You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1504 lines
54KB

  1. /*
  2. * RV30/40 decoder common data
  3. * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * RV30/40 decoder common data
  24. */
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. #include "golomb.h"
  29. #include "mathops.h"
  30. #include "rectangle.h"
  31. #include "rv34vlc.h"
  32. #include "rv34data.h"
  33. #include "rv34.h"
  34. //#define DEBUG
  35. static inline void ZERO8x2(void* dst, int stride)
  36. {
  37. fill_rectangle(dst, 1, 2, stride, 0, 4);
  38. fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4);
  39. }
  40. /** translation of RV30/40 macroblock types to lavc ones */
  41. static const int rv34_mb_type_to_lavc[12] = {
  42. MB_TYPE_INTRA,
  43. MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
  44. MB_TYPE_16x16 | MB_TYPE_L0,
  45. MB_TYPE_8x8 | MB_TYPE_L0,
  46. MB_TYPE_16x16 | MB_TYPE_L0,
  47. MB_TYPE_16x16 | MB_TYPE_L1,
  48. MB_TYPE_SKIP,
  49. MB_TYPE_DIRECT2 | MB_TYPE_16x16,
  50. MB_TYPE_16x8 | MB_TYPE_L0,
  51. MB_TYPE_8x16 | MB_TYPE_L0,
  52. MB_TYPE_16x16 | MB_TYPE_L0L1,
  53. MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
  54. };
  55. static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
  56. static int rv34_decode_mv(RV34DecContext *r, int block_type);
  57. /**
  58. * @name RV30/40 VLC generating functions
  59. * @{
  60. */
  61. static const int table_offs[] = {
  62. 0, 1818, 3622, 4144, 4698, 5234, 5804, 5868, 5900, 5932,
  63. 5996, 6252, 6316, 6348, 6380, 7674, 8944, 10274, 11668, 12250,
  64. 14060, 15846, 16372, 16962, 17512, 18148, 18180, 18212, 18244, 18308,
  65. 18564, 18628, 18660, 18692, 20036, 21314, 22648, 23968, 24614, 26384,
  66. 28190, 28736, 29366, 29938, 30608, 30640, 30672, 30704, 30768, 31024,
  67. 31088, 31120, 31184, 32570, 33898, 35236, 36644, 37286, 39020, 40802,
  68. 41368, 42052, 42692, 43348, 43380, 43412, 43444, 43476, 43604, 43668,
  69. 43700, 43732, 45100, 46430, 47778, 49160, 49802, 51550, 53340, 53972,
  70. 54648, 55348, 55994, 56122, 56154, 56186, 56218, 56346, 56410, 56442,
  71. 56474, 57878, 59290, 60636, 62036, 62682, 64460, 64524, 64588, 64716,
  72. 64844, 66076, 67466, 67978, 68542, 69064, 69648, 70296, 72010, 72074,
  73. 72138, 72202, 72330, 73572, 74936, 75454, 76030, 76566, 77176, 77822,
  74. 79582, 79646, 79678, 79742, 79870, 81180, 82536, 83064, 83672, 84242,
  75. 84934, 85576, 87384, 87448, 87480, 87544, 87672, 88982, 90340, 90902,
  76. 91598, 92182, 92846, 93488, 95246, 95278, 95310, 95374, 95502, 96878,
  77. 98266, 98848, 99542, 100234, 100884, 101524, 103320, 103352, 103384, 103416,
  78. 103480, 104874, 106222, 106910, 107584, 108258, 108902, 109544, 111366, 111398,
  79. 111430, 111462, 111494, 112878, 114320, 114988, 115660, 116310, 116950, 117592
  80. };
  81. static VLC_TYPE table_data[117592][2];
  82. /**
  83. * Generate VLC from codeword lengths.
  84. * @param bits codeword lengths (zeroes are accepted)
  85. * @param size length of input data
  86. * @param vlc output VLC
  87. * @param insyms symbols for input codes (NULL for default ones)
  88. * @param num VLC table number (for static initialization)
  89. */
  90. static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms,
  91. const int num)
  92. {
  93. int i;
  94. int counts[17] = {0}, codes[17];
  95. uint16_t cw[MAX_VLC_SIZE], syms[MAX_VLC_SIZE];
  96. uint8_t bits2[MAX_VLC_SIZE];
  97. int maxbits = 0, realsize = 0;
  98. for(i = 0; i < size; i++){
  99. if(bits[i]){
  100. bits2[realsize] = bits[i];
  101. syms[realsize] = insyms ? insyms[i] : i;
  102. realsize++;
  103. maxbits = FFMAX(maxbits, bits[i]);
  104. counts[bits[i]]++;
  105. }
  106. }
  107. codes[0] = 0;
  108. for(i = 0; i < 16; i++)
  109. codes[i+1] = (codes[i] + counts[i]) << 1;
  110. for(i = 0; i < realsize; i++)
  111. cw[i] = codes[bits2[i]]++;
  112. vlc->table = &table_data[table_offs[num]];
  113. vlc->table_allocated = table_offs[num + 1] - table_offs[num];
  114. init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
  115. bits2, 1, 1,
  116. cw, 2, 2,
  117. syms, 2, 2, INIT_VLC_USE_NEW_STATIC);
  118. }
  119. /**
  120. * Initialize all tables.
  121. */
  122. static av_cold void rv34_init_tables(void)
  123. {
  124. int i, j, k;
  125. for(i = 0; i < NUM_INTRA_TABLES; i++){
  126. for(j = 0; j < 2; j++){
  127. rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL, 19*i + 0 + j);
  128. rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL, 19*i + 2 + j);
  129. rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL, 19*i + 4 + j);
  130. for(k = 0; k < 4; k++){
  131. rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code, 19*i + 6 + j*4 + k);
  132. }
  133. }
  134. for(j = 0; j < 4; j++){
  135. rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL, 19*i + 14 + j);
  136. }
  137. rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL, 19*i + 18);
  138. }
  139. for(i = 0; i < NUM_INTER_TABLES; i++){
  140. rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL, i*12 + 95);
  141. for(j = 0; j < 4; j++){
  142. rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code, i*12 + 96 + j);
  143. }
  144. for(j = 0; j < 2; j++){
  145. rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL, i*12 + 100 + j);
  146. rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL, i*12 + 102 + j);
  147. rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL, i*12 + 104 + j);
  148. }
  149. rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL, i*12 + 106);
  150. }
  151. }
  152. /** @} */ // vlc group
  153. /**
  154. * @name RV30/40 inverse transform functions
  155. * @{
  156. */
  157. static av_always_inline void rv34_row_transform(int temp[16], DCTELEM *block)
  158. {
  159. int i;
  160. for(i = 0; i < 4; i++){
  161. const int z0 = 13*(block[i+8*0] + block[i+8*2]);
  162. const int z1 = 13*(block[i+8*0] - block[i+8*2]);
  163. const int z2 = 7* block[i+8*1] - 17*block[i+8*3];
  164. const int z3 = 17* block[i+8*1] + 7*block[i+8*3];
  165. temp[4*i+0] = z0 + z3;
  166. temp[4*i+1] = z1 + z2;
  167. temp[4*i+2] = z1 - z2;
  168. temp[4*i+3] = z0 - z3;
  169. }
  170. }
  171. /**
  172. * Real Video 3.0/4.0 inverse transform
  173. * Code is almost the same as in SVQ3, only scaling is different.
