} %2={i0,i1,i2,i3,i8, i9, i10,i11}
  155. ; %3={r4,r5,r6,r7,r12,r13,r14,r15} %4={i4,i5,i6,i7,i12,i13,i14,i15}
  156. %macro T8_SSE 6
  157. addps %6, %3, %4 ; {t1,t2,t3,t4}
  158. subps %3, %3, %4 ; {r5,i5,r7,i7}
  159. shufps %4, %3, %3, 0xb1 ; {i5,r5,i7,r7}
  160. mulps %3, %3, [ps_root2mppm] ; {-r5,i5,r7,-i7}
  161. mulps %4, %4, [ps_root2]
  162. addps %3, %3, %4 ; {t8,t7,ta,t9}
  163. shufps %4, %6, %3, 0x9c ; {t1,t4,t7,ta}
  164. shufps %6, %6, %3, 0x36 ; {t3,t2,t9,t8}
  165. subps %3, %6, %4 ; {t6,t5,tc,tb}
  166. addps %6, %6, %4 ; {t1,t2,t9,ta}
  167. shufps %5, %6, %3, 0x8d ; {t2,ta,t6,tc}
  168. shufps %6, %6, %3, 0xd8 ; {t1,t9,t5,tb}
  169. subps %3, %1, %6 ; {r4,r5,r6,r7}
  170. addps %1, %1, %6 ; {r0,r1,r2,r3}
  171. subps %4, %2, %5 ; {i4,i5,i6,i7}
  172. addps %2, %2, %5 ; {i0,i1,i2,i3}
  173. %endmacro
  174. ; scheduled for cpu-bound sizes
  175. %macro PASS_SMALL 3 ; (to load m4-m7), wre, wim
  176. IF%1 mova m4, Z(4)
  177. IF%1 mova m5, Z(5)
  178. mova m0, %2 ; wre
  179. mova m1, %3 ; wim
  180. mulps m2, m4, m0 ; r2*wre
  181. IF%1 mova m6, Z2(6)
  182. mulps m3, m5, m1 ; i2*wim
  183. IF%1 mova m7, Z2(7)
  184. mulps m4, m4, m1 ; r2*wim
  185. mulps m5, m5, m0 ; i2*wre
  186. addps m2, m2, m3 ; r2*wre + i2*wim
  187. mulps m3, m1, m7 ; i3*wim
  188. subps m5, m5, m4 ; i2*wre - r2*wim
  189. mulps m1, m1, m6 ; r3*wim
  190. mulps m4, m0, m6 ; r3*wre
  191. mulps m0, m0, m7 ; i3*wre
  192. subps m4, m4, m3 ; r3*wre - i3*wim
  193. mova m3, Z(0)
  194. addps m0, m0, m1 ; i3*wre + r3*wim
  195. subps m1, m4, m2 ; t3
  196. addps m4, m4, m2 ; t5
  197. subps m3, m3, m4 ; r2
  198. addps m4, m4, Z(0) ; r0
  199. mova m6, Z(2)
  200. mova Z(4), m3
  201. mova Z(0), m4
  202. subps m3, m5, m0 ; t4
  203. subps m4, m6, m3 ; r3
  204. addps m3, m3, m6 ; r1
  205. mova Z2(6), m4
  206. mova Z(2), m3
  207. mova m2, Z(3)
  208. addps m3, m5, m0 ; t6
  209. subps m2, m2, m1 ; i3
  210. mova m7, Z(1)
  211. addps m1, m1, Z(3) ; i1
  212. mova Z2(7), m2
  213. mova Z(3), m1
  214. subps m4, m7, m3 ; i2
  215. addps m3, m3, m7 ; i0
  216. mova Z(5), m4
  217. mova Z(1), m3
  218. %endmacro
  219. ; scheduled to avoid store->load aliasing
  220. %macro PASS_BIG 1 ; (!interleave)
  221. mova m4, Z(4) ; r2
  222. mova m5, Z(5) ; i2
  223. mova m0, [wq] ; wre
  224. mova m1, [wq+o1q] ; wim
  225. mulps m2, m4, m0 ; r2*wre
  226. mova m6, Z2(6) ; r3
  227. mulps m3, m5, m1 ; i2*wim
  228. mova m7, Z2(7) ; i3
  229. mulps m4, m4, m1 ; r2*wim
  230. mulps m5, m5, m0 ; i2*wre
  231. addps m2, m2, m3 ; r2*wre + i2*wim
  232. mulps m3, m1, m7 ; i3*wim
  233. mulps m1, m1, m6 ; r3*wim
  234. subps m5, m5, m4 ; i2*wre - r2*wim
  235. mulps m4, m0, m6 ; r3*wre
  236. mulps m0, m0, m7 ; i3*wre
  237. subps m4, m4, m3 ; r3*wre - i3*wim
  238. mova m3, Z(0)
