You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

489 lines
16KB

  1. /*
  2. * RTMP Diffie-Hellmann utilities
  3. * Copyright (c) 2009 Andrej Stepanchuk
  4. * Copyright (c) 2009-2010 Howard Chu
  5. * Copyright (c) 2012 Samuel Pitoiset
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * RTMP Diffie-Hellmann utilities
  26. */
  27. #include "config.h"
  28. #include "rtmpdh.h"
  29. #include "libavutil/random_seed.h"
  30. #define P1024 \
  31. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
  32. "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
  33. "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
  34. "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
  35. "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
  36. "FFFFFFFFFFFFFFFF"
  37. #define Q1024 \
  38. "7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68" \
  39. "948127044533E63A0105DF531D89CD9128A5043CC71A026E" \
  40. "F7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122" \
  41. "F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6" \
  42. "F71C35FDAD44CFD2D74F9208BE258FF324943328F67329C0" \
  43. "FFFFFFFFFFFFFFFF"
  44. #if CONFIG_NETTLE || CONFIG_GCRYPT
  45. #if CONFIG_NETTLE
  46. #define bn_new(bn) \
  47. do { \
  48. bn = av_malloc(sizeof(*bn)); \
  49. if (bn) \
  50. mpz_init2(bn, 1); \
  51. } while (0)
  52. #define bn_free(bn) \
  53. do { \
  54. mpz_clear(bn); \
  55. av_free(bn); \
  56. } while (0)
  57. #define bn_set_word(bn, w) mpz_set_ui(bn, w)
  58. #define bn_cmp(a, b) mpz_cmp(a, b)
  59. #define bn_copy(to, from) mpz_set(to, from)
  60. #define bn_sub_word(bn, w) mpz_sub_ui(bn, bn, w)
  61. #define bn_cmp_1(bn) mpz_cmp_ui(bn, 1)
  62. #define bn_num_bytes(bn) (mpz_sizeinbase(bn, 2) + 7) / 8
  63. #define bn_bn2bin(bn, buf, len) nettle_mpz_get_str_256(len, buf, bn)
  64. #define bn_bin2bn(bn, buf, len) \
  65. do { \
  66. bn_new(bn); \
  67. if (bn) \
  68. nettle_mpz_set_str_256_u(bn, len, buf); \
  69. } while (0)
  70. #define bn_hex2bn(bn, buf, ret) \
  71. do { \
  72. bn_new(bn); \
  73. if (bn) \
  74. ret = (mpz_set_str(bn, buf, 16) == 0); \
  75. else \
  76. ret = 1; \
  77. } while (0)
  78. #define bn_modexp(bn, y, q, p) mpz_powm(bn, y, q, p)
  79. #define bn_random(bn, num_bits) \
  80. do { \
  81. int bits = num_bits; \
  82. mpz_set_ui(bn, 0); \
  83. for (bits = num_bits; bits > 0; bits -= 32) { \
  84. mpz_mul_2exp(bn, bn, 32); \
  85. mpz_add_ui(bn, bn, av_get_random_seed()); \
  86. } \
  87. mpz_fdiv_r_2exp(bn, bn, num_bits); \
  88. } while (0)
  89. #elif CONFIG_GCRYPT
  90. #define bn_new(bn) bn = gcry_mpi_new(1)
  91. #define bn_free(bn) gcry_mpi_release(bn)
  92. #define bn_set_word(bn, w) gcry_mpi_set_ui(bn, w)
  93. #define bn_cmp(a, b) gcry_mpi_cmp(a, b)
  94. #define bn_copy(to, from) gcry_mpi_set(to, from)
  95. #define bn_sub_word(bn, w) gcry_mpi_sub_ui(bn, bn, w)
  96. #define bn_cmp_1(bn) gcry_mpi_cmp_ui(bn, 1)
  97. #define bn_num_bytes(bn) (gcry_mpi_get_nbits(bn) + 7) / 8
  98. #define bn_bn2bin(bn, buf, len) gcry_mpi_print(GCRYMPI_FMT_USG, buf, len, NULL, bn)
  99. #define bn_bin2bn(bn, buf, len) gcry_mpi_scan(&bn, GCRYMPI_FMT_USG, buf, len, NULL)
  100. #define bn_hex2bn(bn, buf, ret) ret = (gcry_mpi_scan(&bn, GCRYMPI_FMT_HEX, buf, 0, 0) == 0)
  101. #define bn_modexp(bn, y, q, p) gcry_mpi_powm(bn, y, q, p)