  174. */
  175. static void rv34_inv_transform(DCTELEM *block){
  176. int temp[16];
  177. int i;
  178. rv34_row_transform(temp, block);
  179. for(i = 0; i < 4; i++){
  180. const int z0 = 13*(temp[4*0+i] + temp[4*2+i]) + 0x200;
  181. const int z1 = 13*(temp[4*0+i] - temp[4*2+i]) + 0x200;
  182. const int z2 = 7* temp[4*1+i] - 17*temp[4*3+i];
  183. const int z3 = 17* temp[4*1+i] + 7*temp[4*3+i];
  184. block[i*8+0] = (z0 + z3) >> 10;
  185. block[i*8+1] = (z1 + z2) >> 10;
  186. block[i*8+2] = (z1 - z2) >> 10;
  187. block[i*8+3] = (z0 - z3) >> 10;
  188. }
  189. }
  190. /**
  191. * RealVideo 3.0/4.0 inverse transform for DC block
  192. *
  193. * Code is almost the same as rv34_inv_transform()
  194. * but final coefficients are multiplied by 1.5 and have no rounding.
  195. */
  196. static void rv34_inv_transform_noround(DCTELEM *block){
  197. int temp[16];
  198. int i;
  199. rv34_row_transform(temp, block);
  200. for(i = 0; i < 4; i++){
  201. const int z0 = 13*(temp[4*0+i] + temp[4*2+i]);
  202. const int z1 = 13*(temp[4*0+i] - temp[4*2+i]);
  203. const int z2 = 7* temp[4*1+i] - 17*temp[4*3+i];
  204. const int z3 = 17* temp[4*1+i] + 7*temp[4*3+i];
  205. block[i*8+0] = ((z0 + z3) * 3) >> 11;
  206. block[i*8+1] = ((z1 + z2) * 3) >> 11;
  207. block[i*8+2] = ((z1 - z2) * 3) >> 11;
  208. block[i*8+3] = ((z0 - z3) * 3) >> 11;
  209. }
  210. }
  211. /** @} */ // transform
  212. /**
  213. * @name RV30/40 4x4 block decoding functions
  214. * @{
  215. */
  216. /**
  217. * Decode coded block pattern.
  218. */
  219. static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
  220. {
  221. int pattern, code, cbp=0;
  222. int ones;
  223. static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
  224. static const int shifts[4] = { 0, 2, 8, 10 };
  225. const int *curshift = shifts;
  226. int i, t, mask;
  227. code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
  228. pattern = code & 0xF;
  229. code >>= 4;
  230. ones = rv34_count_ones[pattern];
  231. for(mask = 8; mask; mask >>= 1, curshift++){
  232. if(pattern & mask)
  233. cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
  234. }
  235. for(i = 0; i < 4; i++){
  236. t = modulo_three_table[code][i];
  237. if(t == 1)
  238. cbp |= cbp_masks[get_bits1(gb)] << i;
  239. if(t == 2)
  240. cbp |= cbp_masks[2] << i;
  241. }
  242. return cbp;
  243. }
  244. /**
  245. * Get one coefficient value from the bistream and store it.
  246. */
  247. static inline void decode_coeff(DCTELEM *dst, int coef, int esc, GetBitContext *gb, VLC* vlc)
  248. {
  249. if(coef){
  250. if(coef == esc){
  251. coef = get_vlc2(gb, vlc->table, 9, 2);
  252. if(coef > 23){
  253. coef -= 23;
  254. coef = 22 + ((1 << coef) | get_bits(gb, coef));
  255. }
  256. coef += esc;
  257. }
  258. if(get_bits1(gb))
  259. coef = -coef;
  260. *dst = coef;
  261. }
  262. }
  263. /**
  264. * Decode 2x2 subblock of coefficients.
  265. */
  266. static inline void decode_subblock(DCTELEM *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc)
  267. {
  268. int coeffs[4];
  269. coeffs[0] = modulo_three_table[code][0];
  270. coeffs[1] = modulo_three_table[code][1];
  271. coeffs[2] = modulo_three_table[code][2];
  272. coeffs[3] = modulo_three_table[code][3];
  273. decode_coeff(dst , coeffs[0], 3, gb, vlc);
  274. if(is_block2){
  275. decode_coeff(dst+8, coeffs[1], 2, gb, vlc);
  276. decode_coeff(dst+1, coeffs[2], 2, gb, vlc);
  277. }else{
  278. decode_coeff(dst+1, coeffs[1], 2, gb, vlc);
  279. decode_coeff(dst+8, coeffs[2], 2, gb, vlc);
  280. }
  281. decode_coeff(dst+9, coeffs[3], 2, gb, vlc);
  282. }
  283. /**
  284. * Decode coefficients for 4x4 block.
  285. *
  286. * This is done by filling 2x2 subblocks with decoded coefficients
  287. * in this order (the same for subblocks and subblock coefficients):
  288. * o--o
  289. * /
  290. * /
  291. * o--o
  292. */
  293. static inline void rv34_decode_block(DCTELEM *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc)
  294. {
  295. int code, pattern;
  296. code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
  297. pattern = code & 0x7;
  298. code >>= 3;
  299. decode_subblock(dst, code, 0, gb, &rvlc->coefficient);
  300. if(pattern & 4){
  301. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  302. decode_subblock(dst + 2, code, 0, gb, &rvlc->coefficient);
  303. }
  304. if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
  305. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  306. decode_subblock(dst + 8*2, code, 1, gb, &rvlc->coefficient);
  307. }
  308. if(pattern & 1){
  309. code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
  310. decode_subblock(dst + 8*2+2, code, 0, gb, &rvlc->coefficient);
  311. }
  312. }
  313. /**
  314. * Dequantize ordinary 4x4 block.
  315. * @todo optimize
  316. */
  317. static inline void rv34_dequant4x4(DCTELEM *block, int Qdc, int Q)
  318. {
  319. int i, j;
  320. block[0] = (block[0] * Qdc + 8) >> 4;
  321. for(i = 0; i < 4; i++)
  322. for(j = !i; j < 4; j++)
  323. block[j + i*8] = (block[j + i*8] * Q + 8) >> 4;
  324. }
  325. /**
  326. * Dequantize 4x4 block of DC values for 16x16 macroblock.
  327. * @todo optimize
  328. */
  329. static inline void rv34_dequant4x4_16x16(DCTELEM *block, int Qdc, int Q)
  330. {
  331. int i;
  332. for(i = 0; i < 3; i++)
  333. block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Qdc + 8) >> 4;
  334. for(; i < 16; i++)
  335. block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Q + 8) >> 4;
  336. }
  337. /** @} */ //block functions
  338. /**
  339. * @name RV30/40 bitstream parsing
  340. * @{
  341. */
  342. /**
  343. * Decode starting slice position.
