You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

993 lines
29KB

  1. /*
  2. * Duck/ON2 TrueMotion 2 Decoder
  3. * Copyright (c) 2005 Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Duck TrueMotion2 decoder.
  24. */
  25. #include <inttypes.h>
  26. #include "avcodec.h"
  27. #include "bswapdsp.h"
  28. #include "bytestream.h"
  29. #include "get_bits.h"
  30. #include "internal.h"
  31. #define TM2_ESCAPE 0x80000000
  32. #define TM2_DELTAS 64
  33. /* Huffman-coded streams of different types of blocks */
  34. enum TM2_STREAMS {
  35. TM2_C_HI = 0,
  36. TM2_C_LO,
  37. TM2_L_HI,
  38. TM2_L_LO,
  39. TM2_UPD,
  40. TM2_MOT,
  41. TM2_TYPE,
  42. TM2_NUM_STREAMS
  43. };
  44. /* Block types */
  45. enum TM2_BLOCKS {
  46. TM2_HI_RES = 0,
  47. TM2_MED_RES,
  48. TM2_LOW_RES,
  49. TM2_NULL_RES,
  50. TM2_UPDATE,
  51. TM2_STILL,
  52. TM2_MOTION
  53. };
  54. typedef struct TM2Context {
  55. AVCodecContext *avctx;
  56. AVFrame *pic;
  57. GetBitContext gb;
  58. BswapDSPContext bdsp;
  59. /* TM2 streams */
  60. int *tokens[TM2_NUM_STREAMS];
  61. int tok_lens[TM2_NUM_STREAMS];
  62. int tok_ptrs[TM2_NUM_STREAMS];
  63. int deltas[TM2_NUM_STREAMS][TM2_DELTAS];
  64. /* for blocks decoding */
  65. int D[4];
  66. int CD[4];
  67. int *last;
  68. int *clast;
  69. /* data for current and previous frame */
  70. int *Y1_base, *U1_base, *V1_base, *Y2_base, *U2_base, *V2_base;
  71. int *Y1, *U1, *V1, *Y2, *U2, *V2;
  72. int y_stride, uv_stride;
  73. int cur;
  74. } TM2Context;
  75. /**
  76. * Huffman codes for each of streams
  77. */
  78. typedef struct TM2Codes {
  79. VLC vlc; ///< table for Libav bitstream reader
  80. int bits;
  81. int *recode; ///< table for converting from code indexes to values
  82. int length;
  83. } TM2Codes;
  84. /**
  85. * structure for gathering Huffman codes information
  86. */
  87. typedef struct TM2Huff {
  88. int val_bits; ///< length of literal
  89. int max_bits; ///< maximum length of code
  90. int min_bits; ///< minimum length of code
  91. int nodes; ///< total number of nodes in tree
  92. int num; ///< current number filled
  93. int max_num; ///< total number of codes
  94. int *nums; ///< literals
  95. uint32_t *bits; ///< codes
  96. int *lens; ///< codelengths
  97. } TM2Huff;
  98. static int tm2_read_tree(TM2Context *ctx, uint32_t prefix, int length, TM2Huff *huff)
  99. {
  100. int ret;
  101. if (length > huff->max_bits) {
  102. av_log(ctx->avctx, AV_LOG_ERROR, "Tree exceeded its given depth (%i)\n",
  103. huff->max_bits);
  104. return AVERROR_INVALIDDATA;
  105. }
  106. if (!get_bits1(&ctx->gb)) { /* literal */
  107. if (length == 0) {
  108. length = 1;
  109. }
  110. if (huff->num >= huff->max_num) {
  111. av_log(ctx->avctx, AV_LOG_DEBUG, "Too many literals\n");
  112. return AVERROR_INVALIDDATA;
  113. }
  114. huff->nums[huff->num] = get_bits_long(&ctx->gb, huff->val_bits);
  115. huff->bits[huff->num] = prefix;
  116. huff->lens[huff->num] = length;
  117. huff->num++;
  118. return 0;
  119. } else { /* non-terminal node */
  120. if ((ret = tm2_read_tree(ctx, prefix << 1, length + 1, huff)) < 0)
  121. return ret;
  122. if ((ret = tm2_read_tree(ctx, (prefix << 1) | 1, length + 1, huff)) < 0)
  123. return ret;
  124. }
  125. return 0;
  126. }
  127. static int tm2_build_huff_table(TM2Context *ctx, TM2Codes *code)
  128. {
  129. TM2Huff huff;
  130. int res = 0;
  131. huff.val_bits = get_bits(&ctx->gb, 5);
  132. huff.max_bits = get_bits(&ctx->gb, 5);
  133. huff.min_bits = get_bits(&ctx->gb, 5);
  134. huff.nodes = get_bits_long(&ctx->gb, 17);
  135. huff.num = 0;
  136. /* check for correct codes parameters */
