You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

388 lines
12KB

  1. /*
  2. * Copyright (C) 2007 Michael Niedermayer <michaelni@gmx.at>
  3. * Copyright (C) 2009 Konstantin Shishkov
  4. * based on public domain SHA-1 code by Steve Reid <steve@edmweb.com>
  5. * and on BSD-licensed SHA-2 code by Aaron D. Gifford
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <string.h>
  24. #include "attributes.h"
  25. #include "avutil.h"
  26. #include "bswap.h"
  27. #include "sha.h"
  28. #include "intreadwrite.h"
  29. #include "mem.h"
  30. /** hash context */
  31. typedef struct AVSHA {
  32. uint8_t digest_len; ///< digest length in 32-bit words
  33. uint64_t count; ///< number of bytes in buffer
  34. uint8_t buffer[64]; ///< 512-bit buffer of input values used in hash updating
  35. uint32_t state[8]; ///< current hash value
  36. /** function used to update hash for 512-bit input block */
  37. void (*transform)(uint32_t *state, const uint8_t buffer[64]);
  38. } AVSHA;
  39. #if FF_API_CONTEXT_SIZE
  40. const int av_sha_size = sizeof(AVSHA);
  41. #endif
  42. struct AVSHA *av_sha_alloc(void)
  43. {
  44. return av_mallocz(sizeof(struct AVSHA));
  45. }
  46. #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
  47. /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
  48. #define blk0(i) (block[i] = AV_RB32(buffer + 4 * (i)))
  49. #define blk(i) (block[i] = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1))
  50. #define R0(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk0(i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
  51. #define R1(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk (i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
  52. #define R2(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
  53. #define R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + blk (i) + 0x8F1BBCDC + rol(v, 5); w = rol(w, 30);
  54. #define R4(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0xCA62C1D6 + rol(v, 5); w = rol(w, 30);
  55. /* Hash a single 512-bit block. This is the core of the algorithm. */
  56. static void sha1_transform(uint32_t state[5], const uint8_t buffer[64])
  57. {
  58. uint32_t block[80];
  59. unsigned int i, a, b, c, d, e;
  60. a = state[0];
  61. b = state[1];
  62. c = state[2];
  63. d = state[3];
  64. e = state[4];
  65. #if CONFIG_SMALL
  66. for (i = 0; i < 80; i++) {
  67. int t;
  68. if (i < 16)
  69. t = AV_RB32(buffer + 4 * i);
  70. else
  71. t = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1);
  72. block[i] = t;
  73. t += e + rol(a, 5);
  74. if (i < 40) {
  75. if (i < 20)
  76. t += ((b&(c^d))^d) + 0x5A827999;
  77. else
  78. t += ( b^c ^d) + 0x6ED9EBA1;
  79. } else {
  80. if (i < 60)
  81. t += (((b|c)&d)|(b&c)) + 0x8F1BBCDC;
  82. else
  83. t += ( b^c ^d) + 0xCA62C1D6;
  84. }
  85. e = d;
  86. d = c;
  87. c = rol(b, 30);
  88. b = a;
  89. a = t;
  90. }
  91. #else
  92. for (i = 0; i < 15; i += 5) {
  93. R0(a, b, c, d, e, 0 + i);
  94. R0(e, a, b, c, d, 1 + i);
  95. R0(d, e, a, b, c, 2 + i);
  96. R0(c, d, e, a, b, 3 + i);
  97. R0(b, c, d, e, a, 4 + i);
  98. }
  99. R0(a, b, c, d, e, 15);
  100. R1(e, a, b, c, d, 16);
  101. R1(d, e, a, b, c, 17);
  102. R1(c, d, e, a, b, 18);
  103. R1(b, c, d, e, a, 19);
  104. for (i = 20; i < 40; i += 5) {
  105. R2(a, b, c, d, e, 0 + i);
  106. R2(e, a, b, c, d, 1 + i);
  107. R2(d, e, a, b, c, 2 + i);
  108. R2(c, d, e, a, b, 3 + i);
  109. R2(b, c, d, e, a, 4 + i);
  110. }
  111. for (; i < 60; i += 5) {
  112. R3(a, b, c, d, e, 0 + i);
  113. R3(e, a, b, c, d, 1 + i);
  114. R3(d, e, a, b, c, 2 + i);
  115. R3(c, d, e, a, b, 3 + i);
  116. R3(b, c, d, e, a, 4 + i);
  117. }
  118. for (; i < 80; i += 5) {
  119. R4(a, b, c, d, e, 0 + i);
  120. R4(e, a, b, c, d, 1 + i);
  121. R4(d, e, a, b, c, 2 + i);
  122. R4(c, d, e, a, b, 3 + i);
  123. R4(b, c, d, e, a, 4 + i);
  124. }
  125. #endif
  126. state[0] += a;
  127. state[1] += b;