  239. addps m0, m0, m1 ; i3*wre + r3*wim
  240. subps m1, m4, m2 ; t3
  241. addps m4, m4, m2 ; t5
  242. subps m3, m3, m4 ; r2
  243. addps m4, m4, Z(0) ; r0
  244. mova m6, Z(2)
  245. mova Z(4), m3
  246. mova Z(0), m4
  247. subps m3, m5, m0 ; t4
  248. subps m4, m6, m3 ; r3
  249. addps m3, m3, m6 ; r1
  250. IF%1 mova Z2(6), m4
  251. IF%1 mova Z(2), m3
  252. mova m2, Z(3)
  253. addps m5, m5, m0 ; t6
  254. subps m2, m2, m1 ; i3
  255. mova m7, Z(1)
  256. addps m1, m1, Z(3) ; i1
  257. IF%1 mova Z2(7), m2
  258. IF%1 mova Z(3), m1
  259. subps m6, m7, m5 ; i2
  260. addps m5, m5, m7 ; i0
  261. IF%1 mova Z(5), m6
  262. IF%1 mova Z(1), m5
  263. %if %1==0
  264. INTERL m1, m3, m7, Z, 2
  265. INTERL m2, m4, m0, Z2, 6
  266. mova m1, Z(0)
  267. mova m2, Z(4)
  268. INTERL m5, m1, m3, Z, 0
  269. INTERL m6, m2, m7, Z, 4
  270. %endif
  271. %endmacro
  272. %macro PUNPCK 3
  273. mova %3, %1
  274. punpckldq %1, %2
  275. punpckhdq %3, %2
  276. %endmacro
  277. %define Z(x) [r0+mmsize*x]
  278. %define Z2(x) [r0+mmsize*x]
  279. %define ZH(x) [r0+mmsize*x+mmsize/2]
  280. INIT_YMM avx
  281. %if HAVE_AVX_EXTERNAL
  282. align 16
  283. fft8_avx:
  284. mova m0, Z(0)
  285. mova m1, Z(1)
  286. T8_AVX m0, m1, m2, m3, m4
  287. mova Z(0), m0
  288. mova Z(1), m1
  289. ret
  290. align 16
  291. fft16_avx:
  292. mova m2, Z(2)
  293. mova m3, Z(3)
  294. T4_SSE m2, m3, m7
  295. mova m0, Z(0)
  296. mova m1, Z(1)
  297. T8_AVX m0, m1, m4, m5, m7
  298. mova m4, [ps_cos16_1]
  299. mova m5, [ps_cos16_2]
  300. vmulps m6, m2, m4
  301. vmulps m7, m3, m5
  302. vaddps m7, m7, m6
  303. vmulps m2, m2, m5
  304. vmulps m3, m3, m4
  305. vsubps m3, m3, m2
  306. vblendps m2, m7, m3, 0xf0
  307. vperm2f128 m3, m7, m3, 0x21
  308. vaddps m4, m2, m3
  309. vsubps m2, m3, m2
  310. vperm2f128 m2, m2, m2, 0x01
  311. vsubps m3, m1, m2
  312. vaddps m1, m1, m2
  313. vsubps m5, m0, m4
  314. vaddps m0, m0, m4
  315. vextractf128 Z(0), m0, 0
  316. vextractf128 ZH(0), m1, 0
  317. vextractf128 Z(1), m0, 1
  318. vextractf128 ZH(1), m1, 1
  319. vextractf128 Z(2), m5, 0
  320. vextractf128 ZH(2), m3, 0
  321. vextractf128 Z(3), m5, 1
  322. vextractf128 ZH(3), m3, 1
  323. ret
  324. align 16
  325. fft32_avx:
  326. call fft16_avx
  327. mova m0, Z(4)
  328. mova m1, Z(5)
  329. T4_SSE m0, m1, m4
  330. mova m2, Z(6)
  331. mova m3, Z(7)
  332. T8_SSE m0, m1, m2, m3, m4, m6
  333. ; m0={r0,r1,r2,r3,r8, r9, r10,r11} m1={i0,i1,i2,i3,i8, i9, i10,i11}
  334. ; m2={r4,r5,r6,r7,r12,r13,r14,r15} m3={i4,i5,i6,i7,i12,i13,i14,i15}
  335. vperm2f128 m4, m0, m2, 0x20
  336. vperm2f128 m5, m1, m3, 0x20
  337. vperm2f128 m6, m0, m2, 0x31
  338. vperm2f128 m7, m1, m3, 0x31
  339. PASS_SMALL 0, [cos_32], [cos_32+32]
  340. ret
  341. fft32_interleave_avx:
  342. call fft32_avx
  343. mov r2d, 32
  344. .deint_loop:
  345. mova m2, Z(0)
  346. mova m3, Z(1)
  347. vunpcklps m0, m2, m3
  348. vunpckhps m1, m2, m3
  349. vextractf128 Z(0), m0, 0
  350. vextractf128 ZH(0), m1, 0
  351. vextractf128 Z(1), m0, 1
  352. vextractf128 ZH(1), m1, 1
  353. add r0, mmsize*2
  354. sub r2d, mmsize/4
  355. jg .deint_loop
  356. ret
  357. %endif
  358. INIT_XMM sse
  359. align 16
  360. fft4_avx:
  361. fft4_sse:
  362. mova m0, Z(0)
  363. mova m1, Z(1)
  364. T4_SSE m0, m1, m2
  365. mova Z(0), m0
  366. mova Z(1), m1
  367. ret
  368. align 16
  369. fft8_sse:
  370. mova m0, Z(0)
  371. mova m1, Z(1)
  372. T4_SSE m0, m1, m2
  373. mova m2, Z(2)
  374. mova m3, Z(3)
  375. T8_SSE m0, m1, m2, m3, m4, m5
  376. mova Z(0), m0
  377. mova Z(1), m1
  378. mova Z(2), m2
  379. mova Z(3), m3
  380. ret
  381. align 16
  382. fft16_sse:
  383. mova m0, Z(0)
  384. mova m1, Z(1)
  385. T4_SSE m0, m1, m2
  386. mova m2, Z(2)
  387. mova m3, Z(3)
  388. T8_SSE m0, m1, m2, m3, m4, m5
  389. mova m4, Z(4)
  390. mova m5, Z(5)
  391. mova Z(0), m0
  392. mova Z(1), m1
  393. mova Z(2), m2
  394. mova Z(3), m3
  395. T4_SSE m4, m5, m6
  396. mova m6, Z2(6)
  397. mova m7, Z2(7)
  398. T4_SSE m6, m7, m0
  399. PASS_SMALL 0, [cos_16], [cos_16+16]
  400. ret
  401. %macro FFT48_3DNOW 0
  402. align 16
  403. fft4 %+ SUFFIX:
  404. T2_3DNOW m0, m1, Z(0), Z(1)
  405. mova m2, Z(2)
  406. mova m3, Z(3)
  407. T4_3DNOW m0, m1, m2, m3, m4, m5
  408. PUNPCK m0, m1, m4
  409. PUNPCK m2, m3, m5
  410. mova Z(0), m0
  411. mova Z(1), m4
  412. mova Z(2), m2
  413. mova Z(3), m5
  414. ret
  415. align 16
  416. fft8 %+ SUFFIX:
  417. T2_3DNOW m0, m1, Z(0), Z(1)
  418. mova m2, Z(2)
  419. mova m3, Z(3)
  420. T4_3DNOW m0, m1, m2, m3, m4, m5
  421. mova Z(0), m0
  422. mova Z(2), m2
  423. T2_3DNOW m4, m5, Z(4), Z(5)
  424. T2_3DNOW m6, m7, Z2(6), Z2(7)
  425. PSWAPD m0, m5
  426. PSWAPD m2, m7
  427. pxor m0, [ps_m1p1]
  428. pxor m2, [ps_m1p1]
  429. pfsub m5, m0
  430. pfadd m7, m2
  431. pfmul m5, [ps_root2]
  432. pfmul m7, [ps_root2]
  433. T4_3DNOW m1, m3, m5, m7, m0, m2
  434. mova Z(5), m5
  435. mova Z2(7), m7
  436. mova m0, Z(0)
  437. mova m2, Z(2)
  438. T4_3DNOW m0, m2, m4, m6, m5, m7
  439. PUNPCK m0, m1, m5
  440. PUNPCK m2, m3, m7
  441. mova Z(0), m0
  442. mova Z(1), m5
  443. mova Z(2), m2
  444. mova Z(3), m7
  445. PUNPCK m4, Z(5), m5
  446. PUNPCK m6, Z2(7), m7
  447. mova Z(4), m4
  448. mova Z(5), m5
  449. mova Z2(6), m6
  450. mova Z2(7), m7
  451. ret
  452. %endmacro
  453. %if ARCH_X86_32
  454. %macro PSWAPD 2
  455. %if cpuflag(3dnowext)
  456. pswapd %1, %2
  457. %elifidn %1, %2
  458. movd [r0+12], %1
  459. punpckhdq %1, [r0+8]
  460. %else
  461. movq %1, %2
  462. psrlq %1, 32
  463. punpckldq %1, %2
  464. %endif
  465. %endmacro
  466. INIT_MMX 3dnowext
  467. FFT48_3DNOW
