You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2249 lines
83KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/imgutils.h"
  28. #include "libavutil/timer.h"
  29. #include "internal.h"
  30. #include "cabac.h"
  31. #include "cabac_functions.h"
  32. #include "error_resilience.h"
  33. #include "avcodec.h"
  34. #include "h264.h"
  35. #include "h264data.h"
  36. #include "h264chroma.h"
  37. #include "h264_mvpred.h"
  38. #include "golomb.h"
  39. #include "mathops.h"
  40. #include "mpegutils.h"
  41. #include "rectangle.h"
  42. #include "thread.h"
  43. static const uint8_t rem6[QP_MAX_NUM + 1] = {
  44. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
  45. 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
  46. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  47. };
  48. static const uint8_t div6[QP_MAX_NUM + 1] = {
  49. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
  50. 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
  51. 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
  52. };
  53. static const uint8_t field_scan[16] = {
  54. 0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
  55. 0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
  56. 2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
  57. 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
  58. };
  59. static const uint8_t field_scan8x8[64] = {
  60. 0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
  61. 1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
  62. 2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
  63. 0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
  64. 2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
  65. 2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
  66. 2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
  67. 3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
  68. 3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
  69. 4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
  70. 4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
  71. 5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
  72. 5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
  73. 7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
  74. 6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
  75. 7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
  76. };
  77. static const uint8_t field_scan8x8_cavlc[64] = {
  78. 0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
  79. 2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
  80. 3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
  81. 5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
  82. 0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
  83. 1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
  84. 3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
  85. 5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
  86. 0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
  87. 1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
  88. 3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
  89. 5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
  90. 1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
  91. 1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
  92. 3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
  93. 6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
  94. };
  95. // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
  96. static const uint8_t zigzag_scan8x8_cavlc[64] = {
  97. 0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
  98. 4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
  99. 3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
  100. 2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
  101. 1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
  102. 3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
  103. 2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
  104. 3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
  105. 0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
  106. 2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
  107. 1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
  108. 4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
  109. 0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
  110. 1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
  111. 0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
  112. 5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
  113. };
  114. static const uint8_t dequant4_coeff_init[6][3] = {
  115. { 10, 13, 16 },
  116. { 11, 14, 18 },
  117. { 13, 16, 20 },
  118. { 14, 18, 23 },
  119. { 16, 20, 25 },
  120. { 18, 23, 29 },
  121. };
  122. static const uint8_t dequant8_coeff_init_scan[16] = {
  123. 0, 3, 4, 3, 3, 1, 5, 1, 4, 5, 2, 5, 3, 1, 5, 1
  124. };
  125. static const uint8_t dequant8_coeff_init[6][6] = {
  126. { 20, 18, 32, 19, 25, 24 },
  127. { 22, 19, 35, 21, 28, 26 },
  128. { 26, 23, 42, 24, 33, 31 },
  129. { 28, 25, 45, 26, 35, 33 },
  130. { 32, 28, 51, 30, 40, 38 },
  131. { 36, 32, 58, 34, 46, 43 },
  132. };
  133. static void release_unused_pictures(H264Context *h, int remove_current)
  134. {
  135. int i;
  136. /* release non reference frames */
  137. for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
  138. if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
  139. (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
  140. ff_h264_unref_picture(h, &h->DPB[i]);
  141. }
  142. }
  143. }
  144. static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
  145. {
  146. const H264Context *h = sl->h264;
  147. int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
  148. av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
  149. // edge emu needs blocksize + filter length - 1
  150. // (= 21x21 for h264)
  151. av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
  152. av_fast_malloc(&sl->top_borders[0], &sl->top_borders_allocated[0],
  153. h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
  154. av_fast_malloc(&sl->top_borders[1], &sl->top_borders_allocated[1],
  155. h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
  156. if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
  157. !sl->top_borders[0] || !sl->top_borders[1]) {
  158. av_freep(&sl->bipred_scratchpad);
  159. av_freep(&sl->edge_emu_buffer);
  160. av_freep(&sl->top_borders[0]);
  161. av_freep(&sl->top_borders[1]);
  162. sl->bipred_scratchpad_allocated = 0;
  163. sl->edge_emu_buffer_allocated = 0;
  164. sl->top_borders_allocated[0] = 0;
  165. sl->top_borders_allocated[1] = 0;
  166. return AVERROR(ENOMEM);
  167. }
  168. return 0;
  169. }
  170. static int init_table_pools(H264Context *h)
  171. {
  172. const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
  173. const int mb_array_size = h->mb_stride * h->mb_height;
  174. const int b4_stride = h->mb_width * 4 + 1;
  175. const int b4_array_size = b4_stride * h->mb_height * 4;
  176. h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
  177. av_buffer_allocz);
  178. h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
  179. sizeof(uint32_t), av_buffer_allocz);
  180. h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
  181. sizeof(int16_t), av_buffer_allocz);
  182. h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
  183. if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
  184. !h->ref_index_pool) {
  185. av_buffer_pool_uninit(&h->qscale_table_pool);
  186. av_buffer_pool_uninit(&h->mb_type_pool);
  187. av_buffer_pool_uninit(&h->motion_val_pool);
  188. av_buffer_pool_uninit(&h->ref_index_pool);
  189. return AVERROR(ENOMEM);
  190. }
  191. return 0;
  192. }
  193. static int alloc_picture(H264Context *h, H264Picture *pic)
  194. {
  195. int i, ret = 0;
  196. av_assert0(!pic->f->data[0]);
  197. pic->tf.f = pic->f;
  198. ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
  199. AV_GET_BUFFER_FLAG_REF : 0);
  200. if (ret < 0)
  201. goto fail;
  202. if (h->avctx->hwaccel) {
  203. const AVHWAccel *hwaccel = h->avctx->hwaccel;
  204. av_assert0(!pic->hwaccel_picture_private);