  344. * @todo Maybe replace with ff_h263_decode_mba() ?
  345. */
  346. int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
  347. {
  348. int i;
  349. for(i = 0; i < 5; i++)
  350. if(rv34_mb_max_sizes[i] >= mb_size - 1)
  351. break;
  352. return rv34_mb_bits_sizes[i];
  353. }
  354. /**
  355. * Select VLC set for decoding from current quantizer, modifier and frame type.
  356. */
  357. static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
  358. {
  359. if(mod == 2 && quant < 19) quant += 10;
  360. else if(mod && quant < 26) quant += 5;
  361. return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
  362. : &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
  363. }
  364. /**
  365. * Decode macroblock header and return CBP in case of success, -1 otherwise.
  366. */
  367. static int rv34_decode_mb_header(RV34DecContext *r, int8_t *intra_types)
  368. {
  369. MpegEncContext *s = &r->s;
  370. GetBitContext *gb = &s->gb;
  371. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  372. int i, t;
  373. if(!r->si.type){
  374. r->is16 = get_bits1(gb);
  375. if(!r->is16 && !r->rv30){
  376. if(!get_bits1(gb))
  377. av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
  378. }
  379. s->current_picture_ptr->f.mb_type[mb_pos] = r->is16 ? MB_TYPE_INTRA16x16 : MB_TYPE_INTRA;
  380. r->block_type = r->is16 ? RV34_MB_TYPE_INTRA16x16 : RV34_MB_TYPE_INTRA;
  381. }else{
  382. r->block_type = r->decode_mb_info(r);
  383. if(r->block_type == -1)
  384. return -1;
  385. s->current_picture_ptr->f.mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
  386. r->mb_type[mb_pos] = r->block_type;
  387. if(r->block_type == RV34_MB_SKIP){
  388. if(s->pict_type == AV_PICTURE_TYPE_P)
  389. r->mb_type[mb_pos] = RV34_MB_P_16x16;
  390. if(s->pict_type == AV_PICTURE_TYPE_B)
  391. r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
  392. }
  393. r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->f.mb_type[mb_pos]);
  394. rv34_decode_mv(r, r->block_type);
  395. if(r->block_type == RV34_MB_SKIP){
  396. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0]));
  397. return 0;
  398. }
  399. r->chroma_vlc = 1;
  400. r->luma_vlc = 0;
  401. }
  402. if(IS_INTRA(s->current_picture_ptr->f.mb_type[mb_pos])){
  403. if(r->is16){
  404. t = get_bits(gb, 2);
  405. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
  406. r->luma_vlc = 2;
  407. }else{
  408. if(r->decode_intra_types(r, gb, intra_types) < 0)
  409. return -1;
  410. r->luma_vlc = 1;
  411. }
  412. r->chroma_vlc = 0;
  413. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  414. }else{
  415. for(i = 0; i < 16; i++)
  416. intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0;
  417. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  418. if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
  419. r->is16 = 1;
  420. r->chroma_vlc = 1;
  421. r->luma_vlc = 2;
  422. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  423. }
  424. }
  425. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  426. }
  427. /** @} */ //bitstream functions
  428. /**
  429. * @name motion vector related code (prediction, reconstruction, motion compensation)
  430. * @{
  431. */
  432. /** macroblock partition width in 8x8 blocks */
  433. static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
  434. /** macroblock partition height in 8x8 blocks */
  435. static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
  436. /** availability index for subblocks */
  437. static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 };
  438. /**
  439. * motion vector prediction
  440. *
  441. * Motion prediction performed for the block by using median prediction of
  442. * motion vectors from the left, top and right top blocks but in corner cases
  443. * some other vectors may be used instead.
  444. */
  445. static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
  446. {
  447. MpegEncContext *s = &r->s;
  448. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  449. int A[2] = {0}, B[2], C[2];
  450. int i, j;
  451. int mx, my;
  452. int avail_index = avail_indexes[subblock_no];
  453. int c_off = part_sizes_w[block_type];
  454. mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
  455. if(subblock_no == 3)
  456. c_off = -1;
  457. if(r->avail_cache[avail_index - 1]){
  458. A[0] = s->current_picture_ptr->f.motion_val[0][mv_pos-1][0];
  459. A[1] = s->current_picture_ptr->f.motion_val[0][mv_pos-1][1];
  460. }
  461. if(r->avail_cache[avail_index - 4]){
  462. B[0] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride][0];
  463. B[1] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride][1];
  464. }else{
  465. B[0] = A[0];
  466. B[1] = A[1];
  467. }
  468. if(!r->avail_cache[avail_index - 4 + c_off]){
  469. if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1] || r->rv30)){
  470. C[0] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride-1][0];
  471. C[1] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride-1][1];
  472. }else{
  473. C[0] = A[0];
  474. C[1] = A[1];
  475. }
  476. }else{
  477. C[0] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride+c_off][0];
  478. C[1] = s->current_picture_ptr->f.motion_val[0][mv_pos-s->b8_stride+c_off][1];
  479. }
  480. mx = mid_pred(A[0], B[0], C[0]);
  481. my = mid_pred(A[1], B[1], C[1]);
  482. mx += r->dmv[dmv_no][0];
  483. my += r->dmv[dmv_no][1];
  484. for(j = 0; j < part_sizes_h[block_type]; j++){
  485. for(i = 0; i < part_sizes_w[block_type]; i++){
  486. s->current_picture_ptr->f.motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
  487. s->current_picture_ptr->f.motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
  488. }
  489. }
  490. }
  491. #define GET_PTS_DIFF(a, b) ((a - b + 8192) & 0x1FFF)
  492. /**
  493. * Calculate motion vector component that should be added for direct blocks.
  494. */
  495. static int calc_add_mv(RV34DecContext *r, int dir, int val)
  496. {
  497. int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
  498. int dist = dir ? -GET_PTS_DIFF(r->next_pts, r->cur_pts) : GET_PTS_DIFF(r->cur_pts, r->last_pts);
  499. int mul;
  500. if(!refdist) return 0;
  501. mul = (dist << 14) / refdist;
  502. return (val * mul + 0x2000) >> 14;
  503. }
  504. /**
  505. * Predict motion vector for B-frame macroblock.
