You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2710 lines
74KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}:@var{packing_format}".
  85. @var{sample_format} specifies the sample format, and can be a string or
  86. the corresponding numeric value defined in @file{libavutil/samplefmt.h}.
  87. @var{channel_layout} specifies the channel layout, and can be a string
  88. or the corresponding number value defined in @file{libavutil/chlayout.h}.
  89. @var{packing_format} specifies the type of packing in output, can be one
  90. of "planar" or "packed", or the corresponding numeric values "0" or "1".
  91. The special parameter "auto", signifies that the filter will
  92. automatically select the output format depending on the output filter.
  93. Some examples follow.
  94. @itemize
  95. @item
  96. Convert input to unsigned 8-bit, stereo, packed:
  97. @example
  98. aconvert=u8:stereo:packed
  99. @end example
  100. @item
  101. Convert input to unsigned 8-bit, automatically select out channel layout
  102. and packing format:
  103. @example
  104. aconvert=u8:auto:auto
  105. @end example
  106. @end itemize
  107. @section aformat
  108. Convert the input audio to one of the specified formats. The framework will
  109. negotiate the most appropriate format to minimize conversions.
  110. The filter accepts three lists of formats, separated by ":", in the form:
  111. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  112. Elements in each list are separated by "," which has to be escaped in the
  113. filtergraph specification.
  114. The special parameter "all", in place of a list of elements, signifies all
  115. supported formats.
  116. Some examples follow:
  117. @example
  118. aformat=u8\\,s16:mono:packed
  119. aformat=s16:mono\\,stereo:all
  120. @end example
  121. @section anull
  122. Pass the audio source unchanged to the output.
  123. @section aresample
  124. Resample the input audio to the specified sample rate.
  125. The filter accepts exactly one parameter, the output sample rate. If not
  126. specified then the filter will automatically convert between its input
  127. and output sample rates.
  128. For example, to resample the input audio to 44100Hz:
  129. @example
  130. aresample=44100
  131. @end example
  132. @section ashowinfo
  133. Show a line containing various information for each input audio frame.
  134. The input audio is not modified.
  135. The shown line contains a sequence of key/value pairs of the form
  136. @var{key}:@var{value}.
  137. A description of each shown parameter follows:
  138. @table @option
  139. @item n
  140. sequential number of the input frame, starting from 0
  141. @item pts
  142. presentation TimeStamp of the input frame, expressed as a number of
  143. time base units. The time base unit depends on the filter input pad, and
  144. is usually 1/@var{sample_rate}.
  145. @item pts_time
  146. presentation TimeStamp of the input frame, expressed as a number of
  147. seconds
  148. @item pos
  149. position of the frame in the input stream, -1 if this information in
  150. unavailable and/or meanigless (for example in case of synthetic audio)
  151. @item fmt
  152. sample format name
  153. @item chlayout
  154. channel layout description
  155. @item nb_samples
  156. number of samples (per each channel) contained in the filtered frame
  157. @item rate
  158. sample rate for the audio frame
  159. @item planar
  160. if the packing format is planar, 0 if packed
  161. @item checksum
  162. Adler-32 checksum of all the planes of the input frame
  163. @item plane_checksum
  164. Adler-32 checksum for each input frame plane, expressed in the form
  165. "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5} @var{c6} @var{c7}]"
  166. @end table
  167. @c man end AUDIO FILTERS
  168. @chapter Audio Sources
  169. @c man begin AUDIO SOURCES
  170. Below is a description of the currently available audio sources.
  171. @section abuffer
  172. Buffer audio frames, and make them available to the filter chain.
  173. This source is mainly intended for a programmatic use, in particular
  174. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  175. It accepts the following mandatory parameters:
  176. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  177. @table @option
  178. @item sample_rate
  179. The sample rate of the incoming audio buffers.
  180. @item sample_fmt
  181. The sample format of the incoming audio buffers.
  182. Either a sample format name or its corresponging integer representation from
  183. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  184. @item channel_layout
  185. The channel layout of the incoming audio buffers.
  186. Either a channel layout name from channel_layout_map in
  187. @file{libavutil/audioconvert.c} or its corresponding integer representation
  188. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  189. @item packing
  190. Either "packed" or "planar", or their integer representation: 0 or 1
  191. respectively.
  192. @end table
  193. For example:
  194. @example
  195. abuffer=44100:s16:stereo:planar
  196. @end example
  197. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  198. Since the sample format with name "s16" corresponds to the number
  199. 1 and the "stereo" channel layout corresponds to the value 3, this is
  200. equivalent to:
  201. @example
  202. abuffer=44100:1:3:1
  203. @end example
  204. @section aevalsrc
  205. Generate an audio signal specified by an expression.
  206. This source accepts in input one or more expressions (one for each
  207. channel), which are evaluated and used to generate a corresponding
  208. audio signal.
  209. It accepts the syntax: @var{exprs}[::@var{options}].
  210. @var{exprs} is a list of expressions separated by ":", one for each
  211. separate channel. The output channel layout depends on the number of
  212. provided expressions, up to 8 channels are supported.
  213. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  214. separated by ":".
  215. The description of the accepted options follows.
  216. @table @option
  217. @item nb_samples, n
  218. Set the number of samples per channel per each output frame,
  219. default to 1024.
  220. @item sample_rate, s
  221. Specify the sample rate, default to 44100.
  222. @end table
  223. Each expression in @var{exprs} can contain the following constants:
  224. @table @option
  225. @item n
  226. number of the evaluated sample, starting from 0
  227. @item t
  228. time of the evaluated sample expressed in seconds, starting from 0
  229. @item s
  230. sample rate
  231. @end table
  232. @subsection Examples
  233. @itemize
  234. @item
  235. Generate silence:
  236. @example
  237. aevalsrc=0
  238. @end example
  239. @item
  240. Generate a sin signal with frequence of 440 Hz, set sample rate to
  241. 8000 Hz:
  242. @example
  243. aevalsrc="sin(440*2*PI*t)::s=8000"
  244. @end example
  245. @item
  246. Generate white noise:
  247. @example
  248. aevalsrc="-2+random(0)"
  249. @end example
  250. @item
  251. Generate an amplitude modulated signal:
  252. @example
  253. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  254. @end example
  255. @item
  256. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  257. @example
  258. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  259. @end example
  260. @end itemize
  261. @section amovie
  262. Read an audio stream from a movie container.
  263. It accepts the syntax: @var{movie_name}[:@var{options}] where
  264. @var{movie_name} is the name of the resource to read (not necessarily
  265. a file but also a device or a stream accessed through some protocol),
  266. and @var{options} is an optional sequence of @var{key}=@var{value}
  267. pairs, separated by ":".
  268. The description of the accepted options follows.
  269. @table @option
  270. @item format_name, f
  271. Specify the format assumed for the movie to read, and can be either
  272. the name of a container or an input device. If not specified the
  273. format is guessed from @var{movie_name} or by probing.
  274. @item seek_point, sp
  275. Specify the seek point in seconds, the frames will be output
  276. starting from this seek point, the parameter is evaluated with
  277. @code{av_strtod} so the numerical value may be suffixed by an IS
  278. postfix. Default value is "0".
  279. @item stream_index, si
  280. Specify the index of the audio stream to read. If the value is -1,
  281. the best suited audio stream will be automatically selected. Default
  282. value is "-1".
  283. @end table
  284. @section anullsrc
  285. Null audio source, return unprocessed audio frames. It is mainly useful
  286. as a template and to be employed in analysis / debugging tools, or as
  287. the source for filters which ignore the input data (for example the sox
  288. synth filter).
  289. It accepts an optional sequence of @var{key}=@var{value} pairs,
  290. separated by ":".
  291. The description of the accepted options follows.
  292. @table @option
  293. @item sample_rate, s
  294. Specify the sample rate, and defaults to 44100.
  295. @item channel_layout, cl
  296. Specify the channel layout, and can be either an integer or a string
  297. representing a channel layout. The default value of @var{channel_layout}
  298. is "stereo".
  299. Check the channel_layout_map definition in
  300. @file{libavcodec/audioconvert.c} for the mapping between strings and
  301. channel layout values.
  302. @item nb_samples, n
  303. Set the number of samples per requested frames.
  304. @end table
  305. Follow some examples:
  306. @example
  307. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  308. anullsrc=r=48000:cl=4
  309. # same as
  310. anullsrc=r=48000:cl=mono
  311. @end example
  312. @c man end AUDIO SOURCES
  313. @chapter Audio Sinks
  314. @c man begin AUDIO SINKS
  315. Below is a description of the currently available audio sinks.
  316. @section abuffersink
  317. Buffer audio frames, and make them available to the end of filter chain.
  318. This sink is mainly intended for programmatic use, in particular
  319. through the interface defined in @file{libavfilter/buffersink.h}.