  468. INIT_MMX 3dnow
  469. FFT48_3DNOW
  470. %endif
  471. %define Z(x) [zcq + o1q*(x&6) + mmsize*(x&1)]
  472. %define Z2(x) [zcq + o3q + mmsize*(x&1)]
  473. %define ZH(x) [zcq + o1q*(x&6) + mmsize*(x&1) + mmsize/2]
  474. %define Z2H(x) [zcq + o3q + mmsize*(x&1) + mmsize/2]
  475. %macro DECL_PASS 2+ ; name, payload
  476. align 16
  477. %1:
  478. DEFINE_ARGS zc, w, n, o1, o3
  479. lea o3q, [nq*3]
  480. lea o1q, [nq*8]
  481. shl o3q, 4
  482. .loop:
  483. %2
  484. add zcq, mmsize*2
  485. add wq, mmsize
  486. sub nd, mmsize/8
  487. jg .loop
  488. rep ret
  489. %endmacro
  490. %macro FFT_DISPATCH 2; clobbers 5 GPRs, 8 XMMs
  491. lea r2, [dispatch_tab%1]
  492. mov r2, [r2 + (%2q-2)*gprsize]
  493. %ifdef PIC
  494. lea r3, [$$]
  495. add r2, r3
  496. %endif
  497. call r2
  498. %endmacro ; FFT_DISPATCH
  499. INIT_YMM avx
  500. %if HAVE_AVX_EXTERNAL
  501. %macro INTERL_AVX 5
  502. vunpckhps %3, %2, %1
  503. vunpcklps %2, %2, %1
  504. vextractf128 %4(%5), %2, 0
  505. vextractf128 %4 %+ H(%5), %3, 0
  506. vextractf128 %4(%5 + 1), %2, 1
  507. vextractf128 %4 %+ H(%5 + 1), %3, 1
  508. %endmacro
  509. %define INTERL INTERL_AVX
  510. DECL_PASS pass_avx, PASS_BIG 1
  511. DECL_PASS pass_interleave_avx, PASS_BIG 0
  512. cglobal fft_calc, 2,5,8
  513. mov r3d, [r0 + FFTContext.nbits]
  514. mov r0, r1
  515. mov r1, r3
  516. FFT_DISPATCH _interleave %+ SUFFIX, r1
  517. REP_RET
  518. %endif
  519. INIT_XMM sse
  520. %macro INTERL_SSE 5
  521. mova %3, %2
  522. unpcklps %2, %1
  523. unpckhps %3, %1
  524. mova %4(%5), %2
  525. mova %4(%5+1), %3
  526. %endmacro
  527. %define INTERL INTERL_SSE
  528. DECL_PASS pass_sse, PASS_BIG 1
  529. DECL_PASS pass_interleave_sse, PASS_BIG 0
  530. %macro FFT_CALC_FUNC 0
  531. cglobal fft_calc, 2,5,8
  532. mov r3d, [r0 + FFTContext.nbits]
  533. PUSH r1
  534. PUSH r3
  535. mov r0, r1
  536. mov r1, r3
  537. FFT_DISPATCH _interleave %+ SUFFIX, r1
  538. POP rcx
  539. POP r4
  540. cmp rcx, 3+(mmsize/16)
  541. jg .end
  542. mov r2, -1
  543. add rcx, 3
  544. shl r2, cl
  545. sub r4, r2
  546. .loop:
  547. %if mmsize == 8
  548. PSWAPD m0, [r4 + r2 + 4]
  549. mova [r4 + r2 + 4], m0
  550. %else
  551. movaps xmm0, [r4 + r2]
  552. movaps xmm1, xmm0
  553. unpcklps xmm0, [r4 + r2 + 16]
  554. unpckhps xmm1, [r4 + r2 + 16]
  555. movaps [r4 + r2], xmm0
  556. movaps [r4 + r2 + 16], xmm1
  557. %endif
  558. add r2, mmsize*2
  559. jl .loop
  560. .end:
  561. %if cpuflag(3dnow)
  562. femms
  563. RET
  564. %else
  565. REP_RET
  566. %endif
  567. %endmacro
  568. %if ARCH_X86_32
  569. INIT_MMX 3dnow
  570. FFT_CALC_FUNC
  571. INIT_MMX 3dnowext
  572. FFT_CALC_FUNC
  573. %endif
  574. INIT_XMM sse
  575. FFT_CALC_FUNC
  576. cglobal fft_permute, 2,7,1
  577. mov r4, [r0 + FFTContext.revtab]