  205. if (hwaccel->frame_priv_data_size) {
  206. pic->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size);
  207. if (!pic->hwaccel_priv_buf)
  208. return AVERROR(ENOMEM);
  209. pic->hwaccel_picture_private = pic->hwaccel_priv_buf->data;
  210. }
  211. }
  212. if (!h->qscale_table_pool) {
  213. ret = init_table_pools(h);
  214. if (ret < 0)
  215. goto fail;
  216. }
  217. pic->qscale_table_buf = av_buffer_pool_get(h->qscale_table_pool);
  218. pic->mb_type_buf = av_buffer_pool_get(h->mb_type_pool);
  219. if (!pic->qscale_table_buf || !pic->mb_type_buf)
  220. goto fail;
  221. pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
  222. pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
  223. for (i = 0; i < 2; i++) {
  224. pic->motion_val_buf[i] = av_buffer_pool_get(h->motion_val_pool);
  225. pic->ref_index_buf[i] = av_buffer_pool_get(h->ref_index_pool);
  226. if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
  227. goto fail;
  228. pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
  229. pic->ref_index[i] = pic->ref_index_buf[i]->data;
  230. }
  231. return 0;
  232. fail:
  233. ff_h264_unref_picture(h, pic);
  234. return (ret < 0) ? ret : AVERROR(ENOMEM);
  235. }
  236. static inline int pic_is_unused(H264Context *h, H264Picture *pic)
  237. {
  238. if (!pic->f->buf[0])
  239. return 1;
  240. return 0;
  241. }
  242. static int find_unused_picture(H264Context *h)
  243. {
  244. int i;
  245. for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
  246. if (pic_is_unused(h, &h->DPB[i]))
  247. break;
  248. }
  249. if (i == H264_MAX_PICTURE_COUNT)
  250. return AVERROR_INVALIDDATA;
  251. return i;
  252. }
  253. static void init_dequant8_coeff_table(H264Context *h)
  254. {
  255. int i, j, q, x;
  256. const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
  257. for (i = 0; i < 6; i++) {
  258. h->dequant8_coeff[i] = h->dequant8_buffer[i];
  259. for (j = 0; j < i; j++)
  260. if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i],
  261. 64 * sizeof(uint8_t))) {
  262. h->dequant8_coeff[i] = h->dequant8_buffer[j];
  263. break;
  264. }
  265. if (j < i)
  266. continue;
  267. for (q = 0; q < max_qp + 1; q++) {
  268. int shift = div6[q];
  269. int idx = rem6[q];
  270. for (x = 0; x < 64; x++)
  271. h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] =
  272. ((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] *
  273. h->pps.scaling_matrix8[i][x]) << shift;
  274. }
  275. }
  276. }
  277. static void init_dequant4_coeff_table(H264Context *h)
  278. {
  279. int i, j, q, x;
  280. const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
  281. for (i = 0; i < 6; i++) {
  282. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  283. for (j = 0; j < i; j++)
  284. if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i],
  285. 16 * sizeof(uint8_t))) {
  286. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  287. break;
  288. }
  289. if (j < i)
  290. continue;
  291. for (q = 0; q < max_qp + 1; q++) {
  292. int shift = div6[q] + 2;
  293. int idx = rem6[q];
  294. for (x = 0; x < 16; x++)
  295. h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] =
  296. ((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] *
  297. h->pps.scaling_matrix4[i][x]) << shift;
  298. }
  299. }
  300. }
  301. void h264_init_dequant_tables(H264Context *h)
  302. {
  303. int i, x;
  304. init_dequant4_coeff_table(h);
  305. if (h->pps.transform_8x8_mode)
  306. init_dequant8_coeff_table(h);
  307. if (h->sps.transform_bypass) {
  308. for (i = 0; i < 6; i++)
  309. for (x = 0; x < 16; x++)
  310. h->dequant4_coeff[i][0][x] = 1 << 6;
  311. if (h->pps.transform_8x8_mode)
  312. for (i = 0; i < 6; i++)
  313. for (x = 0; x < 64; x++)
  314. h->dequant8_coeff[i][0][x] = 1 << 6;
  315. }
  316. }
  317. #define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b) + (size))))
  318. #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
  319. ((pic && pic >= old_ctx->DPB && \
  320. pic < old_ctx->DPB + H264_MAX_PICTURE_COUNT) ? \
  321. &new_ctx->DPB[pic - old_ctx->DPB] : NULL)
  322. static void copy_picture_range(H264Picture **to, H264Picture **from, int count,
  323. H264Context *new_base,
  324. H264Context *old_base)
  325. {
  326. int i;
  327. for (i = 0; i < count; i++) {
  328. assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) ||
  329. IN_RANGE(from[i], old_base->DPB,
  330. sizeof(H264Picture) * H264_MAX_PICTURE_COUNT) ||
  331. !from[i]));
  332. to[i] = REBASE_PICTURE(from[i], new_base, old_base);
  333. }
  334. }
  335. static int copy_parameter_set(void **to, void **from, int count, int size)
  336. {
  337. int i;
  338. for (i = 0; i < count; i++) {
  339. if (to[i] && !from[i]) {
  340. av_freep(&to[i]);
  341. } else if (from[i] && !to[i]) {
  342. to[i] = av_malloc(size);
  343. if (!to[i])
  344. return AVERROR(ENOMEM);
  345. }
  346. if (from[i])
  347. memcpy(to[i], from[i], size);
  348. }
  349. return 0;
  350. }
  351. #define copy_fields(to, from, start_field, end_field) \
  352. memcpy(&to->start_field, &from->start_field, \
  353. (char *)&to->end_field - (char *)&to->start_field)
  354. static int h264_slice_header_init(H264Context *h);
  355. int ff_h264_update_thread_context(AVCodecContext *dst,
  356. const AVCodecContext *src)
  357. {
  358. H264Context *h = dst->priv_data, *h1 = src->priv_data;
  359. int inited = h->context_initialized, err = 0;
  360. int need_reinit = 0;
  361. int i, ret;
  362. if (dst == src || !h1->context_initialized)
  363. return 0;
  364. if (inited &&
  365. (h->width != h1->width ||
  366. h->height != h1->height ||
  367. h->mb_width != h1->mb_width ||
  368. h->mb_height != h1->mb_height ||
  369. h->sps.bit_depth_luma != h1->sps.bit_depth_luma ||
  370. h->sps.chroma_format_idc != h1->sps.chroma_format_idc ||
  371. h->sps.colorspace != h1->sps.colorspace)) {
  372. need_reinit = 1;
  373. }
  374. // SPS/PPS
  375. if ((ret = copy_parameter_set((void **)h->sps_buffers,
  376. (void **)h1->sps_buffers,
  377. MAX_SPS_COUNT, sizeof(SPS))) < 0)
  378. return ret;
  379. h->sps = h1->sps;
  380. if ((ret = copy_parameter_set((void **)h->pps_buffers,
  381. (void **)h1->pps_buffers,
  382. MAX_PPS_COUNT, sizeof(PPS))) < 0)
  383. return ret;
  384. h->pps = h1->pps;
  385. if (need_reinit || !inited) {
  386. h->width = h1->width;
  387. h->height = h1->height;
  388. h->mb_height = h1->mb_height;
  389. h->mb_width = h1->mb_width;
  390. h->mb_num = h1->mb_num;
  391. h->mb_stride = h1->mb_stride;
  392. h->b_stride = h1->b_stride;
  393. if ((err = h264_slice_header_init(h)) < 0) {
  394. av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
  395. return err;
  396. }
  397. /* copy block_offset since frame_start may not be called */
  398. memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
  399. }
  400. h->avctx->coded_height = h1->avctx->coded_height;
  401. h->avctx->coded_width = h1->avctx->coded_width;
  402. h->avctx->width = h1->avctx->width;
  403. h->avctx->height = h1->avctx->height;
  404. h->coded_picture_number = h1->coded_picture_number;
  405. h->first_field = h1->first_field;
  406. h->picture_structure = h1->picture_structure;
  407. h->droppable = h1->droppable;
  408. h->low_delay = h1->low_delay;
  409. for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
  410. ff_h264_unref_picture(h, &h->DPB[i]);
  411. if (h1->DPB[i].f->buf[0] &&
  412. (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
  413. return ret;
  414. }
  415. h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
  416. ff_h264_unref_picture(h, &h->cur_pic);
  417. if (h1->cur_pic.f->buf[0]) {
  418. ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic);
  419. if (ret < 0)
  420. return ret;
  421. }
  422. h->enable_er = h1->enable_er;
  423. h->workaround_bugs = h1->workaround_bugs;
  424. h->low_delay = h1->low_delay;
  425. h->droppable = h1->droppable;
  426. // extradata/NAL handling
  427. h->is_avc = h1->is_avc;
  428. h->nal_length_size = h1->nal_length_size;
  429. // Dequantization matrices
  430. // FIXME these are big - can they be only copied when PPS changes?
