You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

895 lines
29KB

  1. /*
  2. * RTP input format
  3. * Copyright (c) 2002 Fabrice Bellard
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/mathematics.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/time.h"
  24. #include "libavcodec/get_bits.h"
  25. #include "avformat.h"
  26. #include "network.h"
  27. #include "srtp.h"
  28. #include "url.h"
  29. #include "rtpdec.h"
  30. #include "rtpdec_formats.h"
  31. #define MIN_FEEDBACK_INTERVAL 200000 /* 200 ms in us */
  32. static RTPDynamicProtocolHandler realmedia_mp3_dynamic_handler = {
  33. .enc_name = "X-MP3-draft-00",
  34. .codec_type = AVMEDIA_TYPE_AUDIO,
  35. .codec_id = AV_CODEC_ID_MP3ADU,
  36. };
  37. static RTPDynamicProtocolHandler speex_dynamic_handler = {
  38. .enc_name = "speex",
  39. .codec_type = AVMEDIA_TYPE_AUDIO,
  40. .codec_id = AV_CODEC_ID_SPEEX,
  41. };
  42. static RTPDynamicProtocolHandler opus_dynamic_handler = {
  43. .enc_name = "opus",
  44. .codec_type = AVMEDIA_TYPE_AUDIO,
  45. .codec_id = AV_CODEC_ID_OPUS,
  46. };
  47. static RTPDynamicProtocolHandler t140_dynamic_handler = { /* RFC 4103 */
  48. .enc_name = "t140",
  49. .codec_type = AVMEDIA_TYPE_DATA,
  50. .codec_id = AV_CODEC_ID_TEXT,
  51. };
  52. static RTPDynamicProtocolHandler *rtp_first_dynamic_payload_handler = NULL;
  53. void ff_register_dynamic_payload_handler(RTPDynamicProtocolHandler *handler)
  54. {
  55. handler->next = rtp_first_dynamic_payload_handler;
  56. rtp_first_dynamic_payload_handler = handler;
  57. }
  58. void ff_register_rtp_dynamic_payload_handlers(void)
  59. {
  60. ff_register_dynamic_payload_handler(&ff_ac3_dynamic_handler);
  61. ff_register_dynamic_payload_handler(&ff_amr_nb_dynamic_handler);
  62. ff_register_dynamic_payload_handler(&ff_amr_wb_dynamic_handler);
  63. ff_register_dynamic_payload_handler(&ff_dv_dynamic_handler);
  64. ff_register_dynamic_payload_handler(&ff_g726_16_dynamic_handler);
  65. ff_register_dynamic_payload_handler(&ff_g726_24_dynamic_handler);
  66. ff_register_dynamic_payload_handler(&ff_g726_32_dynamic_handler);
  67. ff_register_dynamic_payload_handler(&ff_g726_40_dynamic_handler);
  68. ff_register_dynamic_payload_handler(&ff_h261_dynamic_handler);
  69. ff_register_dynamic_payload_handler(&ff_h263_1998_dynamic_handler);
  70. ff_register_dynamic_payload_handler(&ff_h263_2000_dynamic_handler);
  71. ff_register_dynamic_payload_handler(&ff_h263_rfc2190_dynamic_handler);
  72. ff_register_dynamic_payload_handler(&ff_h264_dynamic_handler);
  73. ff_register_dynamic_payload_handler(&ff_hevc_dynamic_handler);
  74. ff_register_dynamic_payload_handler(&ff_ilbc_dynamic_handler);
  75. ff_register_dynamic_payload_handler(&ff_jpeg_dynamic_handler);
  76. ff_register_dynamic_payload_handler(&ff_mp4a_latm_dynamic_handler);
  77. ff_register_dynamic_payload_handler(&ff_mp4v_es_dynamic_handler);
  78. ff_register_dynamic_payload_handler(&ff_mpeg_audio_dynamic_handler);
  79. ff_register_dynamic_payload_handler(&ff_mpeg_audio_robust_dynamic_handler);
  80. ff_register_dynamic_payload_handler(&ff_mpeg_video_dynamic_handler);
  81. ff_register_dynamic_payload_handler(&ff_mpeg4_generic_dynamic_handler);
  82. ff_register_dynamic_payload_handler(&ff_mpegts_dynamic_handler);
  83. ff_register_dynamic_payload_handler(&ff_ms_rtp_asf_pfa_handler);