  102. #define bn_random(bn, num_bits) gcry_mpi_randomize(bn, num_bits, GCRY_WEAK_RANDOM)
  103. #endif
  104. #define MAX_BYTES 18000
  105. #define dh_new() av_malloc(sizeof(FF_DH))
  106. static FFBigNum dh_generate_key(FF_DH *dh)
  107. {
  108. int num_bytes;
  109. num_bytes = bn_num_bytes(dh->p) - 1;
  110. if (num_bytes <= 0 || num_bytes > MAX_BYTES)
  111. return NULL;
  112. bn_new(dh->priv_key);
  113. if (!dh->priv_key)
  114. return NULL;
  115. bn_random(dh->priv_key, 8 * num_bytes);
  116. bn_new(dh->pub_key);
  117. if (!dh->pub_key) {
  118. bn_free(dh->priv_key);
  119. return NULL;
  120. }
  121. bn_modexp(dh->pub_key, dh->g, dh->priv_key, dh->p);
  122. return dh->pub_key;
  123. }
  124. static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn,
  125. uint32_t secret_key_len, uint8_t *secret_key)
  126. {
  127. FFBigNum k;
  128. bn_new(k);
  129. if (!k)
  130. return -1;
  131. bn_modexp(k, pub_key_bn, dh->priv_key, dh->p);
  132. bn_bn2bin(k, secret_key, secret_key_len);
  133. bn_free(k);
  134. /* return the length of the shared secret key like DH_compute_key */
  135. return secret_key_len;
  136. }
  137. void ff_dh_free(FF_DH *dh)
  138. {
  139. if (!dh)
  140. return;
  141. bn_free(dh->p);
  142. bn_free(dh->g);
  143. bn_free(dh->pub_key);
  144. bn_free(dh->priv_key);
  145. av_free(dh);
  146. }
  147. #elif CONFIG_OPENSSL
  148. #define bn_new(bn) bn = BN_new()
  149. #define bn_free(bn) BN_free(bn)
  150. #define bn_set_word(bn, w) BN_set_word(bn, w)
  151. #define bn_cmp(a, b) BN_cmp(a, b)
  152. #define bn_copy(to, from) BN_copy(to, from)
  153. #define bn_sub_word(bn, w) BN_sub_word(bn, w)
  154. #define bn_cmp_1(bn) BN_cmp(bn, BN_value_one())
  155. #define bn_num_bytes(bn) BN_num_bytes(bn)
  156. #define bn_bn2bin(bn, buf, len) BN_bn2bin(bn, buf)
  157. #define bn_bin2bn(bn, buf, len) bn = BN_bin2bn(buf, len, 0)
  158. #define bn_hex2bn(bn, buf, ret) ret = BN_hex2bn(&bn, buf)
  159. #define bn_modexp(bn, y, q, p) \
  160. do { \
  161. BN_CTX *ctx = BN_CTX_new(); \
  162. if (!ctx) \
  163. return AVERROR(ENOMEM); \
  164. if (!BN_mod_exp(bn, y, q, p, ctx)) { \
  165. BN_CTX_free(ctx); \
  166. return AVERROR(EINVAL); \
  167. } \
  168. BN_CTX_free(ctx); \
  169. } while (0)
  170. #define dh_new() DH_new()
  171. #define dh_generate_key(dh) DH_generate_key(dh)
  172. static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn,
  173. uint32_t secret_key_len, uint8_t *secret_key)
  174. {
  175. if (secret_key_len < DH_size(dh))
  176. return AVERROR(EINVAL);
  177. return DH_compute_key(secret_key, pub_key_bn, dh);
  178. }
  179. void ff_dh_free(FF_DH *dh)
  180. {
  181. if (!dh)
  182. return;
  183. DH_free(dh);
  184. }
  185. #endif
  186. static int dh_is_valid_public_key(FFBigNum y, FFBigNum p, FFBigNum q)
  187. {
  188. FFBigNum bn = NULL;
  189. int ret = AVERROR(EINVAL);
  190. bn_new(bn);
  191. if (!bn)
  192. return AVERROR(ENOMEM);
  193. /* y must lie in [2, p - 1] */
  194. bn_set_word(bn, 1);
  195. if (!bn_cmp(y, bn))
  196. goto fail;
  197. /* bn = p - 2 */
  198. bn_copy(bn, p);
  199. bn_sub_word(bn, 1);
  200. if (!bn_cmp(y, bn))
  201. goto fail;
  202. /* Verify with Sophie-Germain prime
  203. *
  204. * This is a nice test to make sure the public key position is calculated
  205. * correctly. This test will fail in about 50% of the cases if applied to
  206. * random data.