  431. copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
  432. for (i = 0; i < 6; i++)
  433. h->dequant4_coeff[i] = h->dequant4_buffer[0] +
  434. (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
  435. for (i = 0; i < 6; i++)
  436. h->dequant8_coeff[i] = h->dequant8_buffer[0] +
  437. (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
  438. h->dequant_coeff_pps = h1->dequant_coeff_pps;
  439. // POC timing
  440. copy_fields(h, h1, poc_lsb, default_ref_list);
  441. // reference lists
  442. copy_fields(h, h1, short_ref, current_slice);
  443. copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
  444. copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
  445. copy_picture_range(h->delayed_pic, h1->delayed_pic,
  446. MAX_DELAYED_PIC_COUNT + 2, h, h1);
  447. h->last_slice_type = h1->last_slice_type;
  448. if (!h->cur_pic_ptr)
  449. return 0;
  450. if (!h->droppable) {
  451. err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  452. h->prev_poc_msb = h->poc_msb;
  453. h->prev_poc_lsb = h->poc_lsb;
  454. }
  455. h->prev_frame_num_offset = h->frame_num_offset;
  456. h->prev_frame_num = h->frame_num;
  457. h->recovery_frame = h1->recovery_frame;
  458. h->frame_recovered = h1->frame_recovered;
  459. return err;
  460. }
  461. static int h264_frame_start(H264Context *h)
  462. {
  463. H264Picture *pic;
  464. int i, ret;
  465. const int pixel_shift = h->pixel_shift;
  466. release_unused_pictures(h, 1);
  467. h->cur_pic_ptr = NULL;
  468. i = find_unused_picture(h);
  469. if (i < 0) {
  470. av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
  471. return i;
  472. }
  473. pic = &h->DPB[i];
  474. pic->reference = h->droppable ? 0 : h->picture_structure;
  475. pic->f->coded_picture_number = h->coded_picture_number++;
  476. pic->field_picture = h->picture_structure != PICT_FRAME;
  477. /*
  478. * Zero key_frame here; IDR markings per slice in frame or fields are ORed
  479. * in later.
  480. * See decode_nal_units().
  481. */
  482. pic->f->key_frame = 0;
  483. pic->mmco_reset = 0;
  484. pic->recovered = 0;
  485. if ((ret = alloc_picture(h, pic)) < 0)
  486. return ret;
  487. h->cur_pic_ptr = pic;
  488. ff_h264_unref_picture(h, &h->cur_pic);
  489. if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
  490. return ret;
  491. if (CONFIG_ERROR_RESILIENCE && h->enable_er)
  492. ff_er_frame_start(&h->slice_ctx[0].er);
  493. for (i = 0; i < 16; i++) {
  494. h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
  495. h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
  496. }
  497. for (i = 0; i < 16; i++) {
  498. h->block_offset[16 + i] =
  499. h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
  500. h->block_offset[48 + 16 + i] =
  501. h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
  502. }
  503. /* Some macroblocks can be accessed before they're available in case
  504. * of lost slices, MBAFF or threading. */
  505. memset(h->slice_table, -1,
  506. (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
  507. /* We mark the current picture as non-reference after allocating it, so
  508. * that if we break out due to an error it can be released automatically
  509. * in the next ff_mpv_frame_start().
  510. */
  511. h->cur_pic_ptr->reference = 0;
  512. h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
  513. h->next_output_pic = NULL;
  514. assert(h->cur_pic_ptr->long_ref == 0);
  515. return 0;
  516. }
  517. static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl,
  518. uint8_t *src_y,
  519. uint8_t *src_cb, uint8_t *src_cr,
  520. int linesize, int uvlinesize,
  521. int simple)
  522. {
  523. uint8_t *top_border;
  524. int top_idx = 1;
  525. const int pixel_shift = h->pixel_shift;
  526. int chroma444 = CHROMA444(h);
  527. int chroma422 = CHROMA422(h);
  528. src_y -= linesize;
  529. src_cb -= uvlinesize;
  530. src_cr -= uvlinesize;
  531. if (!simple && FRAME_MBAFF(h)) {
  532. if (sl->mb_y & 1) {
  533. if (!MB_MBAFF(sl)) {
  534. top_border = sl->top_borders[0][sl->mb_x];
  535. AV_COPY128(top_border, src_y + 15 * linesize);
  536. if (pixel_shift)
  537. AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
  538. if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
  539. if (chroma444) {
  540. if (pixel_shift) {
  541. AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
  542. AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
  543. AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
  544. AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
  545. } else {
  546. AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
  547. AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
  548. }
  549. } else if (chroma422) {
  550. if (pixel_shift) {
  551. AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
  552. AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
  553. } else {
  554. AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
  555. AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
  556. }
  557. } else {
  558. if (pixel_shift) {
  559. AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
  560. AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
  561. } else {
  562. AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
  563. AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
  564. }
  565. }
  566. }
  567. }
  568. } else if (MB_MBAFF(sl)) {
  569. top_idx = 0;
  570. } else
  571. return;
  572. }
  573. top_border = sl->top_borders[top_idx][sl->mb_x];
  574. /* There are two lines saved, the line above the top macroblock
  575. * of a pair, and the line above the bottom macroblock. */
  576. AV_COPY128(top_border, src_y + 16 * linesize);
  577. if (pixel_shift)
  578. AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
  579. if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
  580. if (chroma444) {
  581. if (pixel_shift) {
  582. AV_COPY128(top_border + 32, src_cb + 16 * linesize);
  583. AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
  584. AV_COPY128(top_border + 64, src_cr + 16 * linesize);
  585. AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
  586. } else {
  587. AV_COPY128(top_border + 16, src_cb + 16 * linesize);
  588. AV_COPY128(top_border + 32, src_cr + 16 * linesize);
  589. }
  590. } else if (chroma422) {
  591. if (pixel_shift) {
  592. AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
  593. AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
  594. } else {
  595. AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
  596. AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
  597. }
  598. } else {
  599. if (pixel_shift) {
  600. AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
  601. AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
  602. } else {
  603. AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
  604. AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
  605. }
  606. }
  607. }
  608. }
  609. /**
  610. * Initialize implicit_weight table.