  84. ff_register_dynamic_payload_handler(&ff_ms_rtp_asf_pfv_handler);
  85. ff_register_dynamic_payload_handler(&ff_qcelp_dynamic_handler);
  86. ff_register_dynamic_payload_handler(&ff_qdm2_dynamic_handler);
  87. ff_register_dynamic_payload_handler(&ff_qt_rtp_aud_handler);
  88. ff_register_dynamic_payload_handler(&ff_qt_rtp_vid_handler);
  89. ff_register_dynamic_payload_handler(&ff_quicktime_rtp_aud_handler);
  90. ff_register_dynamic_payload_handler(&ff_quicktime_rtp_vid_handler);
  91. ff_register_dynamic_payload_handler(&ff_svq3_dynamic_handler);
  92. ff_register_dynamic_payload_handler(&ff_theora_dynamic_handler);
  93. ff_register_dynamic_payload_handler(&ff_vorbis_dynamic_handler);
  94. ff_register_dynamic_payload_handler(&ff_vp8_dynamic_handler);
  95. ff_register_dynamic_payload_handler(&ff_vp9_dynamic_handler);
  96. ff_register_dynamic_payload_handler(&opus_dynamic_handler);
  97. ff_register_dynamic_payload_handler(&realmedia_mp3_dynamic_handler);
  98. ff_register_dynamic_payload_handler(&speex_dynamic_handler);
  99. ff_register_dynamic_payload_handler(&t140_dynamic_handler);
  100. }
  101. RTPDynamicProtocolHandler *ff_rtp_handler_find_by_name(const char *name,
  102. enum AVMediaType codec_type)
  103. {
  104. RTPDynamicProtocolHandler *handler;
  105. for (handler = rtp_first_dynamic_payload_handler;
  106. handler; handler = handler->next)
  107. if (handler->enc_name &&
  108. !av_strcasecmp(name, handler->enc_name) &&
  109. codec_type == handler->codec_type)
  110. return handler;
  111. return NULL;
  112. }
  113. RTPDynamicProtocolHandler *ff_rtp_handler_find_by_id(int id,
  114. enum AVMediaType codec_type)
  115. {
  116. RTPDynamicProtocolHandler *handler;
  117. for (handler = rtp_first_dynamic_payload_handler;
  118. handler; handler = handler->next)
  119. if (handler->static_payload_id && handler->static_payload_id == id &&
  120. codec_type == handler->codec_type)
  121. return handler;
  122. return NULL;
  123. }
  124. static int rtcp_parse_packet(RTPDemuxContext *s, const unsigned char *buf,
  125. int len)
  126. {
  127. int payload_len;
  128. while (len >= 4) {
  129. payload_len = FFMIN(len, (AV_RB16(buf + 2) + 1) * 4);
  130. switch (buf[1]) {
  131. case RTCP_SR:
  132. if (payload_len < 20) {
  133. av_log(NULL, AV_LOG_ERROR,
  134. "Invalid length for RTCP SR packet\n");
  135. return AVERROR_INVALIDDATA;
  136. }
  137. s->last_rtcp_reception_time = av_gettime_relative();
  138. s->last_rtcp_ntp_time = AV_RB64(buf + 8);
  139. s->last_rtcp_timestamp = AV_RB32(buf + 16);
  140. if (s->first_rtcp_ntp_time == AV_NOPTS_VALUE) {
  141. s->first_rtcp_ntp_time = s->last_rtcp_ntp_time;
  142. if (!s->base_timestamp)
  143. s->base_timestamp = s->last_rtcp_timestamp;
  144. s->rtcp_ts_offset = (int32_t)(s->last_rtcp_timestamp - s->base_timestamp);
  145. }
  146. break;
  147. case RTCP_BYE:
  148. return -RTCP_BYE;
  149. }
  150. buf += payload_len;
  151. len -= payload_len;
  152. }
  153. return -1;
  154. }
  155. #define RTP_SEQ_MOD (1 << 16)
  156. static void rtp_init_statistics(RTPStatistics *s, uint16_t base_sequence)
  157. {
  158. memset(s, 0, sizeof(RTPStatistics));
  159. s->max_seq = base_sequence;
  160. s->probation = 1;
  161. }
  162. /*
  163. * Called whenever there is a large jump in sequence numbers,
  164. * or when they get out of probation...