  207. */
  208. /* y must fulfill y^q mod p = 1 */
  209. bn_modexp(bn, y, q, p);
  210. if (bn_cmp_1(bn))
  211. goto fail;
  212. ret = 0;
  213. fail:
  214. bn_free(bn);
  215. return ret;
  216. }
  217. av_cold FF_DH *ff_dh_init(int key_len)
  218. {
  219. FF_DH *dh;
  220. int ret;
  221. if (!(dh = dh_new()))
  222. return NULL;
  223. bn_new(dh->g);
  224. if (!dh->g)
  225. goto fail;
  226. bn_hex2bn(dh->p, P1024, ret);
  227. if (!ret)
  228. goto fail;
  229. bn_set_word(dh->g, 2);
  230. dh->length = key_len;
  231. return dh;
  232. fail:
  233. ff_dh_free(dh);
  234. return NULL;
  235. }
  236. int ff_dh_generate_public_key(FF_DH *dh)
  237. {
  238. int ret = 0;
  239. while (!ret) {
  240. FFBigNum q1 = NULL;
  241. if (!dh_generate_key(dh))
  242. return AVERROR(EINVAL);
  243. bn_hex2bn(q1, Q1024, ret);
  244. if (!ret)
  245. return AVERROR(ENOMEM);
  246. ret = dh_is_valid_public_key(dh->pub_key, dh->p, q1);
  247. bn_free(q1);
  248. if (!ret) {
  249. /* the public key is valid */
  250. break;
  251. }
  252. }
  253. return ret;
  254. }
  255. int ff_dh_write_public_key(FF_DH *dh, uint8_t *pub_key, int pub_key_len)
  256. {
  257. int len;
  258. /* compute the length of the public key */
  259. len = bn_num_bytes(dh->pub_key);
  260. if (len <= 0 || len > pub_key_len)
  261. return AVERROR(EINVAL);
  262. /* convert the public key value into big-endian form */
  263. memset(pub_key, 0, pub_key_len);
  264. bn_bn2bin(dh->pub_key, pub_key + pub_key_len - len, len);
  265. return 0;
  266. }
  267. int ff_dh_compute_shared_secret_key(FF_DH *dh, const uint8_t *pub_key,
  268. int pub_key_len, uint8_t *secret_key,
  269. int secret_key_len)
  270. {
  271. FFBigNum q1 = NULL, pub_key_bn = NULL;
  272. int ret;
  273. /* convert the big-endian form of the public key into a bignum */
  274. bn_bin2bn(pub_key_bn, pub_key, pub_key_len);
  275. if (!pub_key_bn)
  276. return AVERROR(ENOMEM);
  277. /* convert the string containing a hexadecimal number into a bignum */
  278. bn_hex2bn(q1, Q1024, ret);
  279. if (!ret) {
  280. ret = AVERROR(ENOMEM);
  281. goto fail;
  282. }
  283. /* when the public key is valid we have to compute the shared secret key */
  284. if ((ret = dh_is_valid_public_key(pub_key_bn, dh->p, q1)) < 0) {
  285. goto fail;
  286. } else if ((ret = dh_compute_key(dh, pub_key_bn, secret_key_len,
  287. secret_key)) < 0) {
  288. ret = AVERROR(EINVAL);
  289. goto fail;
  290. }
  291. fail:
  292. bn_free(pub_key_bn);
  293. bn_free(q1);
  294. return ret;
  295. }
  296. #ifdef TEST
  297. static int test_random_shared_secret(void)
  298. {
  299. FF_DH *peer1 = NULL, *peer2 = NULL;
  300. int ret;
  301. uint8_t pubkey1[128], pubkey2[128];
  302. uint8_t sharedkey1[128], sharedkey2[128];
  303. peer1 = ff_dh_init(1024);
  304. peer2 = ff_dh_init(1024);
  305. if (!peer1 || !peer2) {