  611. * @param field 0/1 initialize the weight for interlaced MBAFF
  612. * -1 initializes the rest
  613. */
  614. static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
  615. {
  616. int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
  617. for (i = 0; i < 2; i++) {
  618. sl->luma_weight_flag[i] = 0;
  619. sl->chroma_weight_flag[i] = 0;
  620. }
  621. if (field < 0) {
  622. if (h->picture_structure == PICT_FRAME) {
  623. cur_poc = h->cur_pic_ptr->poc;
  624. } else {
  625. cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
  626. }
  627. if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
  628. sl->ref_list[0][0].poc + sl->ref_list[1][0].poc == 2 * cur_poc) {
  629. sl->use_weight = 0;
  630. sl->use_weight_chroma = 0;
  631. return;
  632. }
  633. ref_start = 0;
  634. ref_count0 = sl->ref_count[0];
  635. ref_count1 = sl->ref_count[1];
  636. } else {
  637. cur_poc = h->cur_pic_ptr->field_poc[field];
  638. ref_start = 16;
  639. ref_count0 = 16 + 2 * sl->ref_count[0];
  640. ref_count1 = 16 + 2 * sl->ref_count[1];
  641. }
  642. sl->use_weight = 2;
  643. sl->use_weight_chroma = 2;
  644. sl->luma_log2_weight_denom = 5;
  645. sl->chroma_log2_weight_denom = 5;
  646. for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
  647. int poc0 = sl->ref_list[0][ref0].poc;
  648. for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
  649. int w = 32;
  650. if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
  651. int poc1 = sl->ref_list[1][ref1].poc;
  652. int td = av_clip_int8(poc1 - poc0);
  653. if (td) {
  654. int tb = av_clip_int8(cur_poc - poc0);
  655. int tx = (16384 + (FFABS(td) >> 1)) / td;
  656. int dist_scale_factor = (tb * tx + 32) >> 8;
  657. if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
  658. w = 64 - dist_scale_factor;
  659. }
  660. }
  661. if (field < 0) {
  662. sl->implicit_weight[ref0][ref1][0] =
  663. sl->implicit_weight[ref0][ref1][1] = w;
  664. } else {
  665. sl->implicit_weight[ref0][ref1][field] = w;
  666. }
  667. }
  668. }
  669. }
  670. /**
  671. * initialize scan tables
  672. */
  673. static void init_scan_tables(H264Context *h)
  674. {
  675. int i;
  676. for (i = 0; i < 16; i++) {
  677. #define TRANSPOSE(x) (x >> 2) | ((x << 2) & 0xF)
  678. h->zigzag_scan[i] = TRANSPOSE(zigzag_scan[i]);
  679. h->field_scan[i] = TRANSPOSE(field_scan[i]);
  680. #undef TRANSPOSE
  681. }
  682. for (i = 0; i < 64; i++) {
  683. #define TRANSPOSE(x) (x >> 3) | ((x & 7) << 3)
  684. h->zigzag_scan8x8[i] = TRANSPOSE(ff_zigzag_direct[i]);
  685. h->zigzag_scan8x8_cavlc[i] = TRANSPOSE(zigzag_scan8x8_cavlc[i]);
  686. h->field_scan8x8[i] = TRANSPOSE(field_scan8x8[i]);
  687. h->field_scan8x8_cavlc[i] = TRANSPOSE(field_scan8x8_cavlc[i]);
  688. #undef TRANSPOSE
  689. }
  690. if (h->sps.transform_bypass) { // FIXME same ugly
  691. h->zigzag_scan_q0 = zigzag_scan;
  692. h->zigzag_scan8x8_q0 = ff_zigzag_direct;
  693. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  694. h->field_scan_q0 = field_scan;
  695. h->field_scan8x8_q0 = field_scan8x8;
  696. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  697. } else {
  698. h->zigzag_scan_q0 = h->zigzag_scan;
  699. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  700. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  701. h->field_scan_q0 = h->field_scan;
  702. h->field_scan8x8_q0 = h->field_scan8x8;
  703. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  704. }
  705. }
  706. static enum AVPixelFormat get_pixel_format(H264Context *h)
  707. {
  708. #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
  709. CONFIG_H264_VAAPI_HWACCEL + \
  710. (CONFIG_H264_VDA_HWACCEL * 2) + \
  711. CONFIG_H264_VDPAU_HWACCEL)
  712. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  713. const enum AVPixelFormat *choices = pix_fmts;
  714. switch (h->sps.bit_depth_luma) {
  715. case 9:
  716. if (CHROMA444(h)) {
  717. if (h->avctx->colorspace == AVCOL_SPC_RGB) {
  718. *fmt++ = AV_PIX_FMT_GBRP9;
  719. } else
  720. *fmt++ = AV_PIX_FMT_YUV444P9;
  721. } else if (CHROMA422(h))
  722. *fmt++ = AV_PIX_FMT_YUV422P9;
  723. else
  724. *fmt++ = AV_PIX_FMT_YUV420P9;
  725. break;
  726. case 10:
  727. if (CHROMA444(h)) {
  728. if (h->avctx->colorspace == AVCOL_SPC_RGB) {
  729. *fmt++ = AV_PIX_FMT_GBRP10;
  730. } else
  731. *fmt++ = AV_PIX_FMT_YUV444P10;
  732. } else if (CHROMA422(h))
  733. *fmt++ = AV_PIX_FMT_YUV422P10;
  734. else
  735. *fmt++ = AV_PIX_FMT_YUV420P10;
  736. break;
  737. case 8:
  738. #if CONFIG_H264_VDPAU_HWACCEL
  739. *fmt++ = AV_PIX_FMT_VDPAU;
  740. #endif
  741. if (CHROMA444(h)) {
  742. if (h->avctx->colorspace == AVCOL_SPC_RGB)
  743. *fmt++ = AV_PIX_FMT_GBRP;
  744. else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
  745. *fmt++ = AV_PIX_FMT_YUVJ444P;
  746. else
  747. *fmt++ = AV_PIX_FMT_YUV444P;
  748. } else if (CHROMA422(h)) {
  749. if (h->avctx->color_range == AVCOL_RANGE_JPEG)
  750. *fmt++ = AV_PIX_FMT_YUVJ422P;
  751. else
  752. *fmt++ = AV_PIX_FMT_YUV422P;
  753. } else {
  754. #if CONFIG_H264_DXVA2_HWACCEL
  755. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  756. #endif