  165. */
  166. static void rtp_init_sequence(RTPStatistics *s, uint16_t seq)
  167. {
  168. s->max_seq = seq;
  169. s->cycles = 0;
  170. s->base_seq = seq - 1;
  171. s->bad_seq = RTP_SEQ_MOD + 1;
  172. s->received = 0;
  173. s->expected_prior = 0;
  174. s->received_prior = 0;
  175. s->jitter = 0;
  176. s->transit = 0;
  177. }
  178. /* Returns 1 if we should handle this packet. */
  179. static int rtp_valid_packet_in_sequence(RTPStatistics *s, uint16_t seq)
  180. {
  181. uint16_t udelta = seq - s->max_seq;
  182. const int MAX_DROPOUT = 3000;
  183. const int MAX_MISORDER = 100;
  184. const int MIN_SEQUENTIAL = 2;
  185. /* source not valid until MIN_SEQUENTIAL packets with sequence
  186. * seq. numbers have been received */
  187. if (s->probation) {
  188. if (seq == s->max_seq + 1) {
  189. s->probation--;
  190. s->max_seq = seq;
  191. if (s->probation == 0) {
  192. rtp_init_sequence(s, seq);
  193. s->received++;
  194. return 1;
  195. }
  196. } else {
  197. s->probation = MIN_SEQUENTIAL - 1;
  198. s->max_seq = seq;
  199. }
  200. } else if (udelta < MAX_DROPOUT) {
  201. // in order, with permissible gap
  202. if (seq < s->max_seq) {
  203. // sequence number wrapped; count another 64k cycles
  204. s->cycles += RTP_SEQ_MOD;
  205. }
  206. s->max_seq = seq;
  207. } else if (udelta <= RTP_SEQ_MOD - MAX_MISORDER) {
  208. // sequence made a large jump...
  209. if (seq == s->bad_seq) {
  210. /* two sequential packets -- assume that the other side
  211. * restarted without telling us; just resync. */
  212. rtp_init_sequence(s, seq);
  213. } else {
  214. s->bad_seq = (seq + 1) & (RTP_SEQ_MOD - 1);
  215. return 0;
  216. }
  217. } else {
  218. // duplicate or reordered packet...
  219. }
  220. s->received++;
  221. return 1;
  222. }
  223. static void rtcp_update_jitter(RTPStatistics *s, uint32_t sent_timestamp,
  224. uint32_t arrival_timestamp)
  225. {
  226. // Most of this is pretty straight from RFC 3550 appendix A.8
  227. uint32_t transit = arrival_timestamp - sent_timestamp;
  228. uint32_t prev_transit = s->transit;
  229. int32_t d = transit - prev_transit;
  230. // Doing the FFABS() call directly on the "transit - prev_transit"
  231. // expression doesn't work, since it's an unsigned expression. Doing the
  232. // transit calculation in unsigned is desired though, since it most
  233. // probably will need to wrap around.
  234. d = FFABS(d);
  235. s->transit = transit;
  236. if (!prev_transit)
  237. return;
  238. s->jitter += d - (int32_t) ((s->jitter + 8) >> 4);
  239. }
  240. int ff_rtp_check_and_send_back_rr(RTPDemuxContext *s, URLContext *fd,
  241. AVIOContext *avio, int count)
  242. {
  243. AVIOContext *pb;
  244. uint8_t *buf;
  245. int len;
  246. int rtcp_bytes;
  247. RTPStatistics *stats = &s->statistics;
  248. uint32_t lost;
  249. uint32_t extended_max;
  250. uint32_t expected_interval;
  251. uint32_t received_interval;
  252. int32_t lost_interval;
  253. uint32_t expected;
  254. uint32_t fraction;
  255. if ((!fd && !avio) || (count < 1))
  256. return -1;
  257. /* TODO: I think this is way too often; RFC 1889 has algorithm for this */
  258. /* XXX: MPEG pts hardcoded. RTCP send every 0.5 seconds */
  259. s->octet_count += count;
  260. rtcp_bytes = ((s->octet_count - s->last_octet_count) * RTCP_TX_RATIO_NUM) /
  261. RTCP_TX_RATIO_DEN;
  262. rtcp_bytes /= 50; // mmu_man: that's enough for me... VLC sends much less btw !?
  263. if (rtcp_bytes < 28)
  264. return -1;
  265. s->last_octet_count = s->octet_count;
  266. if (!fd)
  267. pb = avio;
  268. else if (avio_open_dyn_buf(&pb) < 0)
  269. return -1;
  270. // Receiver Report
  271. avio_w8(pb, (RTP_VERSION << 6) + 1); /* 1 report block */
  272. avio_w8(pb, RTCP_RR);
  273. avio_wb16(pb, 7); /* length in words - 1 */
  274. // our own SSRC: we use the server's SSRC + 1 to avoid conflicts
  275. avio_wb32(pb, s->ssrc + 1);
  276. avio_wb32(pb, s->ssrc); // server SSRC
  277. // some placeholders we should really fill...
  278. // RFC 1889/p64
  279. extended_max = stats->cycles + stats->max_seq;
  280. expected = extended_max - stats->base_seq;
  281. lost = expected - stats->received;
  282. lost = FFMIN(lost, 0xffffff); // clamp it since it's only 24 bits...