  137. if ((huff.val_bits < 1) || (huff.val_bits > 32) ||
  138. (huff.max_bits < 0) || (huff.max_bits > 25)) {
  139. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect tree parameters - literal "
  140. "length: %i, max code length: %i\n", huff.val_bits, huff.max_bits);
  141. return AVERROR_INVALIDDATA;
  142. }
  143. if ((huff.nodes <= 0) || (huff.nodes > 0x10000)) {
  144. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of Huffman tree "
  145. "nodes: %i\n", huff.nodes);
  146. return AVERROR_INVALIDDATA;
  147. }
  148. /* one-node tree */
  149. if (huff.max_bits == 0)
  150. huff.max_bits = 1;
  151. /* allocate space for codes - it is exactly ceil(nodes / 2) entries */
  152. huff.max_num = (huff.nodes + 1) >> 1;
  153. huff.nums = av_mallocz(huff.max_num * sizeof(int));
  154. huff.bits = av_mallocz(huff.max_num * sizeof(uint32_t));
  155. huff.lens = av_mallocz(huff.max_num * sizeof(int));
  156. res = tm2_read_tree(ctx, 0, 0, &huff);
  157. if (huff.num != huff.max_num) {
  158. av_log(ctx->avctx, AV_LOG_ERROR, "Got less codes than expected: %i of %i\n",
  159. huff.num, huff.max_num);
  160. res = AVERROR_INVALIDDATA;
  161. }
  162. /* convert codes to vlc_table */
  163. if (res >= 0) {
  164. int i;
  165. res = init_vlc(&code->vlc, huff.max_bits, huff.max_num,
  166. huff.lens, sizeof(int), sizeof(int),
  167. huff.bits, sizeof(uint32_t), sizeof(uint32_t), 0);
  168. if (res < 0)
  169. av_log(ctx->avctx, AV_LOG_ERROR, "Cannot build VLC table\n");
  170. else {
  171. code->bits = huff.max_bits;
  172. code->length = huff.max_num;
  173. code->recode = av_malloc(code->length * sizeof(int));
  174. for (i = 0; i < code->length; i++)
  175. code->recode[i] = huff.nums[i];
  176. }
  177. }
  178. /* free allocated memory */
  179. av_free(huff.nums);
  180. av_free(huff.bits);
  181. av_free(huff.lens);
  182. return res;
  183. }
  184. static void tm2_free_codes(TM2Codes *code)
  185. {
  186. av_free(code->recode);
  187. if (code->vlc.table)
  188. ff_free_vlc(&code->vlc);
  189. }
  190. static inline int tm2_get_token(GetBitContext *gb, TM2Codes *code)
  191. {
  192. int val;
  193. val = get_vlc2(gb, code->vlc.table, code->bits, 1);
  194. return code->recode[val];
  195. }
  196. #define TM2_OLD_HEADER_MAGIC 0x00000100
  197. #define TM2_NEW_HEADER_MAGIC 0x00000101
  198. static inline int tm2_read_header(TM2Context *ctx, const uint8_t *buf)
  199. {
  200. uint32_t magic = AV_RL32(buf);
  201. switch (magic) {
  202. case TM2_OLD_HEADER_MAGIC:
  203. avpriv_request_sample(ctx->avctx, "Old TM2 header");
  204. return 0;
  205. case TM2_NEW_HEADER_MAGIC:
  206. return 0;
  207. default:
  208. av_log(ctx->avctx, AV_LOG_ERROR, "Not a TM2 header: 0x%08"PRIX32"\n",
  209. magic);
  210. return AVERROR_INVALIDDATA;
  211. }
  212. }
  213. static int tm2_read_deltas(TM2Context *ctx, int stream_id)
  214. {
  215. int d, mb;
  216. int i, v;
  217. d = get_bits(&ctx->gb, 9);
  218. mb = get_bits(&ctx->gb, 5);
  219. if ((d < 1) || (d > TM2_DELTAS) || (mb < 1) || (mb > 32)) {
  220. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect delta table: %i deltas x %i bits\n", d, mb);
  221. return AVERROR_INVALIDDATA;
  222. }
  223. for (i = 0; i < d; i++) {
  224. v = get_bits_long(&ctx->gb, mb);
  225. if (v & (1 << (mb - 1)))
  226. ctx->deltas[stream_id][i] = v - (1 << mb);
  227. else
  228. ctx->deltas[stream_id][i] = v;
  229. }
  230. for (; i < TM2_DELTAS; i++)
  231. ctx->deltas[stream_id][i] = 0;
  232. return 0;
  233. }
  234. static int tm2_read_stream(TM2Context *ctx, const uint8_t *buf, int stream_id, int buf_size)
  235. {
  236. int i, ret;
  237. int skip = 0;