  757. #if CONFIG_H264_D3D11VA_HWACCEL
  758. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  759. #endif
  760. #if CONFIG_H264_VAAPI_HWACCEL
  761. *fmt++ = AV_PIX_FMT_VAAPI_VLD;
  762. #endif
  763. #if CONFIG_H264_VDA_HWACCEL
  764. *fmt++ = AV_PIX_FMT_VDA_VLD;
  765. *fmt++ = AV_PIX_FMT_VDA;
  766. #endif
  767. if (h->avctx->codec->pix_fmts)
  768. choices = h->avctx->codec->pix_fmts;
  769. else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
  770. *fmt++ = AV_PIX_FMT_YUVJ420P;
  771. else
  772. *fmt++ = AV_PIX_FMT_YUV420P;
  773. }
  774. break;
  775. default:
  776. av_log(h->avctx, AV_LOG_ERROR,
  777. "Unsupported bit depth %d\n", h->sps.bit_depth_luma);
  778. return AVERROR_INVALIDDATA;
  779. }
  780. *fmt = AV_PIX_FMT_NONE;
  781. return ff_get_format(h->avctx, choices);
  782. }
  783. /* export coded and cropped frame dimensions to AVCodecContext */
  784. static int init_dimensions(H264Context *h)
  785. {
  786. int width = h->width - (h->sps.crop_right + h->sps.crop_left);
  787. int height = h->height - (h->sps.crop_top + h->sps.crop_bottom);
  788. int crop_present = h->sps.crop_left || h->sps.crop_top ||
  789. h->sps.crop_right || h->sps.crop_bottom;
  790. /* handle container cropping */
  791. if (!crop_present &&
  792. FFALIGN(h->avctx->width, 16) == h->width &&
  793. FFALIGN(h->avctx->height, 16) == h->height) {
  794. width = h->avctx->width;
  795. height = h->avctx->height;
  796. }
  797. if (width <= 0 || height <= 0) {
  798. av_log(h->avctx, AV_LOG_ERROR, "Invalid cropped dimensions: %dx%d.\n",
  799. width, height);
  800. if (h->avctx->err_recognition & AV_EF_EXPLODE)
  801. return AVERROR_INVALIDDATA;
  802. av_log(h->avctx, AV_LOG_WARNING, "Ignoring cropping information.\n");
  803. h->sps.crop_bottom =
  804. h->sps.crop_top =
  805. h->sps.crop_right =
  806. h->sps.crop_left =
  807. h->sps.crop = 0;
  808. width = h->width;
  809. height = h->height;
  810. }
  811. h->avctx->coded_width = h->width;
  812. h->avctx->coded_height = h->height;
  813. h->avctx->width = width;
  814. h->avctx->height = height;
  815. return 0;
  816. }
  817. static int h264_slice_header_init(H264Context *h)
  818. {
  819. int nb_slices = (HAVE_THREADS &&
  820. h->avctx->active_thread_type & FF_THREAD_SLICE) ?
  821. h->avctx->thread_count : 1;
  822. int i, ret;
  823. ff_set_sar(h->avctx, h->sps.sar);
  824. av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt,
  825. &h->chroma_x_shift, &h->chroma_y_shift);
  826. if (h->sps.timing_info_present_flag) {
  827. int64_t den = h->sps.time_scale;
  828. if (h->x264_build < 44U)
  829. den *= 2;
  830. av_reduce(&h->avctx->framerate.den, &h->avctx->framerate.num,
  831. h->sps.num_units_in_tick, den, 1 << 30);
  832. }
  833. ff_h264_free_tables(h);
  834. h->first_field = 0;
  835. h->prev_interlaced_frame = 1;
  836. init_scan_tables(h);
  837. ret = ff_h264_alloc_tables(h);
  838. if (ret < 0) {
  839. av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
  840. return ret;
  841. }
  842. if (h->sps.bit_depth_luma < 8 || h->sps.bit_depth_luma > 10) {
  843. av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
  844. h->sps.bit_depth_luma);
  845. return AVERROR_INVALIDDATA;
  846. }
  847. h->avctx->bits_per_raw_sample = h->sps.bit_depth_luma;
  848. h->pixel_shift = h->sps.bit_depth_luma > 8;
  849. h->chroma_format_idc = h->sps.chroma_format_idc;
  850. h->bit_depth_luma = h->sps.bit_depth_luma;
  851. ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma,
  852. h->sps.chroma_format_idc);
  853. ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma);
  854. ff_h264qpel_init(&h->h264qpel, h->sps.bit_depth_luma);
  855. ff_h264_pred_init(&h->hpc, h->avctx->codec_id, h->sps.bit_depth_luma,
  856. h->sps.chroma_format_idc);
  857. ff_videodsp_init(&h->vdsp, h->sps.bit_depth_luma);
  858. if (nb_slices > H264_MAX_THREADS || (nb_slices > h->mb_height && h->mb_height)) {
  859. int max_slices;
  860. if (h->mb_height)
  861. max_slices = FFMIN(H264_MAX_THREADS, h->mb_height);
  862. else
  863. max_slices = H264_MAX_THREADS;
  864. av_log(h->avctx, AV_LOG_WARNING, "too many threads/slices %d,"
  865. " reducing to %d\n", nb_slices, max_slices);
  866. nb_slices = max_slices;
  867. }
  868. h->slice_context_count = nb_slices;
  869. if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
  870. ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
  871. if (ret < 0) {
  872. av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
  873. return ret;
  874. }
  875. } else {
  876. for (i = 0; i < h->slice_context_count; i++) {
  877. H264SliceContext *sl = &h->slice_ctx[i];
  878. sl->h264 = h;
  879. sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
  880. sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
  881. sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
  882. if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
  883. av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
  884. return ret;
  885. }
  886. }
  887. }
  888. h->context_initialized = 1;
  889. return 0;
  890. }
  891. /**
  892. * Decode a slice header.