  283. expected_interval = expected - stats->expected_prior;
  284. stats->expected_prior = expected;
  285. received_interval = stats->received - stats->received_prior;
  286. stats->received_prior = stats->received;
  287. lost_interval = expected_interval - received_interval;
  288. if (expected_interval == 0 || lost_interval <= 0)
  289. fraction = 0;
  290. else
  291. fraction = (lost_interval << 8) / expected_interval;
  292. fraction = (fraction << 24) | lost;
  293. avio_wb32(pb, fraction); /* 8 bits of fraction, 24 bits of total packets lost */
  294. avio_wb32(pb, extended_max); /* max sequence received */
  295. avio_wb32(pb, stats->jitter >> 4); /* jitter */
  296. if (s->last_rtcp_ntp_time == AV_NOPTS_VALUE) {
  297. avio_wb32(pb, 0); /* last SR timestamp */
  298. avio_wb32(pb, 0); /* delay since last SR */
  299. } else {
  300. uint32_t middle_32_bits = s->last_rtcp_ntp_time >> 16; // this is valid, right? do we need to handle 64 bit values special?
  301. uint32_t delay_since_last = av_rescale(av_gettime_relative() - s->last_rtcp_reception_time,
  302. 65536, AV_TIME_BASE);
  303. avio_wb32(pb, middle_32_bits); /* last SR timestamp */
  304. avio_wb32(pb, delay_since_last); /* delay since last SR */
  305. }
  306. // CNAME
  307. avio_w8(pb, (RTP_VERSION << 6) + 1); /* 1 report block */
  308. avio_w8(pb, RTCP_SDES);
  309. len = strlen(s->hostname);
  310. avio_wb16(pb, (7 + len + 3) / 4); /* length in words - 1 */
  311. avio_wb32(pb, s->ssrc + 1);
  312. avio_w8(pb, 0x01);
  313. avio_w8(pb, len);
  314. avio_write(pb, s->hostname, len);
  315. avio_w8(pb, 0); /* END */
  316. // padding
  317. for (len = (7 + len) % 4; len % 4; len++)
  318. avio_w8(pb, 0);
  319. avio_flush(pb);
  320. if (!fd)
  321. return 0;
  322. len = avio_close_dyn_buf(pb, &buf);
  323. if ((len > 0) && buf) {
  324. int av_unused result;
  325. av_log(s->ic, AV_LOG_TRACE, "sending %d bytes of RR\n", len);
  326. result = ffurl_write(fd, buf, len);
  327. av_log(s->ic, AV_LOG_TRACE, "result from ffurl_write: %d\n", result);
  328. av_free(buf);
  329. }
  330. return 0;
  331. }
  332. void ff_rtp_send_punch_packets(URLContext *rtp_handle)
  333. {
  334. AVIOContext *pb;
  335. uint8_t *buf;
  336. int len;
  337. /* Send a small RTP packet */
  338. if (avio_open_dyn_buf(&pb) < 0)
  339. return;
  340. avio_w8(pb, (RTP_VERSION << 6));
  341. avio_w8(pb, 0); /* Payload type */
  342. avio_wb16(pb, 0); /* Seq */
  343. avio_wb32(pb, 0); /* Timestamp */
  344. avio_wb32(pb, 0); /* SSRC */
  345. avio_flush(pb);
  346. len = avio_close_dyn_buf(pb, &buf);
  347. if ((len > 0) && buf)
  348. ffurl_write(rtp_handle, buf, len);
  349. av_free(buf);
  350. /* Send a minimal RTCP RR */
  351. if (avio_open_dyn_buf(&pb) < 0)
  352. return;
  353. avio_w8(pb, (RTP_VERSION << 6));
  354. avio_w8(pb, RTCP_RR); /* receiver report */
  355. avio_wb16(pb, 1); /* length in words - 1 */
  356. avio_wb32(pb, 0); /* our own SSRC */
  357. avio_flush(pb);
  358. len = avio_close_dyn_buf(pb, &buf);
  359. if ((len > 0) && buf)
  360. ffurl_write(rtp_handle, buf, len);
  361. av_free(buf);
  362. }
  363. static int find_missing_packets(RTPDemuxContext *s, uint16_t *first_missing,
  364. uint16_t *missing_mask)
  365. {
  366. int i;
  367. uint16_t next_seq = s->seq + 1;
  368. RTPPacket *pkt = s->queue;
  369. if (!pkt || pkt->seq == next_seq)
  370. return 0;
  371. *missing_mask = 0;
  372. for (i = 1; i <= 16; i++) {
  373. uint16_t missing_seq = next_seq + i;
  374. while (pkt) {
  375. int16_t diff = pkt->seq - missing_seq;
  376. if (diff >= 0)
  377. break;
  378. pkt = pkt->next;