  578. mov r5, [r0 + FFTContext.tmpbuf]
  579. mov ecx, [r0 + FFTContext.nbits]
  580. mov r2, 1
  581. shl r2, cl
  582. xor r0, r0
  583. %if ARCH_X86_32
  584. mov r1, r1m
  585. %endif
  586. .loop:
  587. movaps xmm0, [r1 + 8*r0]
  588. movzx r6, word [r4 + 2*r0]
  589. movzx r3, word [r4 + 2*r0 + 2]
  590. movlps [r5 + 8*r6], xmm0
  591. movhps [r5 + 8*r3], xmm0
  592. add r0, 2
  593. cmp r0, r2
  594. jl .loop
  595. shl r2, 3
  596. add r1, r2
  597. add r5, r2
  598. neg r2
  599. ; nbits >= 2 (FFT4) and sizeof(FFTComplex)=8 => at least 32B
  600. .loopcopy:
  601. movaps xmm0, [r5 + r2]
  602. movaps xmm1, [r5 + r2 + 16]
  603. movaps [r1 + r2], xmm0
  604. movaps [r1 + r2 + 16], xmm1
  605. add r2, 32
  606. jl .loopcopy
  607. REP_RET
  608. %macro IMDCT_CALC_FUNC 0
  609. cglobal imdct_calc, 3,5,3
  610. mov r3d, [r0 + FFTContext.mdctsize]
  611. mov r4, [r0 + FFTContext.imdcthalf]
  612. add r1, r3
  613. PUSH r3
  614. PUSH r1
  615. %if ARCH_X86_32
  616. push r2
  617. push r1
  618. push r0
  619. %else
  620. sub rsp, 8
  621. %endif
  622. call r4
  623. %if ARCH_X86_32
  624. add esp, 12
  625. %else
  626. add rsp, 8
  627. %endif
  628. POP r1
  629. POP r3
  630. lea r0, [r1 + 2*r3]
  631. mov r2, r3
  632. sub r3, mmsize
  633. neg r2
  634. mova m2, [ps_m1m1m1m1]
  635. .loop:
  636. %if mmsize == 8
  637. PSWAPD m0, [r1 + r3]
  638. PSWAPD m1, [r0 + r2]
  639. pxor m0, m2
  640. %else
  641. mova m0, [r1 + r3]
  642. mova m1, [r0 + r2]
  643. shufps m0, m0, 0x1b
  644. shufps m1, m1, 0x1b
  645. xorps m0, m2
  646. %endif
  647. mova [r0 + r3], m1
  648. mova [r1 + r2], m0
  649. sub r3, mmsize
  650. add r2, mmsize
  651. jl .loop
  652. %if cpuflag(3dnow)
  653. femms
  654. RET
  655. %else
  656. REP_RET
  657. %endif
  658. %endmacro
  659. %if ARCH_X86_32
  660. INIT_MMX 3dnow
  661. IMDCT_CALC_FUNC
  662. INIT_MMX 3dnowext
  663. IMDCT_CALC_FUNC
  664. %endif
  665. INIT_XMM sse
  666. IMDCT_CALC_FUNC
  667. %if ARCH_X86_32
  668. INIT_MMX 3dnow
  669. %define mulps pfmul
  670. %define addps pfadd
  671. %define subps pfsub
  672. %define unpcklps punpckldq
  673. %define unpckhps punpckhdq
  674. DECL_PASS pass_3dnow, PASS_SMALL 1, [wq], [wq+o1q]
  675. DECL_PASS pass_interleave_3dnow, PASS_BIG 0
  676. %define pass_3dnowext pass_3dnow
  677. %define pass_interleave_3dnowext pass_interleave_3dnow
  678. %endif
  679. %ifdef PIC
  680. %define SECTION_REL - $$
  681. %else
  682. %define SECTION_REL
  683. %endif
  684. %macro DECL_FFT 1-2 ; nbits, suffix
  685. %ifidn %0, 1
  686. %xdefine fullsuffix SUFFIX
  687. %else
  688. %xdefine fullsuffix %2 %+ SUFFIX
  689. %endif
  690. %xdefine list_of_fft fft4 %+ SUFFIX SECTION_REL, fft8 %+ SUFFIX SECTION_REL
  691. %if %1>=5
  692. %xdefine list_of_fft list_of_fft, fft16 %+ SUFFIX SECTION_REL