  506. */
  507. static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
  508. int A_avail, int B_avail, int C_avail,
  509. int *mx, int *my)
  510. {
  511. if(A_avail + B_avail + C_avail != 3){
  512. *mx = A[0] + B[0] + C[0];
  513. *my = A[1] + B[1] + C[1];
  514. if(A_avail + B_avail + C_avail == 2){
  515. *mx /= 2;
  516. *my /= 2;
  517. }
  518. }else{
  519. *mx = mid_pred(A[0], B[0], C[0]);
  520. *my = mid_pred(A[1], B[1], C[1]);
  521. }
  522. }
  523. /**
  524. * motion vector prediction for B-frames
  525. */
  526. static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
  527. {
  528. MpegEncContext *s = &r->s;
  529. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  530. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  531. int A[2], B[2], C[2];
  532. int has_A = 0, has_B = 0, has_C = 0;
  533. int mx, my;
  534. int i, j;
  535. Picture *cur_pic = s->current_picture_ptr;
  536. const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
  537. int type = cur_pic->f.mb_type[mb_pos];
  538. memset(A, 0, sizeof(A));
  539. memset(B, 0, sizeof(B));
  540. memset(C, 0, sizeof(C));
  541. if((r->avail_cache[6-1] & type) & mask){
  542. A[0] = cur_pic->f.motion_val[dir][mv_pos - 1][0];
  543. A[1] = cur_pic->f.motion_val[dir][mv_pos - 1][1];
  544. has_A = 1;
  545. }
  546. if((r->avail_cache[6-4] & type) & mask){
  547. B[0] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride][0];
  548. B[1] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride][1];
  549. has_B = 1;
  550. }
  551. if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){
  552. C[0] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride + 2][0];
  553. C[1] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride + 2][1];
  554. has_C = 1;
  555. }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){
  556. C[0] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride - 1][0];
  557. C[1] = cur_pic->f.motion_val[dir][mv_pos - s->b8_stride - 1][1];
  558. has_C = 1;
  559. }
  560. rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
  561. mx += r->dmv[dir][0];
  562. my += r->dmv[dir][1];
  563. for(j = 0; j < 2; j++){
  564. for(i = 0; i < 2; i++){
  565. cur_pic->f.motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
  566. cur_pic->f.motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
  567. }
  568. }
  569. if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){
  570. ZERO8x2(cur_pic->f.motion_val[!dir][mv_pos], s->b8_stride);
  571. }
  572. }
  573. /**
  574. * motion vector prediction - RV3 version
  575. */
  576. static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
  577. {
  578. MpegEncContext *s = &r->s;
  579. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  580. int A[2] = {0}, B[2], C[2];
  581. int i, j, k;
  582. int mx, my;
  583. int avail_index = avail_indexes[0];
  584. if(r->avail_cache[avail_index - 1]){
  585. A[0] = s->current_picture_ptr->f.motion_val[0][mv_pos - 1][0];
  586. A[1] = s->current_picture_ptr->f.motion_val[0][mv_pos - 1][1];
  587. }
  588. if(r->avail_cache[avail_index - 4]){
  589. B[0] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride][0];
  590. B[1] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride][1];
  591. }else{
  592. B[0] = A[0];
  593. B[1] = A[1];
  594. }
  595. if(!r->avail_cache[avail_index - 4 + 2]){
  596. if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1])){
  597. C[0] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride - 1][0];
  598. C[1] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride - 1][1];
  599. }else{
  600. C[0] = A[0];
  601. C[1] = A[1];
  602. }
  603. }else{
  604. C[0] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride + 2][0];
  605. C[1] = s->current_picture_ptr->f.motion_val[0][mv_pos - s->b8_stride + 2][1];
  606. }
  607. mx = mid_pred(A[0], B[0], C[0]);
  608. my = mid_pred(A[1], B[1], C[1]);
  609. mx += r->dmv[0][0];
  610. my += r->dmv[0][1];
  611. for(j = 0; j < 2; j++){
  612. for(i = 0; i < 2; i++){
  613. for(k = 0; k < 2; k++){
  614. s->current_picture_ptr->f.motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
  615. s->current_picture_ptr->f.motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
  616. }
  617. }
  618. }
  619. }
  620. static const int chroma_coeffs[3] = { 0, 3, 5 };
  621. /**
  622. * generic motion compensation function
  623. *
  624. * @param r decoder context
  625. * @param block_type type of the current block
  626. * @param xoff horizontal offset from the start of the current block
  627. * @param yoff vertical offset from the start of the current block
  628. * @param mv_off offset to the motion vector information
  629. * @param width width of the current partition in 8x8 blocks
  630. * @param height height of the current partition in 8x8 blocks
  631. * @param dir motion compensation direction (i.e. from the last or the next reference frame)
  632. * @param thirdpel motion vectors are specified in 1/3 of pixel
  633. * @param qpel_mc a set of functions used to perform luma motion compensation
  634. * @param chroma_mc a set of functions used to perform chroma motion compensation
  635. */
  636. static inline void rv34_mc(RV34DecContext *r, const int block_type,
  637. const int xoff, const int yoff, int mv_off,
  638. const int width, const int height, int dir,
  639. const int thirdpel,
  640. qpel_mc_func (*qpel_mc)[16],
  641. h264_chroma_mc_func (*chroma_mc))
  642. {
  643. MpegEncContext *s = &r->s;
  644. uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
  645. int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  646. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
  647. int is16x16 = 1;
  648. if(thirdpel){
  649. int chroma_mx, chroma_my;
  650. mx = (s->current_picture_ptr->f.motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
  651. my = (s->current_picture_ptr->f.motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
  652. lx = (s->current_picture_ptr->f.motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
  653. ly = (s->current_picture_ptr->f.motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
  654. chroma_mx = s->current_picture_ptr->f.motion_val[dir][mv_pos][0] / 2;
  655. chroma_my = s->current_picture_ptr->f.motion_val[dir][mv_pos][1] / 2;
  656. umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
  657. umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
  658. uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
  659. uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
  660. }else{
  661. int cx, cy;
  662. mx = s->current_picture_ptr->f.motion_val[dir][mv_pos][0] >> 2;
  663. my = s->current_picture_ptr->f.motion_val[dir][mv_pos][1] >> 2;
  664. lx = s->current_picture_ptr->f.motion_val[dir][mv_pos][0] & 3;
  665. ly = s->current_picture_ptr->f.motion_val[dir][mv_pos][1] & 3;
  666. cx = s->current_picture_ptr->f.motion_val[dir][mv_pos][0] / 2;
  667. cy = s->current_picture_ptr->f.motion_val[dir][mv_pos][1] / 2;
  668. umx = cx >> 2;
  669. umy = cy >> 2;
  670. uvmx = (cx & 3) << 1;
  671. uvmy = (cy & 3) << 1;
  672. //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
  673. if(uvmx == 6 && uvmy == 6)
  674. uvmx = uvmy = 4;
  675. }
  676. dxy = ly*4 + lx;
  677. srcY = dir ? s->next_picture_ptr->f.data[0] : s->last_picture_ptr->f.data[0];
  678. srcU = dir ? s->next_picture_ptr->f.data[1] : s->last_picture_ptr->f.data[1];
  679. srcV = dir ? s->next_picture_ptr->f.data[2] : s->last_picture_ptr->f.data[2];
  680. src_x = s->mb_x * 16 + xoff + mx;
  681. src_y = s->mb_y * 16 + yoff + my;
  682. uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