  379. }
  380. if (!pkt)
  381. break;
  382. if (pkt->seq == missing_seq)
  383. continue;
  384. *missing_mask |= 1 << (i - 1);
  385. }
  386. *first_missing = next_seq;
  387. return 1;
  388. }
  389. int ff_rtp_send_rtcp_feedback(RTPDemuxContext *s, URLContext *fd,
  390. AVIOContext *avio)
  391. {
  392. int len, need_keyframe, missing_packets;
  393. AVIOContext *pb;
  394. uint8_t *buf;
  395. int64_t now;
  396. uint16_t first_missing = 0, missing_mask = 0;
  397. if (!fd && !avio)
  398. return -1;
  399. need_keyframe = s->handler && s->handler->need_keyframe &&
  400. s->handler->need_keyframe(s->dynamic_protocol_context);
  401. missing_packets = find_missing_packets(s, &first_missing, &missing_mask);
  402. if (!need_keyframe && !missing_packets)
  403. return 0;
  404. /* Send new feedback if enough time has elapsed since the last
  405. * feedback packet. */
  406. now = av_gettime_relative();
  407. if (s->last_feedback_time &&
  408. (now - s->last_feedback_time) < MIN_FEEDBACK_INTERVAL)
  409. return 0;
  410. s->last_feedback_time = now;
  411. if (!fd)
  412. pb = avio;
  413. else if (avio_open_dyn_buf(&pb) < 0)
  414. return -1;
  415. if (need_keyframe) {
  416. avio_w8(pb, (RTP_VERSION << 6) | 1); /* PLI */
  417. avio_w8(pb, RTCP_PSFB);
  418. avio_wb16(pb, 2); /* length in words - 1 */
  419. // our own SSRC: we use the server's SSRC + 1 to avoid conflicts
  420. avio_wb32(pb, s->ssrc + 1);
  421. avio_wb32(pb, s->ssrc); // server SSRC
  422. }
  423. if (missing_packets) {
  424. avio_w8(pb, (RTP_VERSION << 6) | 1); /* NACK */
  425. avio_w8(pb, RTCP_RTPFB);
  426. avio_wb16(pb, 3); /* length in words - 1 */
  427. avio_wb32(pb, s->ssrc + 1);
  428. avio_wb32(pb, s->ssrc); // server SSRC
  429. avio_wb16(pb, first_missing);
  430. avio_wb16(pb, missing_mask);
  431. }
  432. avio_flush(pb);
  433. if (!fd)
  434. return 0;
  435. len = avio_close_dyn_buf(pb, &buf);
  436. if (len > 0 && buf) {
  437. ffurl_write(fd, buf, len);
  438. av_free(buf);
  439. }
  440. return 0;
  441. }
  442. /**
  443. * open a new RTP parse context for stream 'st'. 'st' can be NULL for
  444. * MPEG2-TS streams.
  445. */
  446. RTPDemuxContext *ff_rtp_parse_open(AVFormatContext *s1, AVStream *st,
  447. int payload_type, int queue_size)
  448. {
  449. RTPDemuxContext *s;
  450. s = av_mallocz(sizeof(RTPDemuxContext));
  451. if (!s)
  452. return NULL;
  453. s->payload_type = payload_type;
  454. s->last_rtcp_ntp_time = AV_NOPTS_VALUE;
  455. s->first_rtcp_ntp_time = AV_NOPTS_VALUE;
  456. s->ic = s1;
  457. s->st = st;
  458. s->queue_size = queue_size;
  459. rtp_init_statistics(&s->statistics, 0);
  460. if (st) {
  461. switch (st->codec->codec_id) {
  462. case AV_CODEC_ID_ADPCM_G722:
  463. /* According to RFC 3551, the stream clock rate is 8000
  464. * even if the sample rate is 16000. */
  465. if (st->codec->sample_rate == 8000)
  466. st->codec->sample_rate = 16000;
  467. break;
  468. default:
  469. break;
  470. }
  471. }
  472. // needed to send back RTCP RR in RTSP sessions
  473. gethostname(s->hostname, sizeof(s->hostname));
  474. return s;
  475. }
  476. void ff_rtp_parse_set_dynamic_protocol(RTPDemuxContext *s, PayloadContext *ctx,
  477. RTPDynamicProtocolHandler *handler)
  478. {
  479. s->dynamic_protocol_context = ctx;
  480. s->handler = handler;
  481. }
  482. void ff_rtp_parse_set_crypto(RTPDemuxContext *s, const char *suite,
  483. const char *params)
  484. {
  485. if (!ff_srtp_set_crypto(&s->srtp, suite, params))
  486. s->srtp_enabled = 1;
  487. }
  488. /**
  489. * This was the second switch in rtp_parse packet.