  306. ret = AVERROR(ENOMEM);
  307. goto fail;
  308. }
  309. if ((ret = ff_dh_generate_public_key(peer1)) < 0)
  310. goto fail;
  311. if ((ret = ff_dh_generate_public_key(peer2)) < 0)
  312. goto fail;
  313. if ((ret = ff_dh_write_public_key(peer1, pubkey1, sizeof(pubkey1))) < 0)
  314. goto fail;
  315. if ((ret = ff_dh_write_public_key(peer2, pubkey2, sizeof(pubkey2))) < 0)
  316. goto fail;
  317. if ((ret = ff_dh_compute_shared_secret_key(peer1, pubkey2, sizeof(pubkey2),
  318. sharedkey1, sizeof(sharedkey1))) < 0)
  319. goto fail;
  320. if ((ret = ff_dh_compute_shared_secret_key(peer2, pubkey1, sizeof(pubkey1),
  321. sharedkey2, sizeof(sharedkey2))) < 0)
  322. goto fail;
  323. if (memcmp(sharedkey1, sharedkey2, sizeof(sharedkey1))) {
  324. printf("Mismatched generated shared key\n");
  325. ret = AVERROR_INVALIDDATA;
  326. } else {
  327. printf("Generated shared key ok\n");
  328. }
  329. fail:
  330. ff_dh_free(peer1);
  331. ff_dh_free(peer2);
  332. return ret;
  333. }
  334. static const char *private_key =
  335. "976C18FCADC255B456564F74F3EEDA59D28AF6B744D743F2357BFD2404797EF896EF1A"
  336. "7C1CBEAAA3AB60AF3192D189CFF3F991C9CBBFD78119FCA2181384B94011943B6D6F28"
  337. "9E1B708E2D1A0C7771169293F03DA27E561F15F16F0AC9BC858C77A80FA98FD088A232"
  338. "19D08BE6F165DE0B02034B18705829FAD0ACB26A5B75EF";
  339. static const char *public_key =
  340. "F272ECF8362257C5D2C3CC2229CF9C0A03225BC109B1DBC76A68C394F256ACA3EF5F64"
  341. "FC270C26382BF315C19E97A76104A716FC998A651E8610A3AE6CF65D8FAE5D3F32EEA0"
  342. "0B32CB9609B494116A825D7142D17B88E3D20EDD98743DE29CF37A23A9F6A58B960591"
  343. "3157D5965FCB46DDA73A1F08DD897BAE88DFE6FC937CBA";
  344. static const uint8_t public_key_bin[] = {
  345. 0xf2, 0x72, 0xec, 0xf8, 0x36, 0x22, 0x57, 0xc5, 0xd2, 0xc3, 0xcc, 0x22,
  346. 0x29, 0xcf, 0x9c, 0x0a, 0x03, 0x22, 0x5b, 0xc1, 0x09, 0xb1, 0xdb, 0xc7,
  347. 0x6a, 0x68, 0xc3, 0x94, 0xf2, 0x56, 0xac, 0xa3, 0xef, 0x5f, 0x64, 0xfc,
  348. 0x27, 0x0c, 0x26, 0x38, 0x2b, 0xf3, 0x15, 0xc1, 0x9e, 0x97, 0xa7, 0x61,
  349. 0x04, 0xa7, 0x16, 0xfc, 0x99, 0x8a, 0x65, 0x1e, 0x86, 0x10, 0xa3, 0xae,
  350. 0x6c, 0xf6, 0x5d, 0x8f, 0xae, 0x5d, 0x3f, 0x32, 0xee, 0xa0, 0x0b, 0x32,
  351. 0xcb, 0x96, 0x09, 0xb4, 0x94, 0x11, 0x6a, 0x82, 0x5d, 0x71, 0x42, 0xd1,
  352. 0x7b, 0x88, 0xe3, 0xd2, 0x0e, 0xdd, 0x98, 0x74, 0x3d, 0xe2, 0x9c, 0xf3,
  353. 0x7a, 0x23, 0xa9, 0xf6, 0xa5, 0x8b, 0x96, 0x05, 0x91, 0x31, 0x57, 0xd5,
  354. 0x96, 0x5f, 0xcb, 0x46, 0xdd, 0xa7, 0x3a, 0x1f, 0x08, 0xdd, 0x89, 0x7b,
  355. 0xae, 0x88, 0xdf, 0xe6, 0xfc, 0x93, 0x7c, 0xba
  356. };
  357. static const uint8_t peer_public_key[] = {
  358. 0x58, 0x66, 0x05, 0x49, 0x94, 0x23, 0x2b, 0x66, 0x52, 0x13, 0xff, 0x46,
  359. 0xf2, 0xb3, 0x79, 0xa9, 0xee, 0xae, 0x1a, 0x13, 0xf0, 0x71, 0x52, 0xfb,
  360. 0x93, 0x4e, 0xee, 0x97, 0x05, 0x73, 0x50, 0x7d, 0xaf, 0x02, 0x07, 0x72,