  238. int len, toks, pos;
  239. TM2Codes codes;
  240. GetByteContext gb;
  241. /* get stream length in dwords */
  242. bytestream2_init(&gb, buf, buf_size);
  243. len = bytestream2_get_be32(&gb);
  244. skip = len * 4 + 4;
  245. if (len == 0)
  246. return 4;
  247. if (len >= INT_MAX/4-1 || len < 0 || len > buf_size) {
  248. av_log(ctx->avctx, AV_LOG_ERROR, "Error, invalid stream size.\n");
  249. return AVERROR_INVALIDDATA;
  250. }
  251. toks = bytestream2_get_be32(&gb);
  252. if (toks & 1) {
  253. len = bytestream2_get_be32(&gb);
  254. if (len == TM2_ESCAPE) {
  255. len = bytestream2_get_be32(&gb);
  256. }
  257. if (len > 0) {
  258. pos = bytestream2_tell(&gb);
  259. if (skip <= pos)
  260. return AVERROR_INVALIDDATA;
  261. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  262. if ((ret = tm2_read_deltas(ctx, stream_id)) < 0)
  263. return ret;
  264. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  265. }
  266. }
  267. /* skip unused fields */
  268. len = bytestream2_get_be32(&gb);
  269. if (len == TM2_ESCAPE) { /* some unknown length - could be escaped too */
  270. bytestream2_skip(&gb, 8); /* unused by decoder */
  271. } else {
  272. bytestream2_skip(&gb, 4); /* unused by decoder */
  273. }
  274. pos = bytestream2_tell(&gb);
  275. if (skip <= pos)
  276. return AVERROR_INVALIDDATA;
  277. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  278. if ((ret = tm2_build_huff_table(ctx, &codes)) < 0)
  279. return ret;
  280. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  281. toks >>= 1;
  282. /* check if we have sane number of tokens */
  283. if ((toks < 0) || (toks > 0xFFFFFF)) {
  284. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  285. tm2_free_codes(&codes);
  286. return AVERROR_INVALIDDATA;
  287. }
  288. ctx->tokens[stream_id] = av_realloc(ctx->tokens[stream_id], toks * sizeof(int));
  289. ctx->tok_lens[stream_id] = toks;
  290. len = bytestream2_get_be32(&gb);
  291. if (len > 0) {
  292. pos = bytestream2_tell(&gb);
  293. if (skip <= pos)
  294. return AVERROR_INVALIDDATA;
  295. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  296. for (i = 0; i < toks; i++) {
  297. if (get_bits_left(&ctx->gb) <= 0) {
  298. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  299. return AVERROR_INVALIDDATA;
  300. }
  301. ctx->tokens[stream_id][i] = tm2_get_token(&ctx->gb, &codes);
  302. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  303. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  304. ctx->tokens[stream_id][i], stream_id, i);
  305. return AVERROR_INVALIDDATA;
  306. }
  307. }
  308. } else {
  309. for (i = 0; i < toks; i++) {
  310. ctx->tokens[stream_id][i] = codes.recode[0];
  311. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  312. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  313. ctx->tokens[stream_id][i], stream_id, i);
  314. return AVERROR_INVALIDDATA;
  315. }
  316. }
  317. }
  318. tm2_free_codes(&codes);
  319. return skip;
  320. }
  321. static inline int GET_TOK(TM2Context *ctx,int type)
  322. {
  323. if (ctx->tok_ptrs[type] >= ctx->tok_lens[type]) {
  324. av_log(ctx->avctx, AV_LOG_ERROR, "Read token from stream %i out of bounds (%i>=%i)\n", type, ctx->tok_ptrs[type], ctx->tok_lens[type]);
  325. return 0;
  326. }
  327. if (type <= TM2_MOT)
  328. return ctx->deltas[type][ctx->tokens[type][ctx->tok_ptrs[type]++]];
  329. return ctx->tokens[type][ctx->tok_ptrs[type]++];
  330. }
  331. /* blocks decoding routines */
  332. /* common Y, U, V pointers initialisation */
  333. #define TM2_INIT_POINTERS() \
  334. int *last, *clast; \
  335. int *Y, *U, *V;\
  336. int Ystride, Ustride, Vstride;\