  128. state[2] += c;
  129. state[3] += d;
  130. state[4] += e;
  131. }
  132. static const uint32_t K256[64] = {
  133. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  134. 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  135. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  136. 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  137. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  138. 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  139. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  140. 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  141. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  142. 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  143. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  144. 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  145. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  146. 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  147. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  148. 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  149. };
  150. #define Ch(x,y,z) (((x) & ((y) ^ (z))) ^ (z))
  151. #define Maj(x,y,z) ((((x) | (y)) & (z)) | ((x) & (y)))
  152. #define Sigma0_256(x) (rol((x), 30) ^ rol((x), 19) ^ rol((x), 10))
  153. #define Sigma1_256(x) (rol((x), 26) ^ rol((x), 21) ^ rol((x), 7))
  154. #define sigma0_256(x) (rol((x), 25) ^ rol((x), 14) ^ ((x) >> 3))
  155. #define sigma1_256(x) (rol((x), 15) ^ rol((x), 13) ^ ((x) >> 10))
  156. #undef blk
  157. #define blk(i) (block[i] = block[i - 16] + sigma0_256(block[i - 15]) + \
  158. sigma1_256(block[i - 2]) + block[i - 7])
  159. #define ROUND256(a,b,c,d,e,f,g,h) \
  160. T1 += (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[i]; \
  161. (d) += T1; \
  162. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  163. i++
  164. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  165. T1 = blk0(i); \
  166. ROUND256(a,b,c,d,e,f,g,h)
  167. #define ROUND256_16_TO_63(a,b,c,d,e,f,g,h) \
  168. T1 = blk(i); \
  169. ROUND256(a,b,c,d,e,f,g,h)
  170. static void sha256_transform(uint32_t *state, const uint8_t buffer[64])
  171. {
  172. unsigned int i, a, b, c, d, e, f, g, h;
  173. uint32_t block[64];
  174. uint32_t T1;
  175. a = state[0];
  176. b = state[1];
  177. c = state[2];
  178. d = state[3];
  179. e = state[4];
  180. f = state[5];
  181. g = state[6];
  182. h = state[7];
  183. #if CONFIG_SMALL
  184. for (i = 0; i < 64; i++) {
  185. uint32_t T2;
  186. if (i < 16)
  187. T1 = blk0(i);
  188. else
  189. T1 = blk(i);
  190. T1 += h + Sigma1_256(e) + Ch(e, f, g) + K256[i];
  191. T2 = Sigma0_256(a) + Maj(a, b, c);
  192. h = g;
  193. g = f;
  194. f = e;
  195. e = d + T1;
  196. d = c;
  197. c = b;
  198. b = a;
  199. a = T1 + T2;
  200. }
  201. #else
  202. for (i = 0; i < 16;) {
  203. ROUND256_0_TO_15(a, b, c, d, e, f, g, h);
  204. ROUND256_0_TO_15(h, a, b, c, d, e, f, g);
  205. ROUND256_0_TO_15(g, h, a, b, c, d, e, f);
  206. ROUND256_0_TO_15(f, g, h, a, b, c, d, e);
  207. ROUND256_0_TO_15(e, f, g, h, a, b, c, d);
  208. ROUND256_0_TO_15(d, e, f, g, h, a, b, c);
  209. ROUND256_0_TO_15(c, d, e, f, g, h, a, b);
  210. ROUND256_0_TO_15(b, c, d, e, f, g, h, a);
  211. }
  212. for (; i < 64;) {
  213. ROUND256_16_TO_63(a, b, c, d, e, f, g, h);
  214. ROUND256_16_TO_63(h, a, b, c, d, e, f, g);
  215. ROUND256_16_TO_63(g, h, a, b, c, d, e, f);
  216. ROUND256_16_TO_63(f, g, h, a, b, c, d, e);
  217. ROUND256_16_TO_63(e, f, g, h, a, b, c, d);
  218. ROUND256_16_TO_63(d, e, f, g, h, a, b, c);
  219. ROUND256_16_TO_63(c, d, e, f, g, h, a, b);
  220. ROUND256_16_TO_63(b, c, d, e, f, g, h, a);
  221. }
  222. #endif
  223. state[0] += a;
  224. state[1] += b;
  225. state[2] += c;
  226. state[3] += d;
  227. state[4] += e;
  228. state[5] += f;
  229. state[6] += g;
  230. state[7] += h;
  231. }
  232. av_cold int av_sha_init(AVSHA *ctx, int bits)
  233. {
  234. ctx->digest_len = bits >> 5;