  490. * Normalizes time, if required, sets stream_index, etc.
  491. */
  492. static void finalize_packet(RTPDemuxContext *s, AVPacket *pkt, uint32_t timestamp)
  493. {
  494. if (pkt->pts != AV_NOPTS_VALUE || pkt->dts != AV_NOPTS_VALUE)
  495. return; /* Timestamp already set by depacketizer */
  496. if (timestamp == RTP_NOTS_VALUE)
  497. return;
  498. if (s->last_rtcp_ntp_time != AV_NOPTS_VALUE && s->ic->nb_streams > 1) {
  499. int64_t addend;
  500. int delta_timestamp;
  501. /* compute pts from timestamp with received ntp_time */
  502. delta_timestamp = timestamp - s->last_rtcp_timestamp;
  503. /* convert to the PTS timebase */
  504. addend = av_rescale(s->last_rtcp_ntp_time - s->first_rtcp_ntp_time,
  505. s->st->time_base.den,
  506. (uint64_t) s->st->time_base.num << 32);
  507. pkt->pts = s->range_start_offset + s->rtcp_ts_offset + addend +
  508. delta_timestamp;
  509. return;
  510. }
  511. if (!s->base_timestamp)
  512. s->base_timestamp = timestamp;
  513. /* assume that the difference is INT32_MIN < x < INT32_MAX,
  514. * but allow the first timestamp to exceed INT32_MAX */
  515. if (!s->timestamp)
  516. s->unwrapped_timestamp += timestamp;
  517. else
  518. s->unwrapped_timestamp += (int32_t)(timestamp - s->timestamp);
  519. s->timestamp = timestamp;
  520. pkt->pts = s->unwrapped_timestamp + s->range_start_offset -
  521. s->base_timestamp;
  522. }
  523. static int rtp_parse_packet_internal(RTPDemuxContext *s, AVPacket *pkt,
  524. const uint8_t *buf, int len)
  525. {
  526. unsigned int ssrc;
  527. int payload_type, seq, flags = 0;
  528. int ext, csrc;
  529. AVStream *st;
  530. uint32_t timestamp;
  531. int rv = 0;
  532. csrc = buf[0] & 0x0f;
  533. ext = buf[0] & 0x10;
  534. payload_type = buf[1] & 0x7f;
  535. if (buf[1] & 0x80)
  536. flags |= RTP_FLAG_MARKER;
  537. seq = AV_RB16(buf + 2);
  538. timestamp = AV_RB32(buf + 4);
  539. ssrc = AV_RB32(buf + 8);
  540. /* store the ssrc in the RTPDemuxContext */
  541. s->ssrc = ssrc;
  542. /* NOTE: we can handle only one payload type */
  543. if (s->payload_type != payload_type)
  544. return -1;
  545. st = s->st;
  546. // only do something with this if all the rtp checks pass...
  547. if (!rtp_valid_packet_in_sequence(&s->statistics, seq)) {
  548. av_log(st ? st->codec : NULL, AV_LOG_ERROR,
  549. "RTP: PT=%02x: bad cseq %04x expected=%04x\n",
  550. payload_type, seq, ((s->seq + 1) & 0xffff));
  551. return -1;
  552. }
  553. if (buf[0] & 0x20) {
  554. int padding = buf[len - 1];
  555. if (len >= 12 + padding)
  556. len -= padding;
  557. }
  558. s->seq = seq;
  559. len -= 12;
  560. buf += 12;
  561. len -= 4 * csrc;
  562. buf += 4 * csrc;
  563. if (len < 0)
  564. return AVERROR_INVALIDDATA;
  565. /* RFC 3550 Section 5.3.1 RTP Header Extension handling */
  566. if (ext) {
  567. if (len < 4)
  568. return -1;
  569. /* calculate the header extension length (stored as number
  570. * of 32-bit words) */
  571. ext = (AV_RB16(buf + 2) + 1) << 2;
  572. if (len < ext)
  573. return -1;
  574. // skip past RTP header extension
  575. len -= ext;
  576. buf += ext;
  577. }
  578. if (s->handler && s->handler->parse_packet) {
  579. rv = s->handler->parse_packet(s->ic, s->dynamic_protocol_context,
  580. s->st, pkt, &timestamp, buf, len, seq,
  581. flags);
  582. } else if (st) {
  583. if ((rv = av_new_packet(pkt, len)) < 0)
  584. return rv;
  585. memcpy(pkt->data, buf, len);
  586. pkt->stream_index = st->index;
  587. } else {
  588. return AVERROR(EINVAL);
  589. }
  590. // now perform timestamp things....