  320. It requires a pointer to an AVABufferSinkContext structure, which
  321. defines the incoming buffers' formats, to be passed as the opaque
  322. parameter to @code{avfilter_init_filter} for initialization.
  323. @section anullsink
  324. Null audio sink, do absolutely nothing with the input audio. It is
  325. mainly useful as a template and to be employed in analysis / debugging
  326. tools.
  327. @c man end AUDIO SINKS
  328. @chapter Video Filters
  329. @c man begin VIDEO FILTERS
  330. When you configure your FFmpeg build, you can disable any of the
  331. existing filters using --disable-filters.
  332. The configure output will show the video filters included in your
  333. build.
  334. Below is a description of the currently available video filters.
  335. @section blackframe
  336. Detect frames that are (almost) completely black. Can be useful to
  337. detect chapter transitions or commercials. Output lines consist of
  338. the frame number of the detected frame, the percentage of blackness,
  339. the position in the file if known or -1 and the timestamp in seconds.
  340. In order to display the output lines, you need to set the loglevel at
  341. least to the AV_LOG_INFO value.
  342. The filter accepts the syntax:
  343. @example
  344. blackframe[=@var{amount}:[@var{threshold}]]
  345. @end example
  346. @var{amount} is the percentage of the pixels that have to be below the
  347. threshold, and defaults to 98.
  348. @var{threshold} is the threshold below which a pixel value is
  349. considered black, and defaults to 32.
  350. @section boxblur
  351. Apply boxblur algorithm to the input video.
  352. This filter accepts the parameters:
  353. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  354. Chroma and alpha parameters are optional, if not specified they default
  355. to the corresponding values set for @var{luma_radius} and
  356. @var{luma_power}.
  357. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  358. the radius in pixels of the box used for blurring the corresponding
  359. input plane. They are expressions, and can contain the following
  360. constants:
  361. @table @option
  362. @item w, h
  363. the input width and heigth in pixels
  364. @item cw, ch
  365. the input chroma image width and height in pixels
  366. @item hsub, vsub
  367. horizontal and vertical chroma subsample values. For example for the
  368. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  369. @end table
  370. The radius must be a non-negative number, and must not be greater than
  371. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  372. and of @code{min(cw,ch)/2} for the chroma planes.
  373. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  374. how many times the boxblur filter is applied to the corresponding
  375. plane.
  376. Some examples follow:
  377. @itemize
  378. @item
  379. Apply a boxblur filter with luma, chroma, and alpha radius
  380. set to 2:
  381. @example
  382. boxblur=2:1
  383. @end example
  384. @item
  385. Set luma radius to 2, alpha and chroma radius to 0
  386. @example
  387. boxblur=2:1:0:0:0:0
  388. @end example
  389. @item
  390. Set luma and chroma radius to a fraction of the video dimension
  391. @example
  392. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  393. @end example
  394. @end itemize
  395. @section copy
  396. Copy the input source unchanged to the output. Mainly useful for
  397. testing purposes.
  398. @section crop
  399. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  400. The parameters are expressions containing the following constants:
  401. @table @option
  402. @item x, y
  403. the computed values for @var{x} and @var{y}. They are evaluated for
  404. each new frame.
  405. @item in_w, in_h
  406. the input width and height
  407. @item iw, ih
  408. same as @var{in_w} and @var{in_h}
  409. @item out_w, out_h
  410. the output (cropped) width and height
  411. @item ow, oh
  412. same as @var{out_w} and @var{out_h}
  413. @item a
  414. same as @var{iw} / @var{ih}
  415. @item sar
  416. input sample aspect ratio
  417. @item dar
  418. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  419. @item hsub, vsub
  420. horizontal and vertical chroma subsample values. For example for the
  421. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  422. @item n
  423. the number of input frame, starting from 0
  424. @item pos
  425. the position in the file of the input frame, NAN if unknown
  426. @item t
  427. timestamp expressed in seconds, NAN if the input timestamp is unknown
  428. @end table
  429. The @var{out_w} and @var{out_h} parameters specify the expressions for
  430. the width and height of the output (cropped) video. They are
  431. evaluated just at the configuration of the filter.
  432. The default value of @var{out_w} is "in_w", and the default value of
  433. @var{out_h} is "in_h".
  434. The expression for @var{out_w} may depend on the value of @var{out_h},
  435. and the expression for @var{out_h} may depend on @var{out_w}, but they
  436. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  437. evaluated after @var{out_w} and @var{out_h}.
  438. The @var{x} and @var{y} parameters specify the expressions for the
  439. position of the top-left corner of the output (non-cropped) area. They
  440. are evaluated for each frame. If the evaluated value is not valid, it
  441. is approximated to the nearest valid value.
  442. The default value of @var{x} is "(in_w-out_w)/2", and the default
  443. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  444. the center of the input image.
  445. The expression for @var{x} may depend on @var{y}, and the expression
  446. for @var{y} may depend on @var{x}.
  447. Follow some examples:
  448. @example
  449. # crop the central input area with size 100x100
  450. crop=100:100
  451. # crop the central input area with size 2/3 of the input video
  452. "crop=2/3*in_w:2/3*in_h"
  453. # crop the input video central square
  454. crop=in_h
  455. # delimit the rectangle with the top-left corner placed at position
  456. # 100:100 and the right-bottom corner corresponding to the right-bottom
  457. # corner of the input image.
  458. crop=in_w-100:in_h-100:100:100
  459. # crop 10 pixels from the left and right borders, and 20 pixels from
  460. # the top and bottom borders
  461. "crop=in_w-2*10:in_h-2*20"
  462. # keep only the bottom right quarter of the input image
  463. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  464. # crop height for getting Greek harmony
  465. "crop=in_w:1/PHI*in_w"
  466. # trembling effect
  467. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  468. # erratic camera effect depending on timestamp
  469. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  470. # set x depending on the value of y
  471. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  472. @end example
  473. @section cropdetect
  474. Auto-detect crop size.
  475. Calculate necessary cropping parameters and prints the recommended
  476. parameters through the logging system. The detected dimensions
  477. correspond to the non-black area of the input video.
  478. It accepts the syntax:
  479. @example
  480. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  481. @end example
  482. @table @option
  483. @item limit
  484. Threshold, which can be optionally specified from nothing (0) to
  485. everything (255), defaults to 24.
  486. @item round
  487. Value which the width/height should be divisible by, defaults to
  488. 16. The offset is automatically adjusted to center the video. Use 2 to
  489. get only even dimensions (needed for 4:2:2 video). 16 is best when
  490. encoding to most video codecs.
  491. @item reset
  492. Counter that determines after how many frames cropdetect will reset
  493. the previously detected largest video area and start over to detect
  494. the current optimal crop area. Defaults to 0.
  495. This can be useful when channel logos distort the video area. 0
  496. indicates never reset and return the largest area encountered during
  497. playback.
  498. @end table
  499. @section delogo
  500. Suppress a TV station logo by a simple interpolation of the surrounding
  501. pixels. Just set a rectangle covering the logo and watch it disappear
  502. (and sometimes something even uglier appear - your mileage may vary).
  503. The filter accepts parameters as a string of the form
  504. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  505. @var{key}=@var{value} pairs, separated by ":".
  506. The description of the accepted parameters follows.
  507. @table @option
  508. @item x, y
  509. Specify the top left corner coordinates of the logo. They must be
  510. specified.
  511. @item w, h
  512. Specify the width and height of the logo to clear. They must be
  513. specified.
  514. @item band, t
  515. Specify the thickness of the fuzzy edge of the rectangle (added to
  516. @var{w} and @var{h}). The default value is 4.
  517. @item show
  518. When set to 1, a green rectangle is drawn on the screen to simplify
  519. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  520. @var{band} is set to 4. The default value is 0.
  521. @end table
  522. Some examples follow.
  523. @itemize
  524. @item
  525. Set a rectangle covering the area with top left corner coordinates 0,0
  526. and size 100x77, setting a band of size 10:
  527. @example
  528. delogo=0:0:100:77:10
  529. @end example
  530. @item
  531. As the previous example, but use named options:
  532. @example
  533. delogo=x=0:y=0:w=100:h=77:band=10
  534. @end example
  535. @end itemize
  536. @section deshake
  537. Attempt to fix small changes in horizontal and/or vertical shift. This
  538. filter helps remove camera shake from hand-holding a camera, bumping a
  539. tripod, moving on a vehicle, etc.
  540. The filter accepts parameters as a string of the form
  541. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  542. A description of the accepted parameters follows.
  543. @table @option
  544. @item x, y, w, h
  545. Specify a rectangular area where to limit the sarch for motion
  546. vectors.
  547. If desired the search for motion vectors can be limited to a
  548. rectangular area of the frame defined by its top left corner, width
  549. and height. These parameters have the same meaning as the drawbox
  550. filter which can be used to visualise the position of the bounding
  551. box.
  552. This is useful when simultaneous movement of subjects within the frame
  553. might be confused for camera motion by the motion vector search.