  693. %endif
  694. %if %1>=6
  695. %xdefine list_of_fft list_of_fft, fft32 %+ fullsuffix SECTION_REL
  696. %endif
  697. %assign n 1<<%1
  698. %rep 17-%1
  699. %assign n2 n/2
  700. %assign n4 n/4
  701. %xdefine list_of_fft list_of_fft, fft %+ n %+ fullsuffix SECTION_REL
  702. align 16
  703. fft %+ n %+ fullsuffix:
  704. call fft %+ n2 %+ SUFFIX
  705. add r0, n*4 - (n&(-2<<%1))
  706. call fft %+ n4 %+ SUFFIX
  707. add r0, n*2 - (n2&(-2<<%1))
  708. call fft %+ n4 %+ SUFFIX
  709. sub r0, n*6 + (n2&(-2<<%1))
  710. lea r1, [cos_ %+ n]
  711. mov r2d, n4/2
  712. jmp pass %+ fullsuffix
  713. %assign n n*2
  714. %endrep
  715. %undef n
  716. align 8
  717. dispatch_tab %+ fullsuffix: pointer list_of_fft
  718. %endmacro ; DECL_FFT
  719. %if HAVE_AVX_EXTERNAL
  720. INIT_YMM avx
  721. DECL_FFT 6
  722. DECL_FFT 6, _interleave
  723. %endif
  724. INIT_XMM sse
  725. DECL_FFT 5
  726. DECL_FFT 5, _interleave
  727. %if ARCH_X86_32
  728. INIT_MMX 3dnow
  729. DECL_FFT 4
  730. DECL_FFT 4, _interleave
  731. INIT_MMX 3dnowext
  732. DECL_FFT 4
  733. DECL_FFT 4, _interleave
  734. %endif
  735. INIT_XMM sse
  736. %undef mulps
  737. %undef addps
  738. %undef subps
  739. %undef unpcklps
  740. %undef unpckhps
  741. %macro PREROTATER 5 ;-2*k, 2*k, input+n4, tcos+n8, tsin+n8
  742. %if mmsize == 8 ; j*2+2-n4, n4-2-j*2, input+n4, tcos+n8, tsin+n8
  743. PSWAPD m0, [%3+%2*4]
  744. movq m2, [%3+%1*4-8]
  745. movq m3, m0
  746. punpckldq m0, m2
  747. punpckhdq m2, m3
  748. movd m1, [%4+%1*2-4] ; tcos[j]
  749. movd m3, [%4+%2*2] ; tcos[n4-j-1]
  750. punpckldq m1, [%5+%1*2-4] ; tsin[j]
  751. punpckldq m3, [%5+%2*2] ; tsin[n4-j-1]
  752. mova m4, m0
  753. PSWAPD m5, m1
  754. pfmul m0, m1
  755. pfmul m4, m5
  756. mova m6, m2
  757. PSWAPD m5, m3
  758. pfmul m2, m3
  759. pfmul m6, m5
  760. %if cpuflag(3dnowext)
  761. pfpnacc m0, m4
  762. pfpnacc m2, m6
  763. %else
  764. SBUTTERFLY dq, 0, 4, 1
  765. SBUTTERFLY dq, 2, 6, 3
  766. pxor m4, m7
  767. pxor m6, m7
  768. pfadd m0, m4
  769. pfadd m2, m6
  770. %endif
  771. %else
  772. movaps xmm0, [%3+%2*4]
  773. movaps xmm1, [%3+%1*4-0x10]
  774. movaps xmm2, xmm0
  775. shufps xmm0, xmm1, 0x88
  776. shufps xmm1, xmm2, 0x77
  777. movlps xmm4, [%4+%2*2]
  778. movlps xmm5, [%5+%2*2+0x0]
  779. movhps xmm4, [%4+%1*2-0x8]
  780. movhps xmm5, [%5+%1*2-0x8]
  781. movaps xmm2, xmm0
  782. movaps xmm3, xmm1
  783. mulps xmm0, xmm5
  784. mulps xmm1, xmm4
  785. mulps xmm2, xmm4
  786. mulps xmm3, xmm5
  787. subps xmm1, xmm0
  788. addps xmm2, xmm3
  789. movaps xmm0, xmm1
  790. unpcklps xmm1, xmm2
  791. unpckhps xmm0, xmm2
  792. %endif
  793. %endmacro
  794. %macro CMUL 6 ;j, xmm0, xmm1, 3, 4, 5
  795. mulps m6, %3, [%5+%1]
  796. mulps m7, %2, [%5+%1]
  797. mulps %2, %2, [%6+%1]