  591. finalize_packet(s, pkt, timestamp);
  592. return rv;
  593. }
  594. void ff_rtp_reset_packet_queue(RTPDemuxContext *s)
  595. {
  596. while (s->queue) {
  597. RTPPacket *next = s->queue->next;
  598. av_free(s->queue->buf);
  599. av_free(s->queue);
  600. s->queue = next;
  601. }
  602. s->seq = 0;
  603. s->queue_len = 0;
  604. s->prev_ret = 0;
  605. }
  606. static void enqueue_packet(RTPDemuxContext *s, uint8_t *buf, int len)
  607. {
  608. uint16_t seq = AV_RB16(buf + 2);
  609. RTPPacket **cur = &s->queue, *packet;
  610. /* Find the correct place in the queue to insert the packet */
  611. while (*cur) {
  612. int16_t diff = seq - (*cur)->seq;
  613. if (diff < 0)
  614. break;
  615. cur = &(*cur)->next;
  616. }
  617. packet = av_mallocz(sizeof(*packet));
  618. if (!packet)
  619. return;
  620. packet->recvtime = av_gettime_relative();
  621. packet->seq = seq;
  622. packet->len = len;
  623. packet->buf = buf;
  624. packet->next = *cur;
  625. *cur = packet;
  626. s->queue_len++;
  627. }
  628. static int has_next_packet(RTPDemuxContext *s)
  629. {
  630. return s->queue && s->queue->seq == (uint16_t) (s->seq + 1);
  631. }
  632. int64_t ff_rtp_queued_packet_time(RTPDemuxContext *s)
  633. {
  634. return s->queue ? s->queue->recvtime : 0;
  635. }
  636. static int rtp_parse_queued_packet(RTPDemuxContext *s, AVPacket *pkt)
  637. {
  638. int rv;
  639. RTPPacket *next;
  640. if (s->queue_len <= 0)
  641. return -1;
  642. if (!has_next_packet(s))
  643. av_log(s->st ? s->st->codec : NULL, AV_LOG_WARNING,
  644. "RTP: missed %d packets\n", s->queue->seq - s->seq - 1);
  645. /* Parse the first packet in the queue, and dequeue it */
  646. rv = rtp_parse_packet_internal(s, pkt, s->queue->buf, s->queue->len);
  647. next = s->queue->next;
  648. av_free(s->queue->buf);
  649. av_free(s->queue);
  650. s->queue = next;
  651. s->queue_len--;
  652. return rv;
  653. }
  654. static int rtp_parse_one_packet(RTPDemuxContext *s, AVPacket *pkt,
  655. uint8_t **bufptr, int len)
  656. {
  657. uint8_t *buf = bufptr ? *bufptr : NULL;
  658. int flags = 0;
  659. uint32_t timestamp;
  660. int rv = 0;
  661. if (!buf) {
  662. /* If parsing of the previous packet actually returned 0 or an error,
  663. * there's nothing more to be parsed from that packet, but we may have
  664. * indicated that we can return the next enqueued packet. */
  665. if (s->prev_ret <= 0)
  666. return rtp_parse_queued_packet(s, pkt);
  667. /* return the next packets, if any */
  668. if (s->handler && s->handler->parse_packet) {
  669. /* timestamp should be overwritten by parse_packet, if not,
  670. * the packet is left with pts == AV_NOPTS_VALUE */
  671. timestamp = RTP_NOTS_VALUE;
  672. rv = s->handler->parse_packet(s->ic, s->dynamic_protocol_context,
  673. s->st, pkt, &timestamp, NULL, 0, 0,
  674. flags);
  675. finalize_packet(s, pkt, timestamp);
  676. return rv;
  677. }
  678. }
  679. if (len < 12)
  680. return -1;
  681. if ((buf[0] & 0xc0) != (RTP_VERSION << 6))
  682. return -1;
  683. if (RTP_PT_IS_RTCP(buf[1])) {
  684. return rtcp_parse_packet(s, buf, len);
  685. }
  686. if (s->st) {
  687. int64_t received = av_gettime_relative();
  688. uint32_t arrival_ts = av_rescale_q(received, AV_TIME_BASE_Q,
  689. s->st->time_base);
  690. timestamp = AV_RB32(buf + 4);
  691. // Calculate the jitter immediately, before queueing the packet
  692. // into the reordering queue.