  554. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  555. then the full frame is used. This allows later options to be set
  556. without specifying the bounding box for the motion vector search.
  557. Default - search the whole frame.
  558. @item rx, ry
  559. Specify the maximum extent of movement in x and y directions in the
  560. range 0-64 pixels. Default 16.
  561. @item edge
  562. Specify how to generate pixels to fill blanks at the edge of the
  563. frame. An integer from 0 to 3 as follows:
  564. @table @option
  565. @item 0
  566. Fill zeroes at blank locations
  567. @item 1
  568. Original image at blank locations
  569. @item 2
  570. Extruded edge value at blank locations
  571. @item 3
  572. Mirrored edge at blank locations
  573. @end table
  574. The default setting is mirror edge at blank locations.
  575. @item blocksize
  576. Specify the blocksize to use for motion search. Range 4-128 pixels,
  577. default 8.
  578. @item contrast
  579. Specify the contrast threshold for blocks. Only blocks with more than
  580. the specified contrast (difference between darkest and lightest
  581. pixels) will be considered. Range 1-255, default 125.
  582. @item search
  583. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  584. search. Default - exhaustive search.
  585. @item filename
  586. If set then a detailed log of the motion search is written to the
  587. specified file.
  588. @end table
  589. @section drawbox
  590. Draw a colored box on the input image.
  591. It accepts the syntax:
  592. @example
  593. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  594. @end example
  595. @table @option
  596. @item x, y
  597. Specify the top left corner coordinates of the box. Default to 0.
  598. @item width, height
  599. Specify the width and height of the box, if 0 they are interpreted as
  600. the input width and height. Default to 0.
  601. @item color
  602. Specify the color of the box to write, it can be the name of a color
  603. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  604. @end table
  605. Follow some examples:
  606. @example
  607. # draw a black box around the edge of the input image
  608. drawbox
  609. # draw a box with color red and an opacity of 50%
  610. drawbox=10:20:200:60:red@@0.5"
  611. @end example
  612. @section drawtext
  613. Draw text string or text from specified file on top of video using the
  614. libfreetype library.
  615. To enable compilation of this filter you need to configure FFmpeg with
  616. @code{--enable-libfreetype}.
  617. The filter also recognizes strftime() sequences in the provided text
  618. and expands them accordingly. Check the documentation of strftime().
  619. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  620. separated by ":".
  621. The description of the accepted parameters follows.
  622. @table @option
  623. @item fontfile
  624. The font file to be used for drawing text. Path must be included.
  625. This parameter is mandatory.
  626. @item text
  627. The text string to be drawn. The text must be a sequence of UTF-8
  628. encoded characters.
  629. This parameter is mandatory if no file is specified with the parameter
  630. @var{textfile}.
  631. @item textfile
  632. A text file containing text to be drawn. The text must be a sequence
  633. of UTF-8 encoded characters.
  634. This parameter is mandatory if no text string is specified with the
  635. parameter @var{text}.
  636. If both text and textfile are specified, an error is thrown.
  637. @item x, y
  638. The expressions which specify the offsets where text will be drawn
  639. within the video frame. They are relative to the top/left border of the
  640. output image.
  641. The default value of @var{x} and @var{y} is "0".
  642. See below for the list of accepted constants.
  643. @item fontsize
  644. The font size to be used for drawing text.
  645. The default value of @var{fontsize} is 16.
  646. @item fontcolor
  647. The color to be used for drawing fonts.
  648. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  649. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  650. The default value of @var{fontcolor} is "black".
  651. @item boxcolor
  652. The color to be used for drawing box around text.
  653. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  654. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  655. The default value of @var{boxcolor} is "white".
  656. @item box
  657. Used to draw a box around text using background color.
  658. Value should be either 1 (enable) or 0 (disable).
  659. The default value of @var{box} is 0.
  660. @item shadowx, shadowy
  661. The x and y offsets for the text shadow position with respect to the
  662. position of the text. They can be either positive or negative
  663. values. Default value for both is "0".
  664. @item shadowcolor
  665. The color to be used for drawing a shadow behind the drawn text. It
  666. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  667. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  668. The default value of @var{shadowcolor} is "black".
  669. @item ft_load_flags
  670. Flags to be used for loading the fonts.
  671. The flags map the corresponding flags supported by libfreetype, and are
  672. a combination of the following values:
  673. @table @var
  674. @item default
  675. @item no_scale
  676. @item no_hinting
  677. @item render
  678. @item no_bitmap
  679. @item vertical_layout
  680. @item force_autohint
  681. @item crop_bitmap
  682. @item pedantic
  683. @item ignore_global_advance_width
  684. @item no_recurse
  685. @item ignore_transform
  686. @item monochrome
  687. @item linear_design
  688. @item no_autohint
  689. @item end table
  690. @end table
  691. Default value is "render".
  692. For more information consult the documentation for the FT_LOAD_*
  693. libfreetype flags.
  694. @item tabsize
  695. The size in number of spaces to use for rendering the tab.
  696. Default value is 4.
  697. @end table
  698. The parameters for @var{x} and @var{y} are expressions containing the
  699. following constants:
  700. @table @option
  701. @item w, h
  702. the input width and heigth
  703. @item tw, text_w
  704. the width of the rendered text
  705. @item th, text_h
  706. the height of the rendered text
  707. @item lh, line_h
  708. the height of each text line
  709. @item sar
  710. input sample aspect ratio
  711. @item dar
  712. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  713. @item hsub, vsub
  714. horizontal and vertical chroma subsample values. For example for the
  715. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  716. @item max_glyph_w
  717. maximum glyph width, that is the maximum width for all the glyphs
  718. contained in the rendered text
  719. @item max_glyph_h
  720. maximum glyph height, that is the maximum height for all the glyphs
  721. contained in the rendered text, it is equivalent to @var{ascent} -
  722. @var{descent}.
  723. @item max_glyph_a, ascent
  724. the maximum distance from the baseline to the highest/upper grid
  725. coordinate used to place a glyph outline point, for all the rendered
  726. glyphs.
  727. It is a positive value, due to the grid's orientation with the Y axis
  728. upwards.
  729. @item max_glyph_d, descent
  730. the maximum distance from the baseline to the lowest grid coordinate
  731. used to place a glyph outline point, for all the rendered glyphs.
  732. This is a negative value, due to the grid's orientation, with the Y axis
  733. upwards.
  734. @item n
  735. the number of input frame, starting from 0
  736. @item t
  737. timestamp expressed in seconds, NAN if the input timestamp is unknown
  738. @end table
  739. Some examples follow.
  740. @itemize
  741. @item
  742. Draw "Test Text" with font FreeSerif, using the default values for the
  743. optional parameters.
  744. @example
  745. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  746. @end example
  747. @item
  748. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  749. and y=50 (counting from the top-left corner of the screen), text is
  750. yellow with a red box around it. Both the text and the box have an
  751. opacity of 20%.
  752. @example
  753. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  754. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  755. @end example
  756. Note that the double quotes are not necessary if spaces are not used
  757. within the parameter list.
  758. @item
  759. Show the text at the center of the video frame:
  760. @example
  761. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  762. @end example
  763. @item
  764. Show a text line sliding from right to left in the last row of the video
  765. frame. The file @file{LONG_LINE} is assumed to contain a single line
  766. with no newlines.
  767. @example
  768. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  769. @end example
  770. @item
  771. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  772. @example
  773. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  774. @end example
  775. @item
  776. Draw a single green letter "g", at the center of the input video.
  777. The glyph baseline is placed at half screen height.
  778. @example
  779. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  780. @end example
  781. @end itemize
  782. For more information about libfreetype, check:
  783. @url{http://www.freetype.org/}.
  784. @section fade
  785. Apply fade-in/out effect to input video.
  786. It accepts the parameters:
  787. @var{type}:@var{start_frame}:@var{nb_frames}
  788. @var{type} specifies if the effect type, can be either "in" for
  789. fade-in, or "out" for a fade-out effect.
  790. @var{start_frame} specifies the number of the start frame for starting
  791. to apply the fade effect.
  792. @var{nb_frames} specifies the number of frames for which the fade
  793. effect has to last. At the end of the fade-in effect the output video
  794. will have the same intensity as the input video, at the end of the
  795. fade-out transition the output video will be completely black.
  796. A few usage examples follow, usable too as test scenarios.
  797. @example
  798. # fade in first 30 frames of video
  799. fade=in:0:30
  800. # fade out last 45 frames of a 200-frame video
  801. fade=out:155:45
  802. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  803. fade=in:0:25, fade=out:975:25
  804. # make first 5 frames black, then fade in from frame 5-24
  805. fade=in:5:20
  806. @end example
  807. @section fieldorder
  808. Transform the field order of the input video.
  809. It accepts one parameter which specifies the required field order that
  810. the input interlaced video will be transformed to. The parameter can
  811. assume one of the following values:
  812. @table @option
  813. @item 0 or bff
  814. output bottom field first
  815. @item 1 or tff
  816. output top field first
  817. @end table
  818. Default value is "tff".
  819. Transformation is achieved by shifting the picture content up or down
  820. by one line, and filling the remaining line with appropriate picture content.