  337. \
  338. Ystride = ctx->y_stride;\
  339. Vstride = ctx->uv_stride;\
  340. Ustride = ctx->uv_stride;\
  341. Y = (ctx->cur?ctx->Y2:ctx->Y1) + by * 4 * Ystride + bx * 4;\
  342. V = (ctx->cur?ctx->V2:ctx->V1) + by * 2 * Vstride + bx * 2;\
  343. U = (ctx->cur?ctx->U2:ctx->U1) + by * 2 * Ustride + bx * 2;\
  344. last = ctx->last + bx * 4;\
  345. clast = ctx->clast + bx * 4;
  346. #define TM2_INIT_POINTERS_2() \
  347. int *Yo, *Uo, *Vo;\
  348. int oYstride, oUstride, oVstride;\
  349. \
  350. TM2_INIT_POINTERS();\
  351. oYstride = Ystride;\
  352. oVstride = Vstride;\
  353. oUstride = Ustride;\
  354. Yo = (ctx->cur?ctx->Y1:ctx->Y2) + by * 4 * oYstride + bx * 4;\
  355. Vo = (ctx->cur?ctx->V1:ctx->V2) + by * 2 * oVstride + bx * 2;\
  356. Uo = (ctx->cur?ctx->U1:ctx->U2) + by * 2 * oUstride + bx * 2;
  357. /* recalculate last and delta values for next blocks */
  358. #define TM2_RECALC_BLOCK(CHR, stride, last, CD) {\
  359. CD[0] = CHR[1] - last[1];\
  360. CD[1] = (int)CHR[stride + 1] - (int)CHR[1];\
  361. last[0] = (int)CHR[stride + 0];\
  362. last[1] = (int)CHR[stride + 1];}
  363. /* common operations - add deltas to 4x4 block of luma or 2x2 blocks of chroma */
  364. static inline void tm2_apply_deltas(TM2Context *ctx, int* Y, int stride, int *deltas, int *last)
  365. {
  366. int ct, d;
  367. int i, j;
  368. for (j = 0; j < 4; j++){
  369. ct = ctx->D[j];
  370. for (i = 0; i < 4; i++){
  371. d = deltas[i + j * 4];
  372. ct += d;
  373. last[i] += ct;
  374. Y[i] = av_clip_uint8(last[i]);
  375. }
  376. Y += stride;
  377. ctx->D[j] = ct;
  378. }
  379. }
  380. static inline void tm2_high_chroma(int *data, int stride, int *last, int *CD, int *deltas)
  381. {
  382. int i, j;
  383. for (j = 0; j < 2; j++) {
  384. for (i = 0; i < 2; i++) {
  385. CD[j] += deltas[i + j * 2];
  386. last[i] += CD[j];
  387. data[i] = last[i];
  388. }
  389. data += stride;
  390. }
  391. }
  392. static inline void tm2_low_chroma(int *data, int stride, int *clast, int *CD, int *deltas, int bx)
  393. {
  394. int t;
  395. int l;
  396. int prev;
  397. if (bx > 0)
  398. prev = clast[-3];
  399. else
  400. prev = 0;
  401. t = (CD[0] + CD[1]) >> 1;
  402. l = (prev - CD[0] - CD[1] + clast[1]) >> 1;
  403. CD[1] = CD[0] + CD[1] - t;
  404. CD[0] = t;
  405. clast[0] = l;
  406. tm2_high_chroma(data, stride, clast, CD, deltas);
  407. }
  408. static inline void tm2_hi_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  409. {
  410. int i;
  411. int deltas[16];
  412. TM2_INIT_POINTERS();
  413. /* hi-res chroma */
  414. for (i = 0; i < 4; i++) {
  415. deltas[i] = GET_TOK(ctx, TM2_C_HI);
  416. deltas[i + 4] = GET_TOK(ctx, TM2_C_HI);
  417. }
  418. tm2_high_chroma(U, Ustride, clast, ctx->CD, deltas);
  419. tm2_high_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas + 4);
  420. /* hi-res luma */
  421. for (i = 0; i < 16; i++)
  422. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  423. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  424. }
  425. static inline void tm2_med_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  426. {
  427. int i;
  428. int deltas[16];
  429. TM2_INIT_POINTERS();
  430. /* low-res chroma */
  431. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  432. deltas[1] = deltas[2] = deltas[3] = 0;
  433. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  434. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  435. deltas[1] = deltas[2] = deltas[3] = 0;
  436. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  437. /* hi-res luma */
  438. for (i = 0; i < 16; i++)