  893. * This will (re)intialize the decoder and call h264_frame_start() as needed.
  894. *
  895. * @param h h264context
  896. *
  897. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  898. */
  899. int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl)
  900. {
  901. unsigned int first_mb_in_slice;
  902. unsigned int pps_id;
  903. int ret;
  904. unsigned int slice_type, tmp, i, j;
  905. int default_ref_list_done = 0;
  906. int last_pic_structure, last_pic_droppable;
  907. int needs_reinit = 0;
  908. int field_pic_flag, bottom_field_flag;
  909. h->qpel_put = h->h264qpel.put_h264_qpel_pixels_tab;
  910. h->qpel_avg = h->h264qpel.avg_h264_qpel_pixels_tab;
  911. first_mb_in_slice = get_ue_golomb(&sl->gb);
  912. if (first_mb_in_slice == 0) { // FIXME better field boundary detection
  913. if (h->current_slice && h->cur_pic_ptr && FIELD_PICTURE(h)) {
  914. ff_h264_field_end(h, sl, 1);
  915. }
  916. h->current_slice = 0;
  917. if (!h->first_field) {
  918. if (h->cur_pic_ptr && !h->droppable) {
  919. ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
  920. h->picture_structure == PICT_BOTTOM_FIELD);
  921. }
  922. h->cur_pic_ptr = NULL;
  923. }
  924. }
  925. slice_type = get_ue_golomb_31(&sl->gb);
  926. if (slice_type > 9) {
  927. av_log(h->avctx, AV_LOG_ERROR,
  928. "slice type %d too large at %d\n",
  929. slice_type, first_mb_in_slice);
  930. return AVERROR_INVALIDDATA;
  931. }
  932. if (slice_type > 4) {
  933. slice_type -= 5;
  934. sl->slice_type_fixed = 1;
  935. } else
  936. sl->slice_type_fixed = 0;
  937. slice_type = golomb_to_pict_type[slice_type];
  938. if (slice_type == AV_PICTURE_TYPE_I ||
  939. (h->current_slice != 0 && slice_type == h->last_slice_type)) {
  940. default_ref_list_done = 1;
  941. }
  942. sl->slice_type = slice_type;
  943. sl->slice_type_nos = slice_type & 3;
  944. if (h->nal_unit_type == NAL_IDR_SLICE &&
  945. sl->slice_type_nos != AV_PICTURE_TYPE_I) {
  946. av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
  947. return AVERROR_INVALIDDATA;
  948. }
  949. // to make a few old functions happy, it's wrong though
  950. h->pict_type = sl->slice_type;
  951. pps_id = get_ue_golomb(&sl->gb);
  952. if (pps_id >= MAX_PPS_COUNT) {
  953. av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", pps_id);
  954. return AVERROR_INVALIDDATA;
  955. }
  956. if (!h->pps_buffers[pps_id]) {
  957. av_log(h->avctx, AV_LOG_ERROR,
  958. "non-existing PPS %u referenced\n",
  959. pps_id);
  960. return AVERROR_INVALIDDATA;
  961. }
  962. h->pps = *h->pps_buffers[pps_id];
  963. if (!h->sps_buffers[h->pps.sps_id]) {
  964. av_log(h->avctx, AV_LOG_ERROR,
  965. "non-existing SPS %u referenced\n",
  966. h->pps.sps_id);
  967. return AVERROR_INVALIDDATA;
  968. }
  969. if (h->pps.sps_id != h->sps.sps_id ||
  970. h->sps_buffers[h->pps.sps_id]->new) {
  971. h->sps_buffers[h->pps.sps_id]->new = 0;
  972. h->sps = *h->sps_buffers[h->pps.sps_id];
  973. if (h->bit_depth_luma != h->sps.bit_depth_luma ||
  974. h->chroma_format_idc != h->sps.chroma_format_idc)
  975. needs_reinit = 1;
  976. if (h->flags & CODEC_FLAG_LOW_DELAY ||
  977. (h->sps.bitstream_restriction_flag &&
  978. !h->sps.num_reorder_frames)) {
  979. if (h->avctx->has_b_frames > 1 || h->delayed_pic[0])
  980. av_log(h->avctx, AV_LOG_WARNING, "Delayed frames seen. "
  981. "Reenabling low delay requires a codec flush.\n");
  982. else
  983. h->low_delay = 1;
  984. }
  985. if (h->avctx->has_b_frames < 2)
  986. h->avctx->has_b_frames = !h->low_delay;
  987. }
  988. h->avctx->profile = ff_h264_get_profile(&h->sps);
  989. h->avctx->level = h->sps.level_idc;
  990. h->avctx->refs = h->sps.ref_frame_count;
  991. if (h->mb_width != h->sps.mb_width ||
  992. h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag))
  993. needs_reinit = 1;
  994. h->mb_width = h->sps.mb_width;
  995. h->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  996. h->mb_num = h->mb_width * h->mb_height;
  997. h->mb_stride = h->mb_width + 1;
  998. h->b_stride = h->mb_width * 4;
  999. h->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p
  1000. h->width = 16 * h->mb_width;
  1001. h->height = 16 * h->mb_height;
  1002. ret = init_dimensions(h);
  1003. if (ret < 0)
  1004. return ret;
  1005. if (h->sps.video_signal_type_present_flag) {
  1006. h->avctx->color_range = h->sps.full_range ? AVCOL_RANGE_JPEG
  1007. : AVCOL_RANGE_MPEG;
  1008. if (h->sps.colour_description_present_flag) {
  1009. if (h->avctx->colorspace != h->sps.colorspace)
  1010. needs_reinit = 1;
  1011. h->avctx->color_primaries = h->sps.color_primaries;
  1012. h->avctx->color_trc = h->sps.color_trc;
  1013. h->avctx->colorspace = h->sps.colorspace;
  1014. }
  1015. }
  1016. if (h->context_initialized && needs_reinit) {
  1017. h->context_initialized = 0;
  1018. if (sl != h->slice_ctx) {
  1019. av_log(h->avctx, AV_LOG_ERROR,
  1020. "changing width %d -> %d / height %d -> %d on "
  1021. "slice %d\n",
  1022. h->width, h->avctx->coded_width,
  1023. h->height, h->avctx->coded_height,
  1024. h->current_slice + 1);
  1025. return AVERROR_INVALIDDATA;
  1026. }
  1027. ff_h264_flush_change(h);
  1028. if ((ret = get_pixel_format(h)) < 0)
  1029. return ret;
  1030. h->avctx->pix_fmt = ret;
  1031. av_log(h->avctx, AV_LOG_INFO, "Reinit context to %dx%d, "
  1032. "pix_fmt: %d\n", h->width, h->height, h->avctx->pix_fmt);
  1033. if ((ret = h264_slice_header_init(h)) < 0) {
  1034. av_log(h->avctx, AV_LOG_ERROR,
  1035. "h264_slice_header_init() failed\n");
  1036. return ret;
  1037. }
  1038. }
  1039. if (!h->context_initialized) {
  1040. if (sl != h->slice_ctx) {
  1041. av_log(h->avctx, AV_LOG_ERROR,
  1042. "Cannot (re-)initialize context during parallel decoding.\n");
  1043. return AVERROR_PATCHWELCOME;
  1044. }