  361. 0xac, 0xdc, 0xa3, 0x95, 0x78, 0xee, 0x9a, 0x19, 0x71, 0x7e, 0x99, 0x9f,
  362. 0x2a, 0xd4, 0xb3, 0xe2, 0x0c, 0x1d, 0x1a, 0x78, 0x4c, 0xde, 0xf1, 0xad,
  363. 0xb4, 0x60, 0xa8, 0x51, 0xac, 0x71, 0xec, 0x86, 0x70, 0xa2, 0x63, 0x36,
  364. 0x92, 0x7c, 0xe3, 0x87, 0xee, 0xe4, 0xf1, 0x62, 0x24, 0x74, 0xb4, 0x04,
  365. 0xfa, 0x5c, 0xdf, 0xba, 0xfa, 0xa3, 0xc2, 0xbb, 0x62, 0x27, 0xd0, 0xf4,
  366. 0xe4, 0x43, 0xda, 0x8a, 0x88, 0x69, 0x60, 0xe2, 0xdb, 0x75, 0x2a, 0x98,
  367. 0x9d, 0xb5, 0x50, 0xe3, 0x99, 0xda, 0xe0, 0xa6, 0x14, 0xc9, 0x80, 0x12,
  368. 0xf9, 0x3c, 0xac, 0x06, 0x02, 0x7a, 0xde, 0x74
  369. };
  370. static const uint8_t shared_secret[] = {
  371. 0xb2, 0xeb, 0xcb, 0x71, 0xf3, 0x61, 0xfb, 0x5b, 0x4e, 0x5c, 0x4c, 0xcf,
  372. 0x5c, 0x08, 0x5f, 0x96, 0x26, 0x77, 0x1d, 0x31, 0xf1, 0xe1, 0xf7, 0x4b,
  373. 0x92, 0xac, 0x82, 0x2a, 0x88, 0xc7, 0x83, 0xe1, 0xc7, 0xf3, 0xd3, 0x1a,
  374. 0x7d, 0xc8, 0x31, 0xe3, 0x97, 0xe4, 0xec, 0x31, 0x0e, 0x8f, 0x73, 0x1a,
  375. 0xe4, 0xf6, 0xd8, 0xc8, 0x94, 0xff, 0xa0, 0x03, 0x84, 0x03, 0x0f, 0xa5,
  376. 0x30, 0x5d, 0x67, 0xe0, 0x7a, 0x3b, 0x5f, 0xed, 0x4c, 0xf5, 0xbc, 0x18,
  377. 0xea, 0xd4, 0x77, 0xa9, 0x07, 0xb3, 0x54, 0x0b, 0x02, 0xd9, 0xc6, 0xb8,
  378. 0x66, 0x5e, 0xec, 0xa4, 0xcd, 0x47, 0xed, 0xc9, 0x38, 0xc6, 0x91, 0x08,
  379. 0xf3, 0x85, 0x9b, 0x69, 0x16, 0x78, 0x0d, 0xb7, 0x74, 0x51, 0xaa, 0x5b,
  380. 0x4d, 0x74, 0xe4, 0x29, 0x2e, 0x9e, 0x8e, 0xf7, 0xe5, 0x42, 0x83, 0xb0,
  381. 0x65, 0xb0, 0xce, 0xc6, 0xb2, 0x8f, 0x5b, 0xb0
  382. };
  383. static int test_ref_data(void)
  384. {
  385. FF_DH *dh;
  386. int ret = AVERROR(ENOMEM);
  387. uint8_t pubkey_test[128];
  388. uint8_t sharedkey_test[128];
  389. dh = ff_dh_init(1024);
  390. if (!dh)
  391. goto fail;
  392. bn_hex2bn(dh->priv_key, private_key, ret);
  393. if (!ret)
  394. goto fail;
  395. bn_hex2bn(dh->pub_key, public_key, ret);
  396. if (!ret)
  397. goto fail;
  398. if ((ret = ff_dh_write_public_key(dh, pubkey_test, sizeof(pubkey_test))) < 0)
  399. goto fail;
  400. if (memcmp(pubkey_test, public_key_bin, sizeof(pubkey_test))) {
  401. printf("Mismatched generated public key\n");
  402. ret = AVERROR_INVALIDDATA;
  403. goto fail;
  404. } else {
  405. printf("Generated public key ok\n");
  406. }
  407. if ((ret = ff_dh_compute_shared_secret_key(dh, peer_public_key, sizeof(peer_public_key),
  408. sharedkey_test, sizeof(sharedkey_test))) < 0)
  409. goto fail;
  410. if (memcmp(shared_secret, sharedkey_test, sizeof(sharedkey_test))) {
  411. printf("Mismatched generated shared key\n");
  412. ret = AVERROR_INVALIDDATA;
  413. } else {
  414. printf("Generated shared key ok\n");
  415. }
  416. fail:
  417. ff_dh_free(dh);
  418. return ret;
  419. }
  420. int main(void)
  421. {
  422. if (test_random_shared_secret() < 0)
  423. return 1;
  424. if (test_ref_data() < 0)
  425. return 1;
  426. return 0;
  427. }
  428. #endif