  821. This method is consistent with most broadcast field order converters.
  822. If the input video is not flagged as being interlaced, or it is already
  823. flagged as being of the required output field order then this filter does
  824. not alter the incoming video.
  825. This filter is very useful when converting to or from PAL DV material,
  826. which is bottom field first.
  827. For example:
  828. @example
  829. ./ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  830. @end example
  831. @section fifo
  832. Buffer input images and send them when they are requested.
  833. This filter is mainly useful when auto-inserted by the libavfilter
  834. framework.
  835. The filter does not take parameters.
  836. @section format
  837. Convert the input video to one of the specified pixel formats.
  838. Libavfilter will try to pick one that is supported for the input to
  839. the next filter.
  840. The filter accepts a list of pixel format names, separated by ":",
  841. for example "yuv420p:monow:rgb24".
  842. Some examples follow:
  843. @example
  844. # convert the input video to the format "yuv420p"
  845. format=yuv420p
  846. # convert the input video to any of the formats in the list
  847. format=yuv420p:yuv444p:yuv410p
  848. @end example
  849. @anchor{frei0r}
  850. @section frei0r
  851. Apply a frei0r effect to the input video.
  852. To enable compilation of this filter you need to install the frei0r
  853. header and configure FFmpeg with --enable-frei0r.
  854. The filter supports the syntax:
  855. @example
  856. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  857. @end example
  858. @var{filter_name} is the name to the frei0r effect to load. If the
  859. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  860. is searched in each one of the directories specified by the colon
  861. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  862. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  863. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  864. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  865. for the frei0r effect.
  866. A frei0r effect parameter can be a boolean (whose values are specified
  867. with "y" and "n"), a double, a color (specified by the syntax
  868. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  869. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  870. description), a position (specified by the syntax @var{X}/@var{Y},
  871. @var{X} and @var{Y} being float numbers) and a string.
  872. The number and kind of parameters depend on the loaded effect. If an
  873. effect parameter is not specified the default value is set.
  874. Some examples follow:
  875. @example
  876. # apply the distort0r effect, set the first two double parameters
  877. frei0r=distort0r:0.5:0.01
  878. # apply the colordistance effect, takes a color as first parameter
  879. frei0r=colordistance:0.2/0.3/0.4
  880. frei0r=colordistance:violet
  881. frei0r=colordistance:0x112233
  882. # apply the perspective effect, specify the top left and top right
  883. # image positions
  884. frei0r=perspective:0.2/0.2:0.8/0.2
  885. @end example
  886. For more information see:
  887. @url{http://piksel.org/frei0r}
  888. @section gradfun
  889. Fix the banding artifacts that are sometimes introduced into nearly flat
  890. regions by truncation to 8bit colordepth.
  891. Interpolate the gradients that should go where the bands are, and
  892. dither them.
  893. This filter is designed for playback only. Do not use it prior to
  894. lossy compression, because compression tends to lose the dither and
  895. bring back the bands.
  896. The filter takes two optional parameters, separated by ':':
  897. @var{strength}:@var{radius}
  898. @var{strength} is the maximum amount by which the filter will change
  899. any one pixel. Also the threshold for detecting nearly flat
  900. regions. Acceptable values range from .51 to 255, default value is
  901. 1.2, out-of-range values will be clipped to the valid range.
  902. @var{radius} is the neighborhood to fit the gradient to. A larger
  903. radius makes for smoother gradients, but also prevents the filter from
  904. modifying the pixels near detailed regions. Acceptable values are
  905. 8-32, default value is 16, out-of-range values will be clipped to the
  906. valid range.
  907. @example
  908. # default parameters
  909. gradfun=1.2:16
  910. # omitting radius
  911. gradfun=1.2
  912. @end example
  913. @section hflip
  914. Flip the input video horizontally.
  915. For example to horizontally flip the video in input with
  916. @file{ffmpeg}:
  917. @example
  918. ffmpeg -i in.avi -vf "hflip" out.avi
  919. @end example
  920. @section hqdn3d
  921. High precision/quality 3d denoise filter. This filter aims to reduce
  922. image noise producing smooth images and making still images really
  923. still. It should enhance compressibility.
  924. It accepts the following optional parameters:
  925. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  926. @table @option
  927. @item luma_spatial
  928. a non-negative float number which specifies spatial luma strength,
  929. defaults to 4.0
  930. @item chroma_spatial
  931. a non-negative float number which specifies spatial chroma strength,
  932. defaults to 3.0*@var{luma_spatial}/4.0
  933. @item luma_tmp
  934. a float number which specifies luma temporal strength, defaults to
  935. 6.0*@var{luma_spatial}/4.0
  936. @item chroma_tmp
  937. a float number which specifies chroma temporal strength, defaults to
  938. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  939. @end table
  940. @section lut, lutrgb, lutyuv
  941. Compute a look-up table for binding each pixel component input value
  942. to an output value, and apply it to input video.
  943. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  944. to an RGB input video.
  945. These filters accept in input a ":"-separated list of options, which
  946. specify the expressions used for computing the lookup table for the
  947. corresponding pixel component values.
  948. The @var{lut} filter requires either YUV or RGB pixel formats in
  949. input, and accepts the options:
  950. @table @option
  951. @item c0
  952. first pixel component
  953. @item c1
  954. second pixel component
  955. @item c2
  956. third pixel component
  957. @item c3
  958. fourth pixel component, corresponds to the alpha component
  959. @end table
  960. The exact component associated to each option depends on the format in
  961. input.
  962. The @var{lutrgb} filter requires RGB pixel formats in input, and
  963. accepts the options:
  964. @table @option
  965. @item r
  966. red component
  967. @item g
  968. green component
  969. @item b
  970. blue component
  971. @item a
  972. alpha component
  973. @end table
  974. The @var{lutyuv} filter requires YUV pixel formats in input, and
  975. accepts the options:
  976. @table @option
  977. @item y
  978. Y/luminance component
  979. @item u
  980. U/Cb component
  981. @item v
  982. V/Cr component
  983. @item a
  984. alpha component
  985. @end table
  986. The expressions can contain the following constants and functions:
  987. @table @option
  988. @item w, h
  989. the input width and heigth
  990. @item val
  991. input value for the pixel component
  992. @item clipval
  993. the input value clipped in the @var{minval}-@var{maxval} range
  994. @item maxval
  995. maximum value for the pixel component
  996. @item minval
  997. minimum value for the pixel component
  998. @item negval
  999. the negated value for the pixel component value clipped in the
  1000. @var{minval}-@var{maxval} range , it corresponds to the expression
  1001. "maxval-clipval+minval"
  1002. @item clip(val)
  1003. the computed value in @var{val} clipped in the
  1004. @var{minval}-@var{maxval} range
  1005. @item gammaval(gamma)
  1006. the computed gamma correction value of the pixel component value
  1007. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1008. expression
  1009. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1010. @end table
  1011. All expressions default to "val".
  1012. Some examples follow:
  1013. @example
  1014. # negate input video
  1015. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1016. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1017. # the above is the same as
  1018. lutrgb="r=negval:g=negval:b=negval"
  1019. lutyuv="y=negval:u=negval:v=negval"
  1020. # negate luminance
  1021. lutyuv=y=negval
  1022. # remove chroma components, turns the video into a graytone image
  1023. lutyuv="u=128:v=128"
  1024. # apply a luma burning effect
  1025. lutyuv="y=2*val"
  1026. # remove green and blue components
  1027. lutrgb="g=0:b=0"
  1028. # set a constant alpha channel value on input
  1029. format=rgba,lutrgb=a="maxval-minval/2"
  1030. # correct luminance gamma by a 0.5 factor
  1031. lutyuv=y=gammaval(0.5)
  1032. @end example
  1033. @section mp
  1034. Apply an MPlayer filter to the input video.
  1035. This filter provides a wrapper around most of the filters of
  1036. MPlayer/MEncoder.
  1037. This wrapper is considered experimental. Some of the wrapped filters
  1038. may not work properly and we may drop support for them, as they will
  1039. be implemented natively into FFmpeg. Thus you should avoid
  1040. depending on them when writing portable scripts.
  1041. The filters accepts the parameters:
  1042. @var{filter_name}[:=]@var{filter_params}
  1043. @var{filter_name} is the name of a supported MPlayer filter,
  1044. @var{filter_params} is a string containing the parameters accepted by
  1045. the named filter.