  1045. if ((ret = get_pixel_format(h)) < 0)
  1046. return ret;
  1047. h->avctx->pix_fmt = ret;
  1048. if ((ret = h264_slice_header_init(h)) < 0) {
  1049. av_log(h->avctx, AV_LOG_ERROR,
  1050. "h264_slice_header_init() failed\n");
  1051. return ret;
  1052. }
  1053. }
  1054. if (sl == h->slice_ctx && h->dequant_coeff_pps != pps_id) {
  1055. h->dequant_coeff_pps = pps_id;
  1056. h264_init_dequant_tables(h);
  1057. }
  1058. h->frame_num = get_bits(&sl->gb, h->sps.log2_max_frame_num);
  1059. sl->mb_mbaff = 0;
  1060. h->mb_aff_frame = 0;
  1061. last_pic_structure = h->picture_structure;
  1062. last_pic_droppable = h->droppable;
  1063. h->droppable = h->nal_ref_idc == 0;
  1064. if (h->sps.frame_mbs_only_flag) {
  1065. h->picture_structure = PICT_FRAME;
  1066. } else {
  1067. field_pic_flag = get_bits1(&sl->gb);
  1068. if (field_pic_flag) {
  1069. bottom_field_flag = get_bits1(&sl->gb);
  1070. h->picture_structure = PICT_TOP_FIELD + bottom_field_flag;
  1071. } else {
  1072. h->picture_structure = PICT_FRAME;
  1073. h->mb_aff_frame = h->sps.mb_aff;
  1074. }
  1075. }
  1076. sl->mb_field_decoding_flag = h->picture_structure != PICT_FRAME;
  1077. if (h->current_slice != 0) {
  1078. if (last_pic_structure != h->picture_structure ||
  1079. last_pic_droppable != h->droppable) {
  1080. av_log(h->avctx, AV_LOG_ERROR,
  1081. "Changing field mode (%d -> %d) between slices is not allowed\n",
  1082. last_pic_structure, h->picture_structure);
  1083. h->picture_structure = last_pic_structure;
  1084. h->droppable = last_pic_droppable;
  1085. return AVERROR_INVALIDDATA;
  1086. } else if (!h->cur_pic_ptr) {
  1087. av_log(h->avctx, AV_LOG_ERROR,
  1088. "unset cur_pic_ptr on slice %d\n",
  1089. h->current_slice + 1);
  1090. return AVERROR_INVALIDDATA;
  1091. }
  1092. } else {
  1093. /* Shorten frame num gaps so we don't have to allocate reference
  1094. * frames just to throw them away */
  1095. if (h->frame_num != h->prev_frame_num) {
  1096. int unwrap_prev_frame_num = h->prev_frame_num;
  1097. int max_frame_num = 1 << h->sps.log2_max_frame_num;
  1098. if (unwrap_prev_frame_num > h->frame_num)
  1099. unwrap_prev_frame_num -= max_frame_num;
  1100. if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
  1101. unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
  1102. if (unwrap_prev_frame_num < 0)
  1103. unwrap_prev_frame_num += max_frame_num;
  1104. h->prev_frame_num = unwrap_prev_frame_num;
  1105. }
  1106. }
  1107. /* See if we have a decoded first field looking for a pair...
  1108. * Here, we're using that to see if we should mark previously
  1109. * decode frames as "finished".
  1110. * We have to do that before the "dummy" in-between frame allocation,
  1111. * since that can modify s->current_picture_ptr. */
  1112. if (h->first_field) {
  1113. assert(h->cur_pic_ptr);
  1114. assert(h->cur_pic_ptr->f->buf[0]);
  1115. assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
  1116. /* figure out if we have a complementary field pair */
  1117. if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
  1118. /* Previous field is unmatched. Don't display it, but let it
  1119. * remain for reference if marked as such. */
  1120. if (!last_pic_droppable && last_pic_structure != PICT_FRAME) {
  1121. ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
  1122. last_pic_structure == PICT_TOP_FIELD);
  1123. }
  1124. } else {
  1125. if (h->cur_pic_ptr->frame_num != h->frame_num) {
  1126. /* This and previous field were reference, but had
  1127. * different frame_nums. Consider this field first in
  1128. * pair. Throw away previous field except for reference
  1129. * purposes. */
  1130. if (!last_pic_droppable && last_pic_structure != PICT_FRAME) {
  1131. ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
  1132. last_pic_structure == PICT_TOP_FIELD);
  1133. }
  1134. } else {
  1135. /* Second field in complementary pair */
  1136. if (!((last_pic_structure == PICT_TOP_FIELD &&
  1137. h->picture_structure == PICT_BOTTOM_FIELD) ||
  1138. (last_pic_structure == PICT_BOTTOM_FIELD &&
  1139. h->picture_structure == PICT_TOP_FIELD))) {
  1140. av_log(h->avctx, AV_LOG_ERROR,
  1141. "Invalid field mode combination %d/%d\n",
  1142. last_pic_structure, h->picture_structure);
  1143. h->picture_structure = last_pic_structure;
  1144. h->droppable = last_pic_droppable;
  1145. return AVERROR_INVALIDDATA;
  1146. } else if (last_pic_droppable != h->droppable) {
  1147. avpriv_request_sample(h->avctx,
  1148. "Found reference and non-reference fields in the same frame, which");
  1149. h->picture_structure = last_pic_structure;
  1150. h->droppable = last_pic_droppable;
  1151. return AVERROR_PATCHWELCOME;
  1152. }
  1153. }
  1154. }
  1155. }
  1156. while (h->frame_num != h->prev_frame_num &&
  1157. h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) {
  1158. H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
  1159. av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
  1160. h->frame_num, h->prev_frame_num);
  1161. ret = h264_frame_start(h);
  1162. if (ret < 0) {
  1163. h->first_field = 0;
  1164. return ret;
  1165. }
  1166. h->prev_frame_num++;
  1167. h->prev_frame_num %= 1 << h->sps.log2_max_frame_num;
  1168. h->cur_pic_ptr->frame_num = h->prev_frame_num;
  1169. ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
  1170. ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
  1171. ret = ff_generate_sliding_window_mmcos(h, 1);
  1172. if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
  1173. return ret;
  1174. ret = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  1175. if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
  1176. return ret;
  1177. /* Error concealment: If a ref is missing, copy the previous ref
  1178. * in its place.