  693. rtcp_update_jitter(&s->statistics, timestamp, arrival_ts);
  694. }
  695. if ((s->seq == 0 && !s->queue) || s->queue_size <= 1) {
  696. /* First packet, or no reordering */
  697. return rtp_parse_packet_internal(s, pkt, buf, len);
  698. } else {
  699. uint16_t seq = AV_RB16(buf + 2);
  700. int16_t diff = seq - s->seq;
  701. if (diff < 0) {
  702. /* Packet older than the previously emitted one, drop */
  703. av_log(s->st ? s->st->codec : NULL, AV_LOG_WARNING,
  704. "RTP: dropping old packet received too late\n");
  705. return -1;
  706. } else if (diff <= 1) {
  707. /* Correct packet */
  708. rv = rtp_parse_packet_internal(s, pkt, buf, len);
  709. return rv;
  710. } else {
  711. /* Still missing some packet, enqueue this one. */
  712. enqueue_packet(s, buf, len);
  713. *bufptr = NULL;
  714. /* Return the first enqueued packet if the queue is full,
  715. * even if we're missing something */
  716. if (s->queue_len >= s->queue_size)
  717. return rtp_parse_queued_packet(s, pkt);
  718. return -1;
  719. }
  720. }
  721. }
  722. /**
  723. * Parse an RTP or RTCP packet directly sent as a buffer.
  724. * @param s RTP parse context.
  725. * @param pkt returned packet
  726. * @param bufptr pointer to the input buffer or NULL to read the next packets
  727. * @param len buffer len
  728. * @return 0 if a packet is returned, 1 if a packet is returned and more can follow
  729. * (use buf as NULL to read the next). -1 if no packet (error or no more packet).
  730. */
  731. int ff_rtp_parse_packet(RTPDemuxContext *s, AVPacket *pkt,
  732. uint8_t **bufptr, int len)
  733. {
  734. int rv;
  735. if (s->srtp_enabled && bufptr && ff_srtp_decrypt(&s->srtp, *bufptr, &len) < 0)
  736. return -1;
  737. rv = rtp_parse_one_packet(s, pkt, bufptr, len);
  738. s->prev_ret = rv;
  739. while (rv == AVERROR(EAGAIN) && has_next_packet(s))
  740. rv = rtp_parse_queued_packet(s, pkt);
  741. return rv ? rv : has_next_packet(s);
  742. }
  743. void ff_rtp_parse_close(RTPDemuxContext *s)
  744. {
  745. ff_rtp_reset_packet_queue(s);
  746. ff_srtp_free(&s->srtp);
  747. av_free(s);
  748. }
  749. int ff_parse_fmtp(AVFormatContext *s,
  750. AVStream *stream, PayloadContext *data, const char *p,
  751. int (*parse_fmtp)(AVFormatContext *s,
  752. AVStream *stream,
  753. PayloadContext *data,
  754. const char *attr, const char *value))
  755. {
  756. char attr[256];
  757. char *value;
  758. int res;
  759. int value_size = strlen(p) + 1;
  760. if (!(value = av_malloc(value_size))) {
  761. av_log(NULL, AV_LOG_ERROR, "Failed to allocate data for FMTP.");
  762. return AVERROR(ENOMEM);
  763. }
  764. // remove protocol identifier
  765. while (*p && *p == ' ')
  766. p++; // strip spaces
  767. while (*p && *p != ' ')
  768. p++; // eat protocol identifier
  769. while (*p && *p == ' ')
  770. p++; // strip trailing spaces
  771. while (ff_rtsp_next_attr_and_value(&p,
  772. attr, sizeof(attr),
  773. value, value_size)) {
  774. res = parse_fmtp(s, stream, data, attr, value);
  775. if (res < 0 && res != AVERROR_PATCHWELCOME) {
  776. av_free(value);
  777. return res;
  778. }
  779. }
  780. av_free(value);
  781. return 0;
  782. }
  783. int ff_rtp_finalize_packet(AVPacket *pkt, AVIOContext **dyn_buf, int stream_idx)
  784. {
  785. int ret;
  786. av_init_packet(pkt);
  787. pkt->size = avio_close_dyn_buf(*dyn_buf, &pkt->data);
  788. pkt->stream_index = stream_idx;
  789. *dyn_buf = NULL;
  790. if ((ret = av_packet_from_data(pkt, pkt->data, pkt->size)) < 0) {
  791. av_freep(&pkt->data);
  792. return ret;
  793. }
  794. return pkt->size;
  795. }