  1046. The list of the currently supported filters follows:
  1047. @table @var
  1048. @item 2xsai
  1049. @item decimate
  1050. @item denoise3d
  1051. @item detc
  1052. @item dint
  1053. @item divtc
  1054. @item down3dright
  1055. @item dsize
  1056. @item eq2
  1057. @item eq
  1058. @item field
  1059. @item fil
  1060. @item fixpts
  1061. @item framestep
  1062. @item fspp
  1063. @item geq
  1064. @item harddup
  1065. @item hqdn3d
  1066. @item hue
  1067. @item il
  1068. @item ilpack
  1069. @item ivtc
  1070. @item kerndeint
  1071. @item mcdeint
  1072. @item mirror
  1073. @item noise
  1074. @item ow
  1075. @item palette
  1076. @item perspective
  1077. @item phase
  1078. @item pp7
  1079. @item pullup
  1080. @item qp
  1081. @item rectangle
  1082. @item remove-logo
  1083. @item rotate
  1084. @item sab
  1085. @item screenshot
  1086. @item smartblur
  1087. @item softpulldown
  1088. @item softskip
  1089. @item spp
  1090. @item swapuv
  1091. @item telecine
  1092. @item tile
  1093. @item tinterlace
  1094. @item unsharp
  1095. @item uspp
  1096. @item yuvcsp
  1097. @item yvu9
  1098. @end table
  1099. The parameter syntax and behavior for the listed filters are the same
  1100. of the corresponding MPlayer filters. For detailed instructions check
  1101. the "VIDEO FILTERS" section in the MPlayer manual.
  1102. Some examples follow:
  1103. @example
  1104. # remove a logo by interpolating the surrounding pixels
  1105. mp=delogo=200:200:80:20:1
  1106. # adjust gamma, brightness, contrast
  1107. mp=eq2=1.0:2:0.5
  1108. # tweak hue and saturation
  1109. mp=hue=100:-10
  1110. @end example
  1111. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1112. @section negate
  1113. Negate input video.
  1114. This filter accepts an integer in input, if non-zero it negates the
  1115. alpha component (if available). The default value in input is 0.
  1116. @section noformat
  1117. Force libavfilter not to use any of the specified pixel formats for the
  1118. input to the next filter.
  1119. The filter accepts a list of pixel format names, separated by ":",
  1120. for example "yuv420p:monow:rgb24".
  1121. Some examples follow:
  1122. @example
  1123. # force libavfilter to use a format different from "yuv420p" for the
  1124. # input to the vflip filter
  1125. noformat=yuv420p,vflip
  1126. # convert the input video to any of the formats not contained in the list
  1127. noformat=yuv420p:yuv444p:yuv410p
  1128. @end example
  1129. @section null
  1130. Pass the video source unchanged to the output.
  1131. @section ocv
  1132. Apply video transform using libopencv.
  1133. To enable this filter install libopencv library and headers and
  1134. configure FFmpeg with --enable-libopencv.
  1135. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1136. @var{filter_name} is the name of the libopencv filter to apply.
  1137. @var{filter_params} specifies the parameters to pass to the libopencv
  1138. filter. If not specified the default values are assumed.
  1139. Refer to the official libopencv documentation for more precise
  1140. informations:
  1141. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1142. Follows the list of supported libopencv filters.
  1143. @anchor{dilate}
  1144. @subsection dilate
  1145. Dilate an image by using a specific structuring element.
  1146. This filter corresponds to the libopencv function @code{cvDilate}.
  1147. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1148. @var{struct_el} represents a structuring element, and has the syntax:
  1149. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1150. @var{cols} and @var{rows} represent the number of colums and rows of
  1151. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1152. point, and @var{shape} the shape for the structuring element, and
  1153. can be one of the values "rect", "cross", "ellipse", "custom".
  1154. If the value for @var{shape} is "custom", it must be followed by a
  1155. string of the form "=@var{filename}". The file with name
  1156. @var{filename} is assumed to represent a binary image, with each
  1157. printable character corresponding to a bright pixel. When a custom
  1158. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1159. or columns and rows of the read file are assumed instead.
  1160. The default value for @var{struct_el} is "3x3+0x0/rect".
  1161. @var{nb_iterations} specifies the number of times the transform is
  1162. applied to the image, and defaults to 1.
  1163. Follow some example:
  1164. @example
  1165. # use the default values
  1166. ocv=dilate
  1167. # dilate using a structuring element with a 5x5 cross, iterate two times
  1168. ocv=dilate=5x5+2x2/cross:2
  1169. # read the shape from the file diamond.shape, iterate two times
  1170. # the file diamond.shape may contain a pattern of characters like this:
  1171. # *
  1172. # ***
  1173. # *****
  1174. # ***
  1175. # *
  1176. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1177. ocv=0x0+2x2/custom=diamond.shape:2
  1178. @end example
  1179. @subsection erode
  1180. Erode an image by using a specific structuring element.
  1181. This filter corresponds to the libopencv function @code{cvErode}.
  1182. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1183. with the same syntax and semantics as the @ref{dilate} filter.
  1184. @subsection smooth
  1185. Smooth the input video.
  1186. The filter takes the following parameters:
  1187. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1188. @var{type} is the type of smooth filter to apply, and can be one of
  1189. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1190. "bilateral". The default value is "gaussian".
  1191. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1192. parameters whose meanings depend on smooth type. @var{param1} and
  1193. @var{param2} accept integer positive values or 0, @var{param3} and
  1194. @var{param4} accept float values.
  1195. The default value for @var{param1} is 3, the default value for the
  1196. other parameters is 0.
  1197. These parameters correspond to the parameters assigned to the
  1198. libopencv function @code{cvSmooth}.
  1199. @section overlay
  1200. Overlay one video on top of another.
  1201. It takes two inputs and one output, the first input is the "main"
  1202. video on which the second input is overlayed.
  1203. It accepts the parameters: @var{x}:@var{y}.
  1204. @var{x} is the x coordinate of the overlayed video on the main video,
  1205. @var{y} is the y coordinate. The parameters are expressions containing
  1206. the following parameters:
  1207. @table @option
  1208. @item main_w, main_h
  1209. main input width and height
  1210. @item W, H
  1211. same as @var{main_w} and @var{main_h}
  1212. @item overlay_w, overlay_h
  1213. overlay input width and height
  1214. @item w, h
  1215. same as @var{overlay_w} and @var{overlay_h}
  1216. @end table
  1217. Be aware that frames are taken from each input video in timestamp
  1218. order, hence, if their initial timestamps differ, it is a a good idea
  1219. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1220. have them begin in the same zero timestamp, as it does the example for
  1221. the @var{movie} filter.
  1222. Follow some examples:
  1223. @example
  1224. # draw the overlay at 10 pixels from the bottom right
  1225. # corner of the main video.
  1226. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1227. # insert a transparent PNG logo in the bottom left corner of the input
  1228. movie=logo.png [logo];
  1229. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1230. # insert 2 different transparent PNG logos (second logo on bottom
  1231. # right corner):
  1232. movie=logo1.png [logo1];
  1233. movie=logo2.png [logo2];
  1234. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1235. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1236. # add a transparent color layer on top of the main video,
  1237. # WxH specifies the size of the main input to the overlay filter
  1238. color=red@.3:WxH [over]; [in][over] overlay [out]
  1239. @end example
  1240. You can chain togheter more overlays but the efficiency of such
  1241. approach is yet to be tested.
  1242. @section pad
  1243. Add paddings to the input image, and places the original input at the
  1244. given coordinates @var{x}, @var{y}.
  1245. It accepts the following parameters:
  1246. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1247. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1248. expressions containing the following constants:
  1249. @table @option
  1250. @item in_w, in_h
  1251. the input video width and height
  1252. @item iw, ih
  1253. same as @var{in_w} and @var{in_h}
  1254. @item out_w, out_h
  1255. the output width and height, that is the size of the padded area as
  1256. specified by the @var{width} and @var{height} expressions
  1257. @item ow, oh
  1258. same as @var{out_w} and @var{out_h}
  1259. @item x, y
  1260. x and y offsets as specified by the @var{x} and @var{y}
  1261. expressions, or NAN if not yet specified
  1262. @item a
  1263. same as @var{iw} / @var{ih}
  1264. @item sar
  1265. input sample aspect ratio
  1266. @item dar
  1267. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1268. @item hsub, vsub
  1269. horizontal and vertical chroma subsample values. For example for the
  1270. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1271. @end table
  1272. Follows the description of the accepted parameters.
  1273. @table @option
  1274. @item width, height
  1275. Specify the size of the output image with the paddings added. If the
  1276. value for @var{width} or @var{height} is 0, the corresponding input size
  1277. is used for the output.
  1278. The @var{width} expression can reference the value set by the
  1279. @var{height} expression, and viceversa.
  1280. The default value of @var{width} and @var{height} is 0.
  1281. @item x, y
  1282. Specify the offsets where to place the input image in the padded area
  1283. with respect to the top/left border of the output image.
  1284. The @var{x} expression can reference the value set by the @var{y}
  1285. expression, and viceversa.