  439. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  440. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  441. }
  442. static inline void tm2_low_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  443. {
  444. int i;
  445. int t1, t2;
  446. int deltas[16];
  447. TM2_INIT_POINTERS();
  448. /* low-res chroma */
  449. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  450. deltas[1] = deltas[2] = deltas[3] = 0;
  451. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  452. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  453. deltas[1] = deltas[2] = deltas[3] = 0;
  454. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  455. /* low-res luma */
  456. for (i = 0; i < 16; i++)
  457. deltas[i] = 0;
  458. deltas[ 0] = GET_TOK(ctx, TM2_L_LO);
  459. deltas[ 2] = GET_TOK(ctx, TM2_L_LO);
  460. deltas[ 8] = GET_TOK(ctx, TM2_L_LO);
  461. deltas[10] = GET_TOK(ctx, TM2_L_LO);
  462. if (bx > 0)
  463. last[0] = (last[-1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3] + last[1]) >> 1;
  464. else
  465. last[0] = (last[1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3])>> 1;
  466. last[2] = (last[1] + last[3]) >> 1;
  467. t1 = ctx->D[0] + ctx->D[1];
  468. ctx->D[0] = t1 >> 1;
  469. ctx->D[1] = t1 - (t1 >> 1);
  470. t2 = ctx->D[2] + ctx->D[3];
  471. ctx->D[2] = t2 >> 1;
  472. ctx->D[3] = t2 - (t2 >> 1);
  473. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  474. }
  475. static inline void tm2_null_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  476. {
  477. int i;
  478. int ct;
  479. int left, right, diff;
  480. int deltas[16];
  481. TM2_INIT_POINTERS();
  482. /* null chroma */
  483. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  484. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  485. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  486. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  487. /* null luma */
  488. for (i = 0; i < 16; i++)
  489. deltas[i] = 0;
  490. ct = ctx->D[0] + ctx->D[1] + ctx->D[2] + ctx->D[3];
  491. if (bx > 0)
  492. left = last[-1] - ct;
  493. else
  494. left = 0;
  495. right = last[3];
  496. diff = right - left;
  497. last[0] = left + (diff >> 2);
  498. last[1] = left + (diff >> 1);
  499. last[2] = right - (diff >> 2);
  500. last[3] = right;
  501. {
  502. int tp = left;
  503. ctx->D[0] = (tp + (ct >> 2)) - left;
  504. left += ctx->D[0];
  505. ctx->D[1] = (tp + (ct >> 1)) - left;
  506. left += ctx->D[1];
  507. ctx->D[2] = ((tp + ct) - (ct >> 2)) - left;
  508. left += ctx->D[2];
  509. ctx->D[3] = (tp + ct) - left;
  510. }
  511. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  512. }
  513. static inline void tm2_still_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  514. {
  515. int i, j;
  516. TM2_INIT_POINTERS_2();
  517. /* update chroma */
  518. for (j = 0; j < 2; j++) {
  519. for (i = 0; i < 2; i++){
  520. U[i] = Uo[i];
  521. V[i] = Vo[i];
  522. }
  523. U += Ustride; V += Vstride;
  524. Uo += oUstride; Vo += oVstride;
  525. }
  526. U -= Ustride * 2;
  527. V -= Vstride * 2;
  528. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  529. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  530. /* update deltas */
  531. ctx->D[0] = Yo[3] - last[3];
  532. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  533. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  534. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  535. for (j = 0; j < 4; j++) {
  536. for (i = 0; i < 4; i++) {
  537. Y[i] = Yo[i];
  538. last[i] = Yo[i];
  539. }
  540. Y += Ystride;
  541. Yo += oYstride;
  542. }
  543. }
  544. static inline void tm2_update_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  545. {