  235. switch (bits) {
  236. case 160: // SHA-1
  237. ctx->state[0] = 0x67452301;
  238. ctx->state[1] = 0xEFCDAB89;
  239. ctx->state[2] = 0x98BADCFE;
  240. ctx->state[3] = 0x10325476;
  241. ctx->state[4] = 0xC3D2E1F0;
  242. ctx->transform = sha1_transform;
  243. break;
  244. case 224: // SHA-224
  245. ctx->state[0] = 0xC1059ED8;
  246. ctx->state[1] = 0x367CD507;
  247. ctx->state[2] = 0x3070DD17;
  248. ctx->state[3] = 0xF70E5939;
  249. ctx->state[4] = 0xFFC00B31;
  250. ctx->state[5] = 0x68581511;
  251. ctx->state[6] = 0x64F98FA7;
  252. ctx->state[7] = 0xBEFA4FA4;
  253. ctx->transform = sha256_transform;
  254. break;
  255. case 256: // SHA-256
  256. ctx->state[0] = 0x6A09E667;
  257. ctx->state[1] = 0xBB67AE85;
  258. ctx->state[2] = 0x3C6EF372;
  259. ctx->state[3] = 0xA54FF53A;
  260. ctx->state[4] = 0x510E527F;
  261. ctx->state[5] = 0x9B05688C;
  262. ctx->state[6] = 0x1F83D9AB;
  263. ctx->state[7] = 0x5BE0CD19;
  264. ctx->transform = sha256_transform;
  265. break;
  266. default:
  267. return -1;
  268. }
  269. ctx->count = 0;
  270. return 0;
  271. }
  272. void av_sha_update(AVSHA* ctx, const uint8_t* data, unsigned int len)
  273. {
  274. unsigned int i, j;
  275. j = ctx->count & 63;
  276. ctx->count += len;
  277. #if CONFIG_SMALL
  278. for (i = 0; i < len; i++) {
  279. ctx->buffer[j++] = data[i];
  280. if (64 == j) {
  281. ctx->transform(ctx->state, ctx->buffer);
  282. j = 0;
  283. }
  284. }
  285. #else
  286. if ((j + len) > 63) {
  287. memcpy(&ctx->buffer[j], data, (i = 64 - j));
  288. ctx->transform(ctx->state, ctx->buffer);
  289. for (; i + 63 < len; i += 64)
  290. ctx->transform(ctx->state, &data[i]);
  291. j = 0;
  292. } else
  293. i = 0;
  294. memcpy(&ctx->buffer[j], &data[i], len - i);
  295. #endif
  296. }
  297. void av_sha_final(AVSHA* ctx, uint8_t *digest)
  298. {
  299. int i;
  300. uint64_t finalcount = av_be2ne64(ctx->count << 3);
  301. av_sha_update(ctx, "\200", 1);
  302. while ((ctx->count & 63) != 56)
  303. av_sha_update(ctx, "", 1);
  304. av_sha_update(ctx, (uint8_t *)&finalcount, 8); /* Should cause a transform() */
  305. for (i = 0; i < ctx->digest_len; i++)
  306. AV_WB32(digest + i*4, ctx->state[i]);
  307. }
  308. #ifdef TEST
  309. #include <stdio.h>
  310. int main(void)
  311. {
  312. int i, j, k;
  313. AVSHA ctx;
  314. unsigned char digest[32];
  315. const int lengths[3] = { 160, 224, 256 };
  316. for (j = 0; j < 3; j++) {
  317. printf("Testing SHA-%d\n", lengths[j]);
  318. for (k = 0; k < 3; k++) {
  319. av_sha_init(&ctx, lengths[j]);
  320. if (k == 0)
  321. av_sha_update(&ctx, "abc", 3);
  322. else if (k == 1)
  323. av_sha_update(&ctx, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56);
  324. else
  325. for (i = 0; i < 1000*1000; i++)
  326. av_sha_update(&ctx, "a", 1);
  327. av_sha_final(&ctx, digest);
  328. for (i = 0; i < lengths[j] >> 3; i++)
  329. printf("%02X", digest[i]);
  330. putchar('\n');
  331. }
  332. switch (j) {
  333. case 0:
  334. //test vectors (from FIPS PUB 180-1)
  335. printf("A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D\n"
  336. "84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1\n"
  337. "34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F\n");
  338. break;
  339. case 1:
  340. //test vectors (from FIPS PUB 180-2 Appendix A)
  341. printf("23097d22 3405d822 8642a477 bda255b3 2aadbce4 bda0b3f7 e36c9da7\n"
  342. "75388b16 512776cc 5dba5da1 fd890150 b0c6455c b4f58b19 52522525\n"
  343. "20794655 980c91d8 bbb4c1ea 97618a4b f03f4258 1948b2ee 4ee7ad67\n");
  344. break;
  345. case 2:
  346. //test vectors (from FIPS PUB 180-2)
  347. printf("ba7816bf 8f01cfea 414140de 5dae2223 b00361a3 96177a9c b410ff61 f20015ad\n"
  348. "248d6a61 d20638b8 e5c02693 0c3e6039 a33ce459 64ff2167 f6ecedd4 19db06c1\n"
  349. "cdc76e5c 9914fb92 81a1c7e2 84d73e67 f1809a48 a497200e 046d39cc c7112cd0\n");
  350. break;
  351. }
  352. }
  353. return 0;
  354. }
  355. #endif