  683. uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
  684. srcY += src_y * s->linesize + src_x;
  685. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  686. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  687. if( (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4
  688. || (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4){
  689. uint8_t *uvbuf = s->edge_emu_buffer + 22 * s->linesize;
  690. srcY -= 2 + 2*s->linesize;
  691. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, (width<<3)+6, (height<<3)+6,
  692. src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
  693. srcY = s->edge_emu_buffer + 2 + 2*s->linesize;
  694. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, (width<<2)+1, (height<<2)+1,
  695. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  696. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, (width<<2)+1, (height<<2)+1,
  697. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  698. srcU = uvbuf;
  699. srcV = uvbuf + 16;
  700. }
  701. Y = s->dest[0] + xoff + yoff *s->linesize;
  702. U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  703. V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  704. if(block_type == RV34_MB_P_16x8){
  705. qpel_mc[1][dxy](Y, srcY, s->linesize);
  706. Y += 8;
  707. srcY += 8;
  708. }else if(block_type == RV34_MB_P_8x16){
  709. qpel_mc[1][dxy](Y, srcY, s->linesize);
  710. Y += 8 * s->linesize;
  711. srcY += 8 * s->linesize;
  712. }
  713. is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
  714. qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
  715. chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
  716. chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
  717. }
  718. static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
  719. const int xoff, const int yoff, int mv_off,
  720. const int width, const int height, int dir)
  721. {
  722. rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30,
  723. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  724. : r->s.dsp.put_rv40_qpel_pixels_tab,
  725. r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
  726. : r->s.dsp.put_rv40_chroma_pixels_tab);
  727. }
  728. static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
  729. {
  730. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30,
  731. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  732. : r->s.dsp.put_rv40_qpel_pixels_tab,
  733. r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
  734. : r->s.dsp.put_rv40_chroma_pixels_tab);
  735. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30,
  736. r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
  737. : r->s.dsp.avg_rv40_qpel_pixels_tab,
  738. r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
  739. : r->s.dsp.avg_rv40_chroma_pixels_tab);
  740. }
  741. static void rv34_mc_2mv_skip(RV34DecContext *r)
  742. {
  743. int i, j;
  744. for(j = 0; j < 2; j++)
  745. for(i = 0; i < 2; i++){
  746. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
  747. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  748. : r->s.dsp.put_rv40_qpel_pixels_tab,
  749. r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
  750. : r->s.dsp.put_rv40_chroma_pixels_tab);
  751. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
  752. r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
  753. : r->s.dsp.avg_rv40_qpel_pixels_tab,
  754. r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
  755. : r->s.dsp.avg_rv40_chroma_pixels_tab);
  756. }
  757. }
  758. /** number of motion vectors in each macroblock type */
  759. static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
  760. /**
  761. * Decode motion vector differences
  762. * and perform motion vector reconstruction and motion compensation.
  763. */
  764. static int rv34_decode_mv(RV34DecContext *r, int block_type)
  765. {
  766. MpegEncContext *s = &r->s;
  767. GetBitContext *gb = &s->gb;
  768. int i, j, k, l;
  769. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  770. int next_bt;
  771. memset(r->dmv, 0, sizeof(r->dmv));
  772. for(i = 0; i < num_mvs[block_type]; i++){
  773. r->dmv[i][0] = svq3_get_se_golomb(gb);
  774. r->dmv[i][1] = svq3_get_se_golomb(gb);
  775. }
  776. switch(block_type){
  777. case RV34_MB_TYPE_INTRA:
  778. case RV34_MB_TYPE_INTRA16x16:
  779. ZERO8x2(s->current_picture_ptr->f.motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  780. return 0;
  781. case RV34_MB_SKIP:
  782. if(s->pict_type == AV_PICTURE_TYPE_P){
  783. ZERO8x2(s->current_picture_ptr->f.motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  784. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  785. break;
  786. }
  787. case RV34_MB_B_DIRECT:
  788. //surprisingly, it uses motion scheme from next reference frame
  789. next_bt = s->next_picture_ptr->f.mb_type[s->mb_x + s->mb_y * s->mb_stride];
  790. if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
  791. ZERO8x2(s->current_picture_ptr->f.motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  792. ZERO8x2(s->current_picture_ptr->f.motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  793. }else
  794. for(j = 0; j < 2; j++)
  795. for(i = 0; i < 2; i++)
  796. for(k = 0; k < 2; k++)
  797. for(l = 0; l < 2; l++)
  798. s->current_picture_ptr->f.motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->f.motion_val[0][mv_pos + i + j*s->b8_stride][k]);
  799. if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
  800. rv34_mc_2mv(r, block_type);
  801. else
  802. rv34_mc_2mv_skip(r);
  803. ZERO8x2(s->current_picture_ptr->f.motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  804. break;
  805. case RV34_MB_P_16x16:
  806. case RV34_MB_P_MIX16x16:
  807. rv34_pred_mv(r, block_type, 0, 0);
  808. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  809. break;
  810. case RV34_MB_B_FORWARD:
  811. case RV34_MB_B_BACKWARD:
  812. r->dmv[1][0] = r->dmv[0][0];
  813. r->dmv[1][1] = r->dmv[0][1];
  814. if(r->rv30)
  815. rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
  816. else
  817. rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
  818. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
  819. break;
  820. case RV34_MB_P_16x8:
  821. case RV34_MB_P_8x16:
  822. rv34_pred_mv(r, block_type, 0, 0);
  823. rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
  824. if(block_type == RV34_MB_P_16x8){
  825. rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
  826. rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
  827. }
  828. if(block_type == RV34_MB_P_8x16){
  829. rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
  830. rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
  831. }
  832. break;
  833. case RV34_MB_B_BIDIR:
  834. rv34_pred_mv_b (r, block_type, 0);
  835. rv34_pred_mv_b (r, block_type, 1);
  836. rv34_mc_2mv (r, block_type);
  837. break;
  838. case RV34_MB_P_8x8:
  839. for(i=0;i< 4;i++){
  840. rv34_pred_mv(r, block_type, i, i);
  841. rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
  842. }
  843. break;
  844. }
  845. return 0;
  846. }
  847. /** @} */ // mv group
  848. /**
  849. * @name Macroblock reconstruction functions
  850. * @{
  851. */
  852. /** mapping of RV30/40 intra prediction types to standard H.264 types */
  853. static const int ittrans[9] = {
  854. DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
  855. VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
  856. };
  857. /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
  858. static const int ittrans16[4] = {
  859. DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
  860. };
  861. /**
  862. * Perform 4x4 intra prediction.