  546. int i, j;
  547. int d;
  548. TM2_INIT_POINTERS_2();
  549. /* update chroma */
  550. for (j = 0; j < 2; j++) {
  551. for (i = 0; i < 2; i++) {
  552. U[i] = Uo[i] + GET_TOK(ctx, TM2_UPD);
  553. V[i] = Vo[i] + GET_TOK(ctx, TM2_UPD);
  554. }
  555. U += Ustride;
  556. V += Vstride;
  557. Uo += oUstride;
  558. Vo += oVstride;
  559. }
  560. U -= Ustride * 2;
  561. V -= Vstride * 2;
  562. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  563. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  564. /* update deltas */
  565. ctx->D[0] = Yo[3] - last[3];
  566. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  567. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  568. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  569. for (j = 0; j < 4; j++) {
  570. d = last[3];
  571. for (i = 0; i < 4; i++) {
  572. Y[i] = Yo[i] + GET_TOK(ctx, TM2_UPD);
  573. last[i] = Y[i];
  574. }
  575. ctx->D[j] = last[3] - d;
  576. Y += Ystride;
  577. Yo += oYstride;
  578. }
  579. }
  580. static inline void tm2_motion_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  581. {
  582. int i, j;
  583. int mx, my;
  584. TM2_INIT_POINTERS_2();
  585. mx = GET_TOK(ctx, TM2_MOT);
  586. my = GET_TOK(ctx, TM2_MOT);
  587. mx = av_clip(mx, -(bx * 4 + 4), ctx->avctx->width - bx * 4);
  588. my = av_clip(my, -(by * 4 + 4), ctx->avctx->height - by * 4);
  589. Yo += my * oYstride + mx;
  590. Uo += (my >> 1) * oUstride + (mx >> 1);
  591. Vo += (my >> 1) * oVstride + (mx >> 1);
  592. /* copy chroma */
  593. for (j = 0; j < 2; j++) {
  594. for (i = 0; i < 2; i++) {
  595. U[i] = Uo[i];
  596. V[i] = Vo[i];
  597. }
  598. U += Ustride;
  599. V += Vstride;
  600. Uo += oUstride;
  601. Vo += oVstride;
  602. }
  603. U -= Ustride * 2;
  604. V -= Vstride * 2;
  605. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  606. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  607. /* copy luma */
  608. for (j = 0; j < 4; j++) {
  609. for (i = 0; i < 4; i++) {
  610. Y[i] = Yo[i];
  611. }
  612. Y += Ystride;
  613. Yo += oYstride;
  614. }
  615. /* calculate deltas */
  616. Y -= Ystride * 4;
  617. ctx->D[0] = Y[3] - last[3];
  618. ctx->D[1] = Y[3 + Ystride] - Y[3];
  619. ctx->D[2] = Y[3 + Ystride * 2] - Y[3 + Ystride];
  620. ctx->D[3] = Y[3 + Ystride * 3] - Y[3 + Ystride * 2];
  621. for (i = 0; i < 4; i++)
  622. last[i] = Y[i + Ystride * 3];
  623. }
  624. static int tm2_decode_blocks(TM2Context *ctx, AVFrame *p)
  625. {
  626. int i, j;
  627. int w = ctx->avctx->width, h = ctx->avctx->height, bw = w >> 2, bh = h >> 2, cw = w >> 1;
  628. int type;
  629. int keyframe = 1;
  630. int *Y, *U, *V;
  631. uint8_t *dst;
  632. for (i = 0; i < TM2_NUM_STREAMS; i++)
  633. ctx->tok_ptrs[i] = 0;
  634. if (ctx->tok_lens[TM2_TYPE]<bw*bh) {
  635. av_log(ctx->avctx,AV_LOG_ERROR,"Got %i tokens for %i blocks\n",ctx->tok_lens[TM2_TYPE],bw*bh);
  636. return AVERROR_INVALIDDATA;
  637. }
  638. memset(ctx->last, 0, 4 * bw * sizeof(int));
  639. memset(ctx->clast, 0, 4 * bw * sizeof(int));
  640. for (j = 0; j < bh; j++) {
  641. memset(ctx->D, 0, 4 * sizeof(int));
  642. memset(ctx->CD, 0, 4 * sizeof(int));
  643. for (i = 0; i < bw; i++) {
  644. type = GET_TOK(ctx, TM2_TYPE);
  645. switch(type) {
  646. case TM2_HI_RES:
  647. tm2_hi_res_block(ctx, p, i, j);
  648. break;
  649. case TM2_MED_RES:
  650. tm2_med_res_block(ctx, p, i, j);
  651. break;
  652. case TM2_LOW_RES:
  653. tm2_low_res_block(ctx, p, i, j);
  654. break;
  655. case TM2_NULL_RES:
  656. tm2_null_res_block(ctx, p, i, j);
  657. break;
  658. case TM2_UPDATE:
  659. tm2_update_block(ctx, p, i, j);
  660. keyframe = 0;
  661. break;