  1286. The default value of @var{x} and @var{y} is 0.
  1287. @item color
  1288. Specify the color of the padded area, it can be the name of a color
  1289. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1290. The default value of @var{color} is "black".
  1291. @end table
  1292. Some examples follow:
  1293. @example
  1294. # Add paddings with color "violet" to the input video. Output video
  1295. # size is 640x480, the top-left corner of the input video is placed at
  1296. # column 0, row 40.
  1297. pad=640:480:0:40:violet
  1298. # pad the input to get an output with dimensions increased bt 3/2,
  1299. # and put the input video at the center of the padded area
  1300. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1301. # pad the input to get a squared output with size equal to the maximum
  1302. # value between the input width and height, and put the input video at
  1303. # the center of the padded area
  1304. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1305. # pad the input to get a final w/h ratio of 16:9
  1306. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1307. # for anamorphic video, in order to set the output display aspect ratio,
  1308. # it is necessary to use sar in the expression, according to the relation:
  1309. # (ih * X / ih) * sar = output_dar
  1310. # X = output_dar / sar
  1311. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1312. # double output size and put the input video in the bottom-right
  1313. # corner of the output padded area
  1314. pad="2*iw:2*ih:ow-iw:oh-ih"
  1315. @end example
  1316. @section pixdesctest
  1317. Pixel format descriptor test filter, mainly useful for internal
  1318. testing. The output video should be equal to the input video.
  1319. For example:
  1320. @example
  1321. format=monow, pixdesctest
  1322. @end example
  1323. can be used to test the monowhite pixel format descriptor definition.
  1324. @section scale
  1325. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1326. The parameters @var{width} and @var{height} are expressions containing
  1327. the following constants:
  1328. @table @option
  1329. @item in_w, in_h
  1330. the input width and height
  1331. @item iw, ih
  1332. same as @var{in_w} and @var{in_h}
  1333. @item out_w, out_h
  1334. the output (cropped) width and height
  1335. @item ow, oh
  1336. same as @var{out_w} and @var{out_h}
  1337. @item a
  1338. same as @var{iw} / @var{ih}
  1339. @item sar
  1340. input sample aspect ratio
  1341. @item dar
  1342. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1343. @item sar
  1344. input sample aspect ratio
  1345. @item hsub, vsub
  1346. horizontal and vertical chroma subsample values. For example for the
  1347. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1348. @end table
  1349. If the input image format is different from the format requested by
  1350. the next filter, the scale filter will convert the input to the
  1351. requested format.
  1352. If the value for @var{width} or @var{height} is 0, the respective input
  1353. size is used for the output.
  1354. If the value for @var{width} or @var{height} is -1, the scale filter will
  1355. use, for the respective output size, a value that maintains the aspect
  1356. ratio of the input image.
  1357. The default value of @var{width} and @var{height} is 0.
  1358. Valid values for the optional parameter @var{interl} are:
  1359. @table @option
  1360. @item 1
  1361. force interlaced aware scaling
  1362. @item -1
  1363. select interlaced aware scaling depending on whether the source frames
  1364. are flagged as interlaced or not
  1365. @end table
  1366. Some examples follow:
  1367. @example
  1368. # scale the input video to a size of 200x100.
  1369. scale=200:100
  1370. # scale the input to 2x
  1371. scale=2*iw:2*ih
  1372. # the above is the same as
  1373. scale=2*in_w:2*in_h
  1374. # scale the input to half size
  1375. scale=iw/2:ih/2
  1376. # increase the width, and set the height to the same size
  1377. scale=3/2*iw:ow
  1378. # seek for Greek harmony
  1379. scale=iw:1/PHI*iw
  1380. scale=ih*PHI:ih
  1381. # increase the height, and set the width to 3/2 of the height
  1382. scale=3/2*oh:3/5*ih
  1383. # increase the size, but make the size a multiple of the chroma
  1384. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1385. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1386. scale='min(500\, iw*3/2):-1'
  1387. @end example
  1388. @section select
  1389. Select frames to pass in output.
  1390. It accepts in input an expression, which is evaluated for each input
  1391. frame. If the expression is evaluated to a non-zero value, the frame
  1392. is selected and passed to the output, otherwise it is discarded.
  1393. The expression can contain the following constants:
  1394. @table @option
  1395. @item n
  1396. the sequential number of the filtered frame, starting from 0
  1397. @item selected_n
  1398. the sequential number of the selected frame, starting from 0
  1399. @item prev_selected_n
  1400. the sequential number of the last selected frame, NAN if undefined
  1401. @item TB
  1402. timebase of the input timestamps
  1403. @item pts
  1404. the PTS (Presentation TimeStamp) of the filtered video frame,
  1405. expressed in @var{TB} units, NAN if undefined
  1406. @item t
  1407. the PTS (Presentation TimeStamp) of the filtered video frame,
  1408. expressed in seconds, NAN if undefined
  1409. @item prev_pts
  1410. the PTS of the previously filtered video frame, NAN if undefined
  1411. @item prev_selected_pts
  1412. the PTS of the last previously filtered video frame, NAN if undefined
  1413. @item prev_selected_t
  1414. the PTS of the last previously selected video frame, NAN if undefined
  1415. @item start_pts
  1416. the PTS of the first video frame in the video, NAN if undefined
  1417. @item start_t
  1418. the time of the first video frame in the video, NAN if undefined
  1419. @item pict_type
  1420. the type of the filtered frame, can assume one of the following
  1421. values:
  1422. @table @option
  1423. @item I
  1424. @item P
  1425. @item B
  1426. @item S
  1427. @item SI
  1428. @item SP
  1429. @item BI
  1430. @end table
  1431. @item interlace_type
  1432. the frame interlace type, can assume one of the following values:
  1433. @table @option
  1434. @item PROGRESSIVE
  1435. the frame is progressive (not interlaced)
  1436. @item TOPFIRST
  1437. the frame is top-field-first
  1438. @item BOTTOMFIRST
  1439. the frame is bottom-field-first
  1440. @end table
  1441. @item key
  1442. 1 if the filtered frame is a key-frame, 0 otherwise
  1443. @item pos
  1444. the position in the file of the filtered frame, -1 if the information
  1445. is not available (e.g. for synthetic video)
  1446. @end table
  1447. The default value of the select expression is "1".
  1448. Some examples follow:
  1449. @example
  1450. # select all frames in input
  1451. select
  1452. # the above is the same as:
  1453. select=1
  1454. # skip all frames:
  1455. select=0
  1456. # select only I-frames
  1457. select='eq(pict_type\,I)'
  1458. # select one frame every 100
  1459. select='not(mod(n\,100))'
  1460. # select only frames contained in the 10-20 time interval
  1461. select='gte(t\,10)*lte(t\,20)'
  1462. # select only I frames contained in the 10-20 time interval
  1463. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1464. # select frames with a minimum distance of 10 seconds
  1465. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1466. @end example
  1467. @anchor{setdar}
  1468. @section setdar
  1469. Set the Display Aspect Ratio for the filter output video.
  1470. This is done by changing the specified Sample (aka Pixel) Aspect
  1471. Ratio, according to the following equation:
  1472. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1473. Keep in mind that this filter does not modify the pixel dimensions of
  1474. the video frame. Also the display aspect ratio set by this filter may
  1475. be changed by later filters in the filterchain, e.g. in case of
  1476. scaling or if another "setdar" or a "setsar" filter is applied.
  1477. The filter accepts a parameter string which represents the wanted
  1478. display aspect ratio.
  1479. The parameter can be a floating point number string, or an expression
  1480. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1481. numerator and denominator of the aspect ratio.
  1482. If the parameter is not specified, it is assumed the value "0:1".
  1483. For example to change the display aspect ratio to 16:9, specify:
  1484. @example
  1485. setdar=16:9
  1486. # the above is equivalent to
  1487. setdar=1.77777
  1488. @end example
  1489. See also the @ref{setsar} filter documentation.
  1490. @section setpts
  1491. Change the PTS (presentation timestamp) of the input video frames.
  1492. Accept in input an expression evaluated through the eval API, which
  1493. can contain the following constants:
  1494. @table @option
  1495. @item PTS
  1496. the presentation timestamp in input
  1497. @item N
  1498. the count of the input frame, starting from 0.
  1499. @item STARTPTS
  1500. the PTS of the first video frame
  1501. @item INTERLACED
  1502. tell if the current frame is interlaced
  1503. @item POS
  1504. original position in the file of the frame, or undefined if undefined
  1505. for the current frame
  1506. @item PREV_INPTS
  1507. previous input PTS
  1508. @item PREV_OUTPTS
  1509. previous output PTS
  1510. @end table
  1511. Some examples follow:
  1512. @example
  1513. # start counting PTS from zero
  1514. setpts=PTS-STARTPTS
  1515. # fast motion
  1516. setpts=0.5*PTS
  1517. # slow motion
  1518. setpts=2.0*PTS
  1519. # fixed rate 25 fps
  1520. setpts=N/(25*TB)
  1521. # fixed rate 25 fps with some jitter
  1522. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1523. @end example
  1524. @anchor{setsar}
  1525. @section setsar
  1526. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1527. Note that as a consequence of the application of this filter, the
  1528. output display aspect ratio will change according to the following
  1529. equation:
  1530. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1531. Keep in mind that the sample aspect ratio set by this filter may be
  1532. changed by later filters in the filterchain, e.g. if another "setsar"
  1533. or a "setdar" filter is applied.