  863. */
  864. static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
  865. {
  866. uint8_t *prev = dst - stride + 4;
  867. uint32_t topleft;
  868. if(!up && !left)
  869. itype = DC_128_PRED;
  870. else if(!up){
  871. if(itype == VERT_PRED) itype = HOR_PRED;
  872. if(itype == DC_PRED) itype = LEFT_DC_PRED;
  873. }else if(!left){
  874. if(itype == HOR_PRED) itype = VERT_PRED;
  875. if(itype == DC_PRED) itype = TOP_DC_PRED;
  876. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  877. }
  878. if(!down){
  879. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  880. if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
  881. if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
  882. }
  883. if(!right && up){
  884. topleft = dst[-stride + 3] * 0x01010101;
  885. prev = (uint8_t*)&topleft;
  886. }
  887. r->h.pred4x4[itype](dst, prev, stride);
  888. }
  889. /** add_pixels_clamped for 4x4 block */
  890. static void rv34_add_4x4_block(uint8_t *dst, int stride, DCTELEM block[64], int off)
  891. {
  892. int x, y;
  893. for(y = 0; y < 4; y++)
  894. for(x = 0; x < 4; x++)
  895. dst[x + y*stride] = av_clip_uint8(dst[x + y*stride] + block[off + x+y*8]);
  896. }
  897. static inline int adjust_pred16(int itype, int up, int left)
  898. {
  899. if(!up && !left)
  900. itype = DC_128_PRED8x8;
  901. else if(!up){
  902. if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
  903. if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
  904. if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
  905. }else if(!left){
  906. if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
  907. if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
  908. if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
  909. }
  910. return itype;
  911. }
  912. static void rv34_output_macroblock(RV34DecContext *r, int8_t *intra_types, int cbp, int is16)
  913. {
  914. MpegEncContext *s = &r->s;
  915. DSPContext *dsp = &s->dsp;
  916. int i, j;
  917. uint8_t *Y, *U, *V;
  918. int itype;
  919. int avail[6*8] = {0};
  920. int idx;
  921. // Set neighbour information.
  922. if(r->avail_cache[1])
  923. avail[0] = 1;
  924. if(r->avail_cache[2])
  925. avail[1] = avail[2] = 1;
  926. if(r->avail_cache[3])
  927. avail[3] = avail[4] = 1;
  928. if(r->avail_cache[4])
  929. avail[5] = 1;
  930. if(r->avail_cache[5])
  931. avail[8] = avail[16] = 1;
  932. if(r->avail_cache[9])
  933. avail[24] = avail[32] = 1;
  934. Y = s->dest[0];
  935. U = s->dest[1];
  936. V = s->dest[2];
  937. if(!is16){
  938. for(j = 0; j < 4; j++){
  939. idx = 9 + j*8;
  940. for(i = 0; i < 4; i++, cbp >>= 1, Y += 4, idx++){
  941. rv34_pred_4x4_block(r, Y, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
  942. avail[idx] = 1;
  943. if(cbp & 1)
  944. rv34_add_4x4_block(Y, s->linesize, s->block[(i>>1)+(j&2)], (i&1)*4+(j&1)*32);
  945. }
  946. Y += s->linesize * 4 - 4*4;
  947. intra_types += r->intra_types_stride;
  948. }
  949. intra_types -= r->intra_types_stride * 4;
  950. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4);
  951. for(j = 0; j < 2; j++){
  952. idx = 6 + j*4;
  953. for(i = 0; i < 2; i++, cbp >>= 1, idx++){
  954. rv34_pred_4x4_block(r, U + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*r->intra_types_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
  955. rv34_pred_4x4_block(r, V + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*r->intra_types_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
  956. r->avail_cache[idx] = 1;
  957. if(cbp & 0x01)
  958. rv34_add_4x4_block(U + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[4], i*4+j*32);
  959. if(cbp & 0x10)
  960. rv34_add_4x4_block(V + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[5], i*4+j*32);
  961. }
  962. }
  963. }else{
  964. itype = ittrans16[intra_types[0]];
  965. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  966. r->h.pred16x16[itype](Y, s->linesize);
  967. dsp->add_pixels_clamped(s->block[0], Y, s->linesize);
  968. dsp->add_pixels_clamped(s->block[1], Y + 8, s->linesize);
  969. Y += s->linesize * 8;
  970. dsp->add_pixels_clamped(s->block[2], Y, s->linesize);
  971. dsp->add_pixels_clamped(s->block[3], Y + 8, s->linesize);
  972. itype = ittrans16[intra_types[0]];
  973. if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
  974. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  975. r->h.pred8x8[itype](U, s->uvlinesize);
  976. dsp->add_pixels_clamped(s->block[4], U, s->uvlinesize);
  977. r->h.pred8x8[itype](V, s->uvlinesize);
  978. dsp->add_pixels_clamped(s->block[5], V, s->uvlinesize);
  979. }
  980. }
  981. /**
  982. * mask for retrieving all bits in coded block pattern
  983. * corresponding to one 8x8 block
  984. */
  985. #define LUMA_CBP_BLOCK_MASK 0x33
  986. #define U_CBP_MASK 0x0F0000
  987. #define V_CBP_MASK 0xF00000
  988. /** @} */ // recons group
  989. static void rv34_apply_differences(RV34DecContext *r, int cbp)
  990. {
  991. static const int shifts[4] = { 0, 2, 8, 10 };
  992. MpegEncContext *s = &r->s;
  993. int i;
  994. for(i = 0; i < 4; i++)
  995. if((cbp & (LUMA_CBP_BLOCK_MASK << shifts[i])) || r->block_type == RV34_MB_P_MIX16x16)
  996. s->dsp.add_pixels_clamped(s->block[i], s->dest[0] + (i & 1)*8 + (i&2)*4*s->linesize, s->linesize);
  997. if(cbp & U_CBP_MASK)
  998. s->dsp.add_pixels_clamped(s->block[4], s->dest[1], s->uvlinesize);
  999. if(cbp & V_CBP_MASK)
  1000. s->dsp.add_pixels_clamped(s->block[5], s->dest[2], s->uvlinesize);
  1001. }
  1002. static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
  1003. {
  1004. int d;
  1005. d = motion_val[0][0] - motion_val[-step][0];
  1006. if(d < -3 || d > 3)
  1007. return 1;
  1008. d = motion_val[0][1] - motion_val[-step][1];
  1009. if(d < -3 || d > 3)
  1010. return 1;
  1011. return 0;
  1012. }
  1013. static int rv34_set_deblock_coef(RV34DecContext *r)
  1014. {
  1015. MpegEncContext *s = &r->s;
  1016. int hmvmask = 0, vmvmask = 0, i, j;
  1017. int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  1018. int16_t (*motion_val)[2] = &s->current_picture_ptr->f.motion_val[0][midx];
  1019. for(j = 0; j < 16; j += 8){
  1020. for(i = 0; i < 2; i++){
  1021. if(is_mv_diff_gt_3(motion_val + i, 1))
  1022. vmvmask |= 0x11 << (j + i*2);
  1023. if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
  1024. hmvmask |= 0x03 << (j + i*2);
  1025. }
  1026. motion_val += s->b8_stride;
  1027. }
  1028. if(s->first_slice_line)
  1029. hmvmask &= ~0x000F;
  1030. if(!s->mb_x)
  1031. vmvmask &= ~0x1111;
  1032. if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
  1033. vmvmask |= (vmvmask & 0x4444) >> 1;
  1034. hmvmask |= (hmvmask & 0x0F00) >> 4;
  1035. if(s->mb_x)
  1036. r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
  1037. if(!s->first_slice_line)
  1038. r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
  1039. }
  1040. return hmvmask | vmvmask;
  1041. }
  1042. static int rv34_decode_macroblock(RV34DecContext *r, int8_t *intra_types)
  1043. {