  662. case TM2_STILL:
  663. tm2_still_block(ctx, p, i, j);
  664. keyframe = 0;
  665. break;
  666. case TM2_MOTION:
  667. tm2_motion_block(ctx, p, i, j);
  668. keyframe = 0;
  669. break;
  670. default:
  671. av_log(ctx->avctx, AV_LOG_ERROR, "Skipping unknown block type %i\n", type);
  672. }
  673. }
  674. }
  675. /* copy data from our buffer to AVFrame */
  676. Y = (ctx->cur?ctx->Y2:ctx->Y1);
  677. U = (ctx->cur?ctx->U2:ctx->U1);
  678. V = (ctx->cur?ctx->V2:ctx->V1);
  679. dst = p->data[0];
  680. for (j = 0; j < h; j++) {
  681. for (i = 0; i < w; i++) {
  682. int y = Y[i], u = U[i >> 1], v = V[i >> 1];
  683. dst[3*i+0] = av_clip_uint8(y + v);
  684. dst[3*i+1] = av_clip_uint8(y);
  685. dst[3*i+2] = av_clip_uint8(y + u);
  686. }
  687. /* horizontal edge extension */
  688. Y[-4] = Y[-3] = Y[-2] = Y[-1] = Y[0];
  689. Y[w + 3] = Y[w + 2] = Y[w + 1] = Y[w] = Y[w - 1];
  690. /* vertical edge extension */
  691. if (j == 0) {
  692. memcpy(Y - 4 - 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  693. memcpy(Y - 4 - 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  694. memcpy(Y - 4 - 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  695. memcpy(Y - 4 - 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  696. } else if (j == h - 1) {
  697. memcpy(Y - 4 + 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  698. memcpy(Y - 4 + 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  699. memcpy(Y - 4 + 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  700. memcpy(Y - 4 + 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  701. }
  702. Y += ctx->y_stride;
  703. if (j & 1) {
  704. /* horizontal edge extension */
  705. U[-2] = U[-1] = U[0];
  706. V[-2] = V[-1] = V[0];
  707. U[cw + 1] = U[cw] = U[cw - 1];
  708. V[cw + 1] = V[cw] = V[cw - 1];
  709. /* vertical edge extension */
  710. if (j == 1) {
  711. memcpy(U - 2 - 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  712. memcpy(V - 2 - 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  713. memcpy(U - 2 - 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  714. memcpy(V - 2 - 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  715. } else if (j == h - 1) {
  716. memcpy(U - 2 + 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  717. memcpy(V - 2 + 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  718. memcpy(U - 2 + 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  719. memcpy(V - 2 + 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  720. }
  721. U += ctx->uv_stride;
  722. V += ctx->uv_stride;
  723. }
  724. dst += p->linesize[0];
  725. }
  726. return keyframe;
  727. }
  728. static const int tm2_stream_order[TM2_NUM_STREAMS] = {
  729. TM2_C_HI, TM2_C_LO, TM2_L_HI, TM2_L_LO, TM2_UPD, TM2_MOT, TM2_TYPE
  730. };
  731. #define TM2_HEADER_SIZE 40
  732. static int decode_frame(AVCodecContext *avctx,
  733. void *data, int *got_frame,
  734. AVPacket *avpkt)
  735. {
  736. TM2Context * const l = avctx->priv_data;
  737. const uint8_t *buf = avpkt->data;
  738. int buf_size = avpkt->size & ~3;
  739. AVFrame * const p = l->pic;
  740. int offset = TM2_HEADER_SIZE;
  741. int i, t, ret;
  742. uint8_t *swbuf;
  743. swbuf = av_malloc(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  744. if (!swbuf) {
  745. av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
  746. return AVERROR(ENOMEM);
  747. }
  748. if ((ret = ff_reget_buffer(avctx, p)) < 0) {
  749. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  750. av_free(swbuf);
  751. return ret;
  752. }
  753. l->bdsp.bswap_buf((uint32_t *) swbuf, (const uint32_t *) buf,
  754. buf_size >> 2);