  798. mulps %3, %3, [%6+%1]
  799. subps %2, %2, m6
  800. addps %3, %3, m7
  801. %endmacro
  802. %macro POSROTATESHUF_AVX 5 ;j, k, z+n8, tcos+n8, tsin+n8
  803. .post:
  804. vmovaps ymm1, [%3+%1*2]
  805. vmovaps ymm0, [%3+%1*2+0x20]
  806. vmovaps ymm3, [%3+%2*2]
  807. vmovaps ymm2, [%3+%2*2+0x20]
  808. CMUL %1, ymm0, ymm1, %3, %4, %5
  809. CMUL %2, ymm2, ymm3, %3, %4, %5
  810. vshufps ymm1, ymm1, ymm1, 0x1b
  811. vshufps ymm3, ymm3, ymm3, 0x1b
  812. vperm2f128 ymm1, ymm1, ymm1, 0x01
  813. vperm2f128 ymm3, ymm3, ymm3, 0x01
  814. vunpcklps ymm6, ymm2, ymm1
  815. vunpckhps ymm4, ymm2, ymm1
  816. vunpcklps ymm7, ymm0, ymm3
  817. vunpckhps ymm5, ymm0, ymm3
  818. vextractf128 [%3+%1*2], ymm7, 0
  819. vextractf128 [%3+%1*2+0x10], ymm5, 0
  820. vextractf128 [%3+%1*2+0x20], ymm7, 1
  821. vextractf128 [%3+%1*2+0x30], ymm5, 1
  822. vextractf128 [%3+%2*2], ymm6, 0
  823. vextractf128 [%3+%2*2+0x10], ymm4, 0
  824. vextractf128 [%3+%2*2+0x20], ymm6, 1
  825. vextractf128 [%3+%2*2+0x30], ymm4, 1
  826. sub %2, 0x20
  827. add %1, 0x20
  828. jl .post
  829. %endmacro
  830. %macro POSROTATESHUF 5 ;j, k, z+n8, tcos+n8, tsin+n8
  831. .post:
  832. movaps xmm1, [%3+%1*2]
  833. movaps xmm0, [%3+%1*2+0x10]
  834. CMUL %1, xmm0, xmm1, %3, %4, %5
  835. movaps xmm5, [%3+%2*2]
  836. movaps xmm4, [%3+%2*2+0x10]
  837. CMUL %2, xmm4, xmm5, %3, %4, %5
  838. shufps xmm1, xmm1, 0x1b
  839. shufps xmm5, xmm5, 0x1b
  840. movaps xmm6, xmm4
  841. unpckhps xmm4, xmm1
  842. unpcklps xmm6, xmm1
  843. movaps xmm2, xmm0
  844. unpcklps xmm0, xmm5
  845. unpckhps xmm2, xmm5
  846. movaps [%3+%2*2], xmm6
  847. movaps [%3+%2*2+0x10], xmm4
  848. movaps [%3+%1*2], xmm0
  849. movaps [%3+%1*2+0x10], xmm2
  850. sub %2, 0x10
  851. add %1, 0x10
  852. jl .post
  853. %endmacro
  854. %macro CMUL_3DNOW 6
  855. mova m6, [%1+%2*2]
  856. mova %3, [%1+%2*2+8]
  857. mova %4, m6
  858. mova m7, %3
  859. pfmul m6, [%5+%2]
  860. pfmul %3, [%6+%2]
  861. pfmul %4, [%6+%2]
  862. pfmul m7, [%5+%2]
  863. pfsub %3, m6
  864. pfadd %4, m7
  865. %endmacro
  866. %macro POSROTATESHUF_3DNOW 5 ;j, k, z+n8, tcos+n8, tsin+n8
  867. .post:
  868. CMUL_3DNOW %3, %1, m0, m1, %4, %5
  869. CMUL_3DNOW %3, %2, m2, m3, %4, %5
  870. movd [%3+%1*2+ 0], m0
  871. movd [%3+%2*2+12], m1
  872. movd [%3+%2*2+ 0], m2
  873. movd [%3+%1*2+12], m3
  874. psrlq m0, 32
  875. psrlq m1, 32
  876. psrlq m2, 32
  877. psrlq m3, 32
  878. movd [%3+%1*2+ 8], m0
  879. movd [%3+%2*2+ 4], m1
  880. movd [%3+%2*2+ 8], m2
  881. movd [%3+%1*2+ 4], m3
  882. sub %2, 8
  883. add %1, 8
  884. jl .post
  885. %endmacro
  886. %macro DECL_IMDCT 1
  887. cglobal imdct_half, 3,12,8; FFTContext *s, FFTSample *output, const FFTSample *input
  888. %if ARCH_X86_64
  889. %define rrevtab r7
  890. %define rtcos r8
  891. %define rtsin r9