  1044. MpegEncContext *s = &r->s;
  1045. GetBitContext *gb = &s->gb;
  1046. int cbp, cbp2;
  1047. int i, blknum, blkoff;
  1048. DCTELEM block16[64];
  1049. int luma_dc_quant;
  1050. int dist;
  1051. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1052. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1053. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1054. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
  1055. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1056. if(s->mb_x && dist)
  1057. r->avail_cache[5] =
  1058. r->avail_cache[9] = s->current_picture_ptr->f.mb_type[mb_pos - 1];
  1059. if(dist >= s->mb_width)
  1060. r->avail_cache[2] =
  1061. r->avail_cache[3] = s->current_picture_ptr->f.mb_type[mb_pos - s->mb_stride];
  1062. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1063. r->avail_cache[4] = s->current_picture_ptr->f.mb_type[mb_pos - s->mb_stride + 1];
  1064. if(s->mb_x && dist > s->mb_width)
  1065. r->avail_cache[1] = s->current_picture_ptr->f.mb_type[mb_pos - s->mb_stride - 1];
  1066. s->qscale = r->si.quant;
  1067. cbp = cbp2 = rv34_decode_mb_header(r, intra_types);
  1068. r->cbp_luma [mb_pos] = cbp;
  1069. r->cbp_chroma[mb_pos] = cbp >> 16;
  1070. if(s->pict_type == AV_PICTURE_TYPE_I)
  1071. r->deblock_coefs[mb_pos] = 0xFFFF;
  1072. else
  1073. r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
  1074. s->current_picture_ptr->f.qscale_table[mb_pos] = s->qscale;
  1075. if(cbp == -1)
  1076. return -1;
  1077. luma_dc_quant = r->block_type == RV34_MB_P_MIX16x16 ? r->luma_dc_quant_p[s->qscale] : r->luma_dc_quant_i[s->qscale];
  1078. if(r->is16){
  1079. memset(block16, 0, sizeof(block16));
  1080. rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0);
  1081. rv34_dequant4x4_16x16(block16, rv34_qscale_tab[luma_dc_quant],rv34_qscale_tab[s->qscale]);
  1082. rv34_inv_transform_noround(block16);
  1083. }
  1084. for(i = 0; i < 16; i++, cbp >>= 1){
  1085. if(!r->is16 && !(cbp & 1)) continue;
  1086. blknum = ((i & 2) >> 1) + ((i & 8) >> 2);
  1087. blkoff = ((i & 1) << 2) + ((i & 4) << 3);
  1088. if(cbp & 1)
  1089. rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->luma_vlc, 0);
  1090. rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[s->qscale],rv34_qscale_tab[s->qscale]);
  1091. if(r->is16) //FIXME: optimize
  1092. s->block[blknum][blkoff] = block16[(i & 3) | ((i & 0xC) << 1)];
  1093. rv34_inv_transform(s->block[blknum] + blkoff);
  1094. }
  1095. if(r->block_type == RV34_MB_P_MIX16x16)
  1096. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  1097. for(; i < 24; i++, cbp >>= 1){
  1098. if(!(cbp & 1)) continue;
  1099. blknum = ((i & 4) >> 2) + 4;
  1100. blkoff = ((i & 1) << 2) + ((i & 2) << 4);
  1101. rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->chroma_vlc, 1);
  1102. rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]],rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]);
  1103. rv34_inv_transform(s->block[blknum] + blkoff);
  1104. }
  1105. if (IS_INTRA(s->current_picture_ptr->f.mb_type[mb_pos]))
  1106. rv34_output_macroblock(r, intra_types, cbp2, r->is16);
  1107. else
  1108. rv34_apply_differences(r, cbp2);
  1109. return 0;
  1110. }
  1111. static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
  1112. {
  1113. int bits;
  1114. if(s->mb_y >= s->mb_height)
  1115. return 1;
  1116. if(!s->mb_num_left)
  1117. return 1;
  1118. if(r->s.mb_skip_run > 1)
  1119. return 0;
  1120. bits = r->bits - get_bits_count(&s->gb);
  1121. if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
  1122. return 1;
  1123. return 0;
  1124. }
  1125. static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
  1126. {
  1127. MpegEncContext *s = &r->s;
  1128. GetBitContext *gb = &s->gb;
  1129. int mb_pos;
  1130. int res;
  1131. init_get_bits(&r->s.gb, buf, buf_size*8);
  1132. res = r->parse_slice_header(r, gb, &r->si);
  1133. if(res < 0){
  1134. av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
  1135. return -1;
  1136. }
  1137. if ((s->mb_x == 0 && s->mb_y == 0) || s->current_picture_ptr==NULL) {
  1138. if(s->width != r->si.width || s->height != r->si.height){
  1139. av_log(s->avctx, AV_LOG_DEBUG, "Changing dimensions to %dx%d\n", r->si.width,r->si.height);
  1140. MPV_common_end(s);
  1141. s->width = r->si.width;
  1142. s->height = r->si.height;
  1143. avcodec_set_dimensions(s->avctx, s->width, s->height);
  1144. if(MPV_common_init(s) < 0)
  1145. return -1;
  1146. r->intra_types_stride = s->mb_width*4 + 4;
  1147. r->intra_types_hist = av_realloc(r->intra_types_hist, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1148. r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
  1149. r->mb_type = av_realloc(r->mb_type, r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
  1150. r->cbp_luma = av_realloc(r->cbp_luma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
  1151. r->cbp_chroma = av_realloc(r->cbp_chroma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
  1152. r->deblock_coefs = av_realloc(r->deblock_coefs, r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
  1153. }
  1154. s->pict_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
  1155. if(MPV_frame_start(s, s->avctx) < 0)
  1156. return -1;
  1157. ff_er_frame_start(s);
  1158. r->cur_pts = r->si.pts;
  1159. if(s->pict_type != AV_PICTURE_TYPE_B){
  1160. r->last_pts = r->next_pts;
  1161. r->next_pts = r->cur_pts;
  1162. }
  1163. s->mb_x = s->mb_y = 0;
  1164. }
  1165. r->si.end = end;
  1166. s->qscale = r->si.quant;
  1167. r->bits = buf_size*8;
  1168. s->mb_num_left = r->si.end - r->si.start;
  1169. r->s.mb_skip_run = 0;
  1170. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  1171. if(r->si.start != mb_pos){
  1172. av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
  1173. s->mb_x = r->si.start % s->mb_width;
  1174. s->mb_y = r->si.start / s->mb_width;
  1175. }
  1176. memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1177. s->first_slice_line = 1;
  1178. s->resync_mb_x = s->mb_x;
  1179. s->resync_mb_y = s->mb_y;
  1180. ff_init_block_index(s);
  1181. while(!check_slice_end(r, s)) {
  1182. ff_update_block_index(s);
  1183. s->dsp.clear_blocks(s->block[0]);
  1184. if(rv34_decode_macroblock(r, r->intra_types + s->mb_x * 4 + 4) < 0){
  1185. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_ERROR|DC_ERROR|MV_ERROR);
  1186. return -1;
  1187. }
  1188. if (++s->mb_x == s->mb_width) {
  1189. s->mb_x = 0;
  1190. s->mb_y++;
  1191. ff_init_block_index(s);
  1192. memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1193. memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1194. if(r->loop_filter && s->mb_y >= 2)
  1195. r->loop_filter(r, s->mb_y - 2);
  1196. }
  1197. if(s->mb_x == s->resync_mb_x)
  1198. s->first_slice_line=0;
  1199. s->mb_num_left--;
  1200. }
  1201. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_END|DC_END|MV_END);
  1202. return s->mb_y == s->mb_height;
  1203. }
  1204. /** @} */ // recons group end
  1205. /**
  1206. * Initialize decoder.