  755. if ((ret = tm2_read_header(l, swbuf)) < 0) {
  756. av_free(swbuf);
  757. return ret;
  758. }
  759. for (i = 0; i < TM2_NUM_STREAMS; i++) {
  760. if (offset >= buf_size) {
  761. av_free(swbuf);
  762. return AVERROR_INVALIDDATA;
  763. }
  764. t = tm2_read_stream(l, swbuf + offset, tm2_stream_order[i],
  765. buf_size - offset);
  766. if (t < 0) {
  767. av_free(swbuf);
  768. return t;
  769. }
  770. offset += t;
  771. }
  772. p->key_frame = tm2_decode_blocks(l, p);
  773. if (p->key_frame)
  774. p->pict_type = AV_PICTURE_TYPE_I;
  775. else
  776. p->pict_type = AV_PICTURE_TYPE_P;
  777. l->cur = !l->cur;
  778. *got_frame = 1;
  779. ret = av_frame_ref(data, l->pic);
  780. av_free(swbuf);
  781. return (ret < 0) ? ret : buf_size;
  782. }
  783. static av_cold int decode_init(AVCodecContext *avctx)
  784. {
  785. TM2Context * const l = avctx->priv_data;
  786. int i, w = avctx->width, h = avctx->height;
  787. if ((avctx->width & 3) || (avctx->height & 3)) {
  788. av_log(avctx, AV_LOG_ERROR, "Width and height must be multiple of 4\n");
  789. return AVERROR(EINVAL);
  790. }
  791. l->avctx = avctx;
  792. avctx->pix_fmt = AV_PIX_FMT_BGR24;
  793. l->pic = av_frame_alloc();
  794. if (!l->pic)
  795. return AVERROR(ENOMEM);
  796. ff_bswapdsp_init(&l->bdsp);
  797. l->last = av_malloc(4 * sizeof(*l->last) * (w >> 2));
  798. l->clast = av_malloc(4 * sizeof(*l->clast) * (w >> 2));
  799. for (i = 0; i < TM2_NUM_STREAMS; i++) {
  800. l->tokens[i] = NULL;
  801. l->tok_lens[i] = 0;
  802. }
  803. w += 8;
  804. h += 8;
  805. l->Y1_base = av_malloc(sizeof(*l->Y1_base) * w * h);
  806. l->Y2_base = av_malloc(sizeof(*l->Y2_base) * w * h);
  807. l->y_stride = w;
  808. w = (w + 1) >> 1;
  809. h = (h + 1) >> 1;
  810. l->U1_base = av_malloc(sizeof(*l->U1_base) * w * h);
  811. l->V1_base = av_malloc(sizeof(*l->V1_base) * w * h);
  812. l->U2_base = av_malloc(sizeof(*l->U2_base) * w * h);
  813. l->V2_base = av_malloc(sizeof(*l->V1_base) * w * h);
  814. l->uv_stride = w;
  815. l->cur = 0;
  816. if (!l->Y1_base || !l->Y2_base || !l->U1_base ||
  817. !l->V1_base || !l->U2_base || !l->V2_base ||
  818. !l->last || !l->clast) {
  819. av_freep(&l->Y1_base);
  820. av_freep(&l->Y2_base);
  821. av_freep(&l->U1_base);
  822. av_freep(&l->U2_base);
  823. av_freep(&l->V1_base);
  824. av_freep(&l->V2_base);
  825. av_freep(&l->last);
  826. av_freep(&l->clast);
  827. return AVERROR(ENOMEM);
  828. }
  829. l->Y1 = l->Y1_base + l->y_stride * 4 + 4;
  830. l->Y2 = l->Y2_base + l->y_stride * 4 + 4;
  831. l->U1 = l->U1_base + l->uv_stride * 2 + 2;
  832. l->U2 = l->U2_base + l->uv_stride * 2 + 2;
  833. l->V1 = l->V1_base + l->uv_stride * 2 + 2;
  834. l->V2 = l->V2_base + l->uv_stride * 2 + 2;
  835. return 0;
  836. }
  837. static av_cold int decode_end(AVCodecContext *avctx)
  838. {
  839. TM2Context * const l = avctx->priv_data;
  840. int i;
  841. av_free(l->last);
  842. av_free(l->clast);
  843. for (i = 0; i < TM2_NUM_STREAMS; i++)
  844. av_free(l->tokens[i]);
  845. if (l->Y1) {
  846. av_free(l->Y1_base);
  847. av_free(l->U1_base);
  848. av_free(l->V1_base);
  849. av_free(l->Y2_base);
  850. av_free(l->U2_base);
  851. av_free(l->V2_base);
  852. }
  853. av_frame_free(&l->pic);
  854. return 0;
  855. }
  856. AVCodec ff_truemotion2_decoder = {
  857. .name = "truemotion2",
  858. .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 2.0"),
  859. .type = AVMEDIA_TYPE_VIDEO,
  860. .id = AV_CODEC_ID_TRUEMOTION2,
  861. .priv_data_size = sizeof(TM2Context),
  862. .init = decode_init,
  863. .close = decode_end,
  864. .decode = decode_frame,
  865. .capabilities = CODEC_CAP_DR1,
  866. };