  1534. The filter accepts a parameter string which represents the wanted
  1535. sample aspect ratio.
  1536. The parameter can be a floating point number string, or an expression
  1537. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1538. numerator and denominator of the aspect ratio.
  1539. If the parameter is not specified, it is assumed the value "0:1".
  1540. For example to change the sample aspect ratio to 10:11, specify:
  1541. @example
  1542. setsar=10:11
  1543. @end example
  1544. @section settb
  1545. Set the timebase to use for the output frames timestamps.
  1546. It is mainly useful for testing timebase configuration.
  1547. It accepts in input an arithmetic expression representing a rational.
  1548. The expression can contain the constants "AVTB" (the
  1549. default timebase), and "intb" (the input timebase).
  1550. The default value for the input is "intb".
  1551. Follow some examples.
  1552. @example
  1553. # set the timebase to 1/25
  1554. settb=1/25
  1555. # set the timebase to 1/10
  1556. settb=0.1
  1557. #set the timebase to 1001/1000
  1558. settb=1+0.001
  1559. #set the timebase to 2*intb
  1560. settb=2*intb
  1561. #set the default timebase value
  1562. settb=AVTB
  1563. @end example
  1564. @section showinfo
  1565. Show a line containing various information for each input video frame.
  1566. The input video is not modified.
  1567. The shown line contains a sequence of key/value pairs of the form
  1568. @var{key}:@var{value}.
  1569. A description of each shown parameter follows:
  1570. @table @option
  1571. @item n
  1572. sequential number of the input frame, starting from 0
  1573. @item pts
  1574. Presentation TimeStamp of the input frame, expressed as a number of
  1575. time base units. The time base unit depends on the filter input pad.
  1576. @item pts_time
  1577. Presentation TimeStamp of the input frame, expressed as a number of
  1578. seconds
  1579. @item pos
  1580. position of the frame in the input stream, -1 if this information in
  1581. unavailable and/or meanigless (for example in case of synthetic video)
  1582. @item fmt
  1583. pixel format name
  1584. @item sar
  1585. sample aspect ratio of the input frame, expressed in the form
  1586. @var{num}/@var{den}
  1587. @item s
  1588. size of the input frame, expressed in the form
  1589. @var{width}x@var{height}
  1590. @item i
  1591. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1592. for bottom field first)
  1593. @item iskey
  1594. 1 if the frame is a key frame, 0 otherwise
  1595. @item type
  1596. picture type of the input frame ("I" for an I-frame, "P" for a
  1597. P-frame, "B" for a B-frame, "?" for unknown type).
  1598. Check also the documentation of the @code{AVPictureType} enum and of
  1599. the @code{av_get_picture_type_char} function defined in
  1600. @file{libavutil/avutil.h}.
  1601. @item checksum
  1602. Adler-32 checksum of all the planes of the input frame
  1603. @item plane_checksum
  1604. Adler-32 checksum of each plane of the input frame, expressed in the form
  1605. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1606. @end table
  1607. @section slicify
  1608. Pass the images of input video on to next video filter as multiple
  1609. slices.
  1610. @example
  1611. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  1612. @end example
  1613. The filter accepts the slice height as parameter. If the parameter is
  1614. not specified it will use the default value of 16.
  1615. Adding this in the beginning of filter chains should make filtering
  1616. faster due to better use of the memory cache.
  1617. @section split
  1618. Pass on the input video to two outputs. Both outputs are identical to
  1619. the input video.
  1620. For example:
  1621. @example
  1622. [in] split [splitout1][splitout2];
  1623. [splitout1] crop=100:100:0:0 [cropout];
  1624. [splitout2] pad=200:200:100:100 [padout];
  1625. @end example
  1626. will create two separate outputs from the same input, one cropped and
  1627. one padded.
  1628. @section transpose
  1629. Transpose rows with columns in the input video and optionally flip it.
  1630. It accepts a parameter representing an integer, which can assume the
  1631. values:
  1632. @table @samp
  1633. @item 0
  1634. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1635. @example
  1636. L.R L.l
  1637. . . -> . .
  1638. l.r R.r
  1639. @end example
  1640. @item 1
  1641. Rotate by 90 degrees clockwise, that is:
  1642. @example
  1643. L.R l.L
  1644. . . -> . .
  1645. l.r r.R
  1646. @end example
  1647. @item 2
  1648. Rotate by 90 degrees counterclockwise, that is:
  1649. @example
  1650. L.R R.r
  1651. . . -> . .
  1652. l.r L.l
  1653. @end example
  1654. @item 3
  1655. Rotate by 90 degrees clockwise and vertically flip, that is:
  1656. @example
  1657. L.R r.R
  1658. . . -> . .
  1659. l.r l.L
  1660. @end example
  1661. @end table
  1662. @section unsharp
  1663. Sharpen or blur the input video.
  1664. It accepts the following parameters:
  1665. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1666. Negative values for the amount will blur the input video, while positive
  1667. values will sharpen. All parameters are optional and default to the
  1668. equivalent of the string '5:5:1.0:5:5:0.0'.
  1669. @table @option
  1670. @item luma_msize_x
  1671. Set the luma matrix horizontal size. It can be an integer between 3
  1672. and 13, default value is 5.
  1673. @item luma_msize_y
  1674. Set the luma matrix vertical size. It can be an integer between 3
  1675. and 13, default value is 5.
  1676. @item luma_amount
  1677. Set the luma effect strength. It can be a float number between -2.0
  1678. and 5.0, default value is 1.0.
  1679. @item chroma_msize_x
  1680. Set the chroma matrix horizontal size. It can be an integer between 3
  1681. and 13, default value is 5.
  1682. @item chroma_msize_y
  1683. Set the chroma matrix vertical size. It can be an integer between 3
  1684. and 13, default value is 5.
  1685. @item chroma_amount
  1686. Set the chroma effect strength. It can be a float number between -2.0
  1687. and 5.0, default value is 0.0.
  1688. @end table
  1689. @example
  1690. # Strong luma sharpen effect parameters
  1691. unsharp=7:7:2.5
  1692. # Strong blur of both luma and chroma parameters
  1693. unsharp=7:7:-2:7:7:-2
  1694. # Use the default values with @command{ffmpeg}
  1695. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  1696. @end example
  1697. @section vflip
  1698. Flip the input video vertically.
  1699. @example
  1700. ./ffmpeg -i in.avi -vf "vflip" out.avi
  1701. @end example
  1702. @section yadif
  1703. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1704. filter").
  1705. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1706. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1707. following values:
  1708. @table @option
  1709. @item 0
  1710. output 1 frame for each frame
  1711. @item 1
  1712. output 1 frame for each field
  1713. @item 2
  1714. like 0 but skips spatial interlacing check
  1715. @item 3
  1716. like 1 but skips spatial interlacing check
  1717. @end table
  1718. Default value is 0.
  1719. @var{parity} specifies the picture field parity assumed for the input
  1720. interlaced video, accepts one of the following values:
  1721. @table @option
  1722. @item 0
  1723. assume top field first
  1724. @item 1
  1725. assume bottom field first
  1726. @item -1
  1727. enable automatic detection
  1728. @end table
  1729. Default value is -1.
  1730. If interlacing is unknown or decoder does not export this information,
  1731. top field first will be assumed.
  1732. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1733. and only deinterlace frames marked as interlaced
  1734. @table @option
  1735. @item 0
  1736. deinterlace all frames
  1737. @item 1
  1738. only deinterlace frames marked as interlaced
  1739. @end table
  1740. Default value is 0.
  1741. @c man end VIDEO FILTERS
  1742. @chapter Video Sources
  1743. @c man begin VIDEO SOURCES
  1744. Below is a description of the currently available video sources.
  1745. @section buffer
  1746. Buffer video frames, and make them available to the filter chain.
  1747. This source is mainly intended for a programmatic use, in particular
  1748. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1749. It accepts the following parameters:
  1750. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  1751. All the parameters but @var{scale_params} need to be explicitely
  1752. defined.
  1753. Follows the list of the accepted parameters.
  1754. @table @option
  1755. @item width, height
  1756. Specify the width and height of the buffered video frames.
  1757. @item pix_fmt_string
  1758. A string representing the pixel format of the buffered video frames.
  1759. It may be a number corresponding to a pixel format, or a pixel format
  1760. name.