  1207. */
  1208. av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
  1209. {
  1210. RV34DecContext *r = avctx->priv_data;
  1211. MpegEncContext *s = &r->s;
  1212. MPV_decode_defaults(s);
  1213. s->avctx = avctx;
  1214. s->out_format = FMT_H263;
  1215. s->codec_id = avctx->codec_id;
  1216. s->width = avctx->width;
  1217. s->height = avctx->height;
  1218. r->s.avctx = avctx;
  1219. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  1220. r->s.flags |= CODEC_FLAG_EMU_EDGE;
  1221. avctx->pix_fmt = PIX_FMT_YUV420P;
  1222. avctx->has_b_frames = 1;
  1223. s->low_delay = 0;
  1224. if (MPV_common_init(s) < 0)
  1225. return -1;
  1226. ff_h264_pred_init(&r->h, CODEC_ID_RV40, 8);
  1227. r->intra_types_stride = 4*s->mb_stride + 4;
  1228. r->intra_types_hist = av_malloc(r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1229. r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
  1230. r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
  1231. r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
  1232. r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
  1233. r->deblock_coefs = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
  1234. if(!intra_vlcs[0].cbppattern[0].bits)
  1235. rv34_init_tables();
  1236. return 0;
  1237. }
  1238. static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n)
  1239. {
  1240. if(avctx->slice_count) return avctx->slice_offset[n];
  1241. else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
  1242. }
  1243. int ff_rv34_decode_frame(AVCodecContext *avctx,
  1244. void *data, int *data_size,
  1245. AVPacket *avpkt)
  1246. {
  1247. const uint8_t *buf = avpkt->data;
  1248. int buf_size = avpkt->size;
  1249. RV34DecContext *r = avctx->priv_data;
  1250. MpegEncContext *s = &r->s;
  1251. AVFrame *pict = data;
  1252. SliceInfo si;
  1253. int i;
  1254. int slice_count;
  1255. const uint8_t *slices_hdr = NULL;
  1256. int last = 0;
  1257. /* no supplementary picture */
  1258. if (buf_size == 0) {
  1259. /* special case for last picture */
  1260. if (s->low_delay==0 && s->next_picture_ptr) {
  1261. *pict = *(AVFrame*)s->next_picture_ptr;
  1262. s->next_picture_ptr = NULL;
  1263. *data_size = sizeof(AVFrame);
  1264. }
  1265. return 0;
  1266. }
  1267. if(!avctx->slice_count){
  1268. slice_count = (*buf++) + 1;
  1269. slices_hdr = buf + 4;
  1270. buf += 8 * slice_count;
  1271. }else
  1272. slice_count = avctx->slice_count;
  1273. //parse first slice header to check whether this frame can be decoded
  1274. if(get_slice_offset(avctx, slices_hdr, 0) > buf_size){
  1275. av_log(avctx, AV_LOG_ERROR, "Slice offset is greater than frame size\n");
  1276. return -1;
  1277. }
  1278. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, 0), buf_size-get_slice_offset(avctx, slices_hdr, 0));
  1279. if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
  1280. av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
  1281. return -1;
  1282. }
  1283. if ((!s->last_picture_ptr || !s->last_picture_ptr->f.data[0]) && si.type == AV_PICTURE_TYPE_B)
  1284. return -1;
  1285. if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B)
  1286. || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I)
  1287. || avctx->skip_frame >= AVDISCARD_ALL)
  1288. return buf_size;
  1289. for(i = 0; i < slice_count; i++){
  1290. int offset = get_slice_offset(avctx, slices_hdr, i);
  1291. int size;
  1292. if(i+1 == slice_count)
  1293. size = buf_size - offset;
  1294. else
  1295. size = get_slice_offset(avctx, slices_hdr, i+1) - offset;
  1296. if(offset > buf_size){
  1297. av_log(avctx, AV_LOG_ERROR, "Slice offset is greater than frame size\n");
  1298. break;
  1299. }
  1300. r->si.end = s->mb_width * s->mb_height;
  1301. if(i+1 < slice_count){
  1302. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
  1303. if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
  1304. if(i+2 < slice_count)
  1305. size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
  1306. else
  1307. size = buf_size - offset;
  1308. }else
  1309. r->si.end = si.start;
  1310. }
  1311. last = rv34_decode_slice(r, r->si.end, buf + offset, size);
  1312. s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
  1313. if(last)
  1314. break;
  1315. }
  1316. if(last){
  1317. if(r->loop_filter)
  1318. r->loop_filter(r, s->mb_height - 1);
  1319. ff_er_frame_end(s);
  1320. MPV_frame_end(s);
  1321. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  1322. *pict = *(AVFrame*)s->current_picture_ptr;
  1323. } else if (s->last_picture_ptr != NULL) {
  1324. *pict = *(AVFrame*)s->last_picture_ptr;
  1325. }
  1326. if(s->last_picture_ptr || s->low_delay){
  1327. *data_size = sizeof(AVFrame);
  1328. ff_print_debug_info(s, pict);
  1329. }
  1330. s->current_picture_ptr = NULL; //so we can detect if frame_end wasnt called (find some nicer solution...)
  1331. }
  1332. return buf_size;
  1333. }
  1334. av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
  1335. {
  1336. RV34DecContext *r = avctx->priv_data;
  1337. MPV_common_end(&r->s);
  1338. av_freep(&r->intra_types_hist);
  1339. r->intra_types = NULL;
  1340. av_freep(&r->mb_type);
  1341. av_freep(&r->cbp_luma);
  1342. av_freep(&r->cbp_chroma);
  1343. av_freep(&r->deblock_coefs);
  1344. return 0;
  1345. }