  892. %else
  893. %define rrevtab r6
  894. %define rtsin r6
  895. %define rtcos r5
  896. %endif
  897. mov r3d, [r0+FFTContext.mdctsize]
  898. add r2, r3
  899. shr r3, 1
  900. mov rtcos, [r0+FFTContext.tcos]
  901. mov rtsin, [r0+FFTContext.tsin]
  902. add rtcos, r3
  903. add rtsin, r3
  904. %if ARCH_X86_64 == 0
  905. push rtcos
  906. push rtsin
  907. %endif
  908. shr r3, 1
  909. mov rrevtab, [r0+FFTContext.revtab]
  910. add rrevtab, r3
  911. %if ARCH_X86_64 == 0
  912. push rrevtab
  913. %endif
  914. %if mmsize == 8
  915. sub r3, 2
  916. %else
  917. sub r3, 4
  918. %endif
  919. %if ARCH_X86_64 || mmsize == 8
  920. xor r4, r4
  921. sub r4, r3
  922. %endif
  923. %if notcpuflag(3dnowext) && mmsize == 8
  924. movd m7, [ps_m1m1m1m1]
  925. %endif
  926. .pre:
  927. %if ARCH_X86_64 == 0
  928. ;unspill
  929. %if mmsize != 8
  930. xor r4, r4
  931. sub r4, r3
  932. %endif
  933. mov rtcos, [esp+8]
  934. mov rtsin, [esp+4]
  935. %endif
  936. PREROTATER r4, r3, r2, rtcos, rtsin
  937. %if mmsize == 8
  938. mov r6, [esp] ; rrevtab = ptr+n8
  939. movzx r5, word [rrevtab+r4-2] ; rrevtab[j]
  940. movzx r6, word [rrevtab+r3] ; rrevtab[n4-j-1]
  941. mova [r1+r5*8], m0
  942. mova [r1+r6*8], m2
  943. add r4, 2
  944. sub r3, 2
  945. %else
  946. %if ARCH_X86_64
  947. movzx r5, word [rrevtab+r4-4]
  948. movzx r6, word [rrevtab+r4-2]
  949. movzx r10, word [rrevtab+r3]
  950. movzx r11, word [rrevtab+r3+2]
  951. movlps [r1+r5 *8], xmm0
  952. movhps [r1+r6 *8], xmm0
  953. movlps [r1+r10*8], xmm1
  954. movhps [r1+r11*8], xmm1
  955. add r4, 4
  956. %else
  957. mov r6, [esp]
  958. movzx r5, word [r6+r4-4]
  959. movzx r4, word [r6+r4-2]
  960. movlps [r1+r5*8], xmm0
  961. movhps [r1+r4*8], xmm0
  962. movzx r5, word [r6+r3]
  963. movzx r4, word [r6+r3+2]
  964. movlps [r1+r5*8], xmm1
  965. movhps [r1+r4*8], xmm1
  966. %endif
  967. sub r3, 4
  968. %endif
  969. jns .pre
  970. mov r5, r0
  971. mov r6, r1
  972. mov r0, r1
  973. mov r1d, [r5+FFTContext.nbits]
  974. FFT_DISPATCH SUFFIX, r1
  975. mov r0d, [r5+FFTContext.mdctsize]
  976. add r6, r0
  977. shr r0, 1
  978. %if ARCH_X86_64 == 0
  979. %define rtcos r2
  980. %define rtsin r3
  981. mov rtcos, [esp+8]
  982. mov rtsin, [esp+4]
  983. %endif
  984. neg r0
  985. mov r1, -mmsize
  986. sub r1, r0
  987. %1 r0, r1, r6, rtcos, rtsin
  988. %if ARCH_X86_64 == 0
  989. add esp, 12
  990. %endif
  991. %if mmsize == 8
  992. femms
  993. %endif
  994. RET
  995. %endmacro
  996. DECL_IMDCT POSROTATESHUF
  997. %if ARCH_X86_32
  998. INIT_MMX 3dnow
  999. DECL_IMDCT POSROTATESHUF_3DNOW
  1000. INIT_MMX 3dnowext
  1001. DECL_IMDCT POSROTATESHUF_3DNOW
  1002. %endif
  1003. INIT_YMM avx
  1004. %if HAVE_AVX_EXTERNAL
  1005. DECL_IMDCT POSROTATESHUF_AVX
  1006. %endif