  1761. @item timebase_num, timebase_den
  1762. Specify numerator and denomitor of the timebase assumed by the
  1763. timestamps of the buffered frames.
  1764. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1765. Specify numerator and denominator of the sample aspect ratio assumed
  1766. by the video frames.
  1767. @item scale_params
  1768. Specify the optional parameters to be used for the scale filter which
  1769. is automatically inserted when an input change is detected in the
  1770. input size or format.
  1771. @end table
  1772. For example:
  1773. @example
  1774. buffer=320:240:yuv410p:1:24:1:1
  1775. @end example
  1776. will instruct the source to accept video frames with size 320x240 and
  1777. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1778. square pixels (1:1 sample aspect ratio).
  1779. Since the pixel format with name "yuv410p" corresponds to the number 6
  1780. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1781. this example corresponds to:
  1782. @example
  1783. buffer=320:240:6:1:24:1:1
  1784. @end example
  1785. @section color
  1786. Provide an uniformly colored input.
  1787. It accepts the following parameters:
  1788. @var{color}:@var{frame_size}:@var{frame_rate}
  1789. Follows the description of the accepted parameters.
  1790. @table @option
  1791. @item color
  1792. Specify the color of the source. It can be the name of a color (case
  1793. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1794. alpha specifier. The default value is "black".
  1795. @item frame_size
  1796. Specify the size of the sourced video, it may be a string of the form
  1797. @var{width}x@var{height}, or the name of a size abbreviation. The
  1798. default value is "320x240".
  1799. @item frame_rate
  1800. Specify the frame rate of the sourced video, as the number of frames
  1801. generated per second. It has to be a string in the format
  1802. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1803. number or a valid video frame rate abbreviation. The default value is
  1804. "25".
  1805. @end table
  1806. For example the following graph description will generate a red source
  1807. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1808. frames per second, which will be overlayed over the source connected
  1809. to the pad with identifier "in".
  1810. @example
  1811. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1812. @end example
  1813. @section movie
  1814. Read a video stream from a movie container.
  1815. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1816. @var{movie_name} is the name of the resource to read (not necessarily
  1817. a file but also a device or a stream accessed through some protocol),
  1818. and @var{options} is an optional sequence of @var{key}=@var{value}
  1819. pairs, separated by ":".
  1820. The description of the accepted options follows.
  1821. @table @option
  1822. @item format_name, f
  1823. Specifies the format assumed for the movie to read, and can be either
  1824. the name of a container or an input device. If not specified the
  1825. format is guessed from @var{movie_name} or by probing.
  1826. @item seek_point, sp
  1827. Specifies the seek point in seconds, the frames will be output
  1828. starting from this seek point, the parameter is evaluated with
  1829. @code{av_strtod} so the numerical value may be suffixed by an IS
  1830. postfix. Default value is "0".
  1831. @item stream_index, si
  1832. Specifies the index of the video stream to read. If the value is -1,
  1833. the best suited video stream will be automatically selected. Default
  1834. value is "-1".
  1835. @end table
  1836. This filter allows to overlay a second video on top of main input of
  1837. a filtergraph as shown in this graph:
  1838. @example
  1839. input -----------> deltapts0 --> overlay --> output
  1840. ^
  1841. |
  1842. movie --> scale--> deltapts1 -------+
  1843. @end example
  1844. Some examples follow:
  1845. @example
  1846. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1847. # on top of the input labelled as "in".
  1848. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1849. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1850. # read from a video4linux2 device, and overlay it on top of the input
  1851. # labelled as "in"
  1852. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1853. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1854. @end example
  1855. @section mptestsrc
  1856. Generate various test patterns, as generated by the MPlayer test filter.
  1857. The size of the generated video is fixed, and is 256x256.
  1858. This source is useful in particular for testing encoding features.
  1859. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  1860. separated by ":". The description of the accepted options follows.
  1861. @table @option
  1862. @item rate, r
  1863. Specify the frame rate of the sourced video, as the number of frames
  1864. generated per second. It has to be a string in the format
  1865. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1866. number or a valid video frame rate abbreviation. The default value is
  1867. "25".
  1868. @item duration, d
  1869. Set the video duration of the sourced video. The accepted syntax is:
  1870. @example
  1871. [-]HH[:MM[:SS[.m...]]]
  1872. [-]S+[.m...]
  1873. @end example
  1874. See also the function @code{av_parse_time()}.
  1875. If not specified, or the expressed duration is negative, the video is
  1876. supposed to be generated forever.
  1877. @item test, t
  1878. Set the number or the name of the test to perform. Supported tests are:
  1879. @table @option
  1880. @item dc_luma
  1881. @item dc_chroma
  1882. @item freq_luma
  1883. @item freq_chroma
  1884. @item amp_luma
  1885. @item amp_chroma
  1886. @item cbp
  1887. @item mv
  1888. @item ring1
  1889. @item ring2
  1890. @item all
  1891. @end table
  1892. Default value is "all", which will cycle through the list of all tests.
  1893. @end table
  1894. For example the following:
  1895. @example
  1896. testsrc=t=dc_luma
  1897. @end example
  1898. will generate a "dc_luma" test pattern.
  1899. @section nullsrc
  1900. Null video source, never return images. It is mainly useful as a
  1901. template and to be employed in analysis / debugging tools.
  1902. It accepts as optional parameter a string of the form
  1903. @var{width}:@var{height}:@var{timebase}.
  1904. @var{width} and @var{height} specify the size of the configured
  1905. source. The default values of @var{width} and @var{height} are
  1906. respectively 352 and 288 (corresponding to the CIF size format).
  1907. @var{timebase} specifies an arithmetic expression representing a
  1908. timebase. The expression can contain the constant
  1909. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1910. @section frei0r_src
  1911. Provide a frei0r source.
  1912. To enable compilation of this filter you need to install the frei0r
  1913. header and configure FFmpeg with --enable-frei0r.
  1914. The source supports the syntax:
  1915. @example
  1916. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1917. @end example
  1918. @var{size} is the size of the video to generate, may be a string of the
  1919. form @var{width}x@var{height} or a frame size abbreviation.
  1920. @var{rate} is the rate of the video to generate, may be a string of
  1921. the form @var{num}/@var{den} or a frame rate abbreviation.
  1922. @var{src_name} is the name to the frei0r source to load. For more
  1923. information regarding frei0r and how to set the parameters read the
  1924. section @ref{frei0r} in the description of the video filters.
  1925. Some examples follow:
  1926. @example
  1927. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1928. # which is overlayed on the overlay filter main input
  1929. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1930. @end example
  1931. @section rgbtestsrc, testsrc
  1932. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1933. detecting RGB vs BGR issues. You should see a red, green and blue
  1934. stripe from top to bottom.
  1935. The @code{testsrc} source generates a test video pattern, showing a
  1936. color pattern, a scrolling gradient and a timestamp. This is mainly
  1937. intended for testing purposes.
  1938. Both sources accept an optional sequence of @var{key}=@var{value} pairs,
  1939. separated by ":". The description of the accepted options follows.
  1940. @table @option
  1941. @item size, s
  1942. Specify the size of the sourced video, it may be a string of the form
  1943. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  1944. default value is "320x240".
  1945. @item rate, r
  1946. Specify the frame rate of the sourced video, as the number of frames
  1947. generated per second. It has to be a string in the format
  1948. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1949. number or a valid video frame rate abbreviation. The default value is
  1950. "25".
  1951. @item sar
  1952. Set the sample aspect ratio of the sourced video.
  1953. @item duration
  1954. Set the video duration of the sourced video. The accepted syntax is:
  1955. @example
  1956. [-]HH[:MM[:SS[.m...]]]
  1957. [-]S+[.m...]
  1958. @end example
  1959. See also the function @code{av_parse_time()}.
  1960. If not specified, or the expressed duration is negative, the video is
  1961. supposed to be generated forever.
  1962. @end table
  1963. For example the following:
  1964. @example
  1965. testsrc=duration=5.3:size=qcif:rate=10
  1966. @end example
  1967. will generate a video with a duration of 5.3 seconds, with size
  1968. 176x144 and a framerate of 10 frames per second.
  1969. @c man end VIDEO SOURCES
  1970. @chapter Video Sinks
  1971. @c man begin VIDEO SINKS
  1972. Below is a description of the currently available video sinks.
  1973. @section buffersink
  1974. Buffer video frames, and make them available to the end of the filter
  1975. graph.
  1976. This sink is mainly intended for a programmatic use, in particular
  1977. through the interface defined in @file{libavfilter/buffersink.h}.
  1978. It does not require a string parameter in input, but you need to
  1979. specify a pointer to a list of supported pixel formats terminated by
  1980. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  1981. when initializing this sink.
  1982. @section nullsink
  1983. Null video sink, do absolutely nothing with the input video. It is
  1984. mainly useful as a template and to be employed in analysis / debugging
  1985. tools.
  1986. @c man end VIDEO SINKS