  1179. * FIXME: Avoiding a memcpy would be nice, but ref handling makes
  1180. * many assumptions about there being no actual duplicates.
  1181. * FIXME: This does not copy padding for out-of-frame motion
  1182. * vectors. Given we are concealing a lost frame, this probably
  1183. * is not noticeable by comparison, but it should be fixed. */
  1184. if (h->short_ref_count) {
  1185. if (prev) {
  1186. av_image_copy(h->short_ref[0]->f->data,
  1187. h->short_ref[0]->f->linesize,
  1188. (const uint8_t **)prev->f->data,
  1189. prev->f->linesize,
  1190. h->avctx->pix_fmt,
  1191. h->mb_width * 16,
  1192. h->mb_height * 16);
  1193. h->short_ref[0]->poc = prev->poc + 2;
  1194. }
  1195. h->short_ref[0]->frame_num = h->prev_frame_num;
  1196. }
  1197. }
  1198. /* See if we have a decoded first field looking for a pair...
  1199. * We're using that to see whether to continue decoding in that
  1200. * frame, or to allocate a new one. */
  1201. if (h->first_field) {
  1202. assert(h->cur_pic_ptr);
  1203. assert(h->cur_pic_ptr->f->buf[0]);
  1204. assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
  1205. /* figure out if we have a complementary field pair */
  1206. if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
  1207. /* Previous field is unmatched. Don't display it, but let it
  1208. * remain for reference if marked as such. */
  1209. h->cur_pic_ptr = NULL;
  1210. h->first_field = FIELD_PICTURE(h);
  1211. } else {
  1212. if (h->cur_pic_ptr->frame_num != h->frame_num) {
  1213. /* This and the previous field had different frame_nums.
  1214. * Consider this field first in pair. Throw away previous
  1215. * one except for reference purposes. */
  1216. h->first_field = 1;
  1217. h->cur_pic_ptr = NULL;
  1218. } else {
  1219. /* Second field in complementary pair */
  1220. h->first_field = 0;
  1221. }
  1222. }
  1223. } else {
  1224. /* Frame or first field in a potentially complementary pair */
  1225. h->first_field = FIELD_PICTURE(h);
  1226. }
  1227. if (!FIELD_PICTURE(h) || h->first_field) {
  1228. if (h264_frame_start(h) < 0) {
  1229. h->first_field = 0;
  1230. return AVERROR_INVALIDDATA;
  1231. }
  1232. } else {
  1233. release_unused_pictures(h, 0);
  1234. }
  1235. }
  1236. h->cur_pic_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup
  1237. assert(h->mb_num == h->mb_width * h->mb_height);
  1238. if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
  1239. first_mb_in_slice >= h->mb_num) {
  1240. av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  1241. return AVERROR_INVALIDDATA;
  1242. }
  1243. sl->resync_mb_x = sl->mb_x = first_mb_in_slice % h->mb_width;
  1244. sl->resync_mb_y = sl->mb_y = (first_mb_in_slice / h->mb_width) <<
  1245. FIELD_OR_MBAFF_PICTURE(h);
  1246. if (h->picture_structure == PICT_BOTTOM_FIELD)
  1247. sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
  1248. assert(sl->mb_y < h->mb_height);
  1249. if (h->picture_structure == PICT_FRAME) {
  1250. h->curr_pic_num = h->frame_num;
  1251. h->max_pic_num = 1 << h->sps.log2_max_frame_num;
  1252. } else {
  1253. h->curr_pic_num = 2 * h->frame_num + 1;
  1254. h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1);
  1255. }
  1256. if (h->nal_unit_type == NAL_IDR_SLICE)
  1257. get_ue_golomb(&sl->gb); /* idr_pic_id */
  1258. if (h->sps.poc_type == 0) {
  1259. h->poc_lsb = get_bits(&sl->gb, h->sps.log2_max_poc_lsb);
  1260. if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
  1261. h->delta_poc_bottom = get_se_golomb(&sl->gb);
  1262. }
  1263. if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) {
  1264. h->delta_poc[0] = get_se_golomb(&sl->gb);
  1265. if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
  1266. h->delta_poc[1] = get_se_golomb(&sl->gb);
  1267. }
  1268. ff_init_poc(h, h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc);
  1269. if (h->pps.redundant_pic_cnt_present)
  1270. sl->redundant_pic_count = get_ue_golomb(&sl->gb);
  1271. ret = ff_set_ref_count(h, sl);
  1272. if (ret < 0)
  1273. return ret;
  1274. else if (ret == 1)
  1275. default_ref_list_done = 0;
  1276. if (!default_ref_list_done)
  1277. ff_h264_fill_default_ref_list(h, sl);
  1278. if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
  1279. ret = ff_h264_decode_ref_pic_list_reordering(h, sl);
  1280. if (ret < 0) {
  1281. sl->ref_count[1] = sl->ref_count[0] = 0;
  1282. return ret;
  1283. }
  1284. }
  1285. if ((h->pps.weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
  1286. (h->pps.weighted_bipred_idc == 1 &&
  1287. sl->slice_type_nos == AV_PICTURE_TYPE_B))
  1288. ff_pred_weight_table(h, sl);
  1289. else if (h->pps.weighted_bipred_idc == 2 &&
  1290. sl->slice_type_nos == AV_PICTURE_TYPE_B) {
  1291. implicit_weight_table(h, sl, -1);
  1292. } else {
  1293. sl->use_weight = 0;
  1294. for (i = 0; i < 2; i++) {
  1295. sl->luma_weight_flag[i] = 0;
  1296. sl->chroma_weight_flag[i] = 0;
  1297. }
  1298. }
  1299. // If frame-mt is enabled, only update mmco tables for the first slice
  1300. // in a field. Subsequent slices can temporarily clobber h->mmco_index
  1301. // or h->mmco, which will cause ref list mix-ups and decoding errors
  1302. // further down the line. This may break decoding if the first slice is
  1303. // corrupt, thus we only do this if frame-mt is enabled.
  1304. if (h->nal_ref_idc) {
  1305. ret = ff_h264_decode_ref_pic_marking(h, &sl->gb,
  1306. !(h->avctx->active_thread_type & FF_THREAD_FRAME) ||
  1307. h->current_slice == 0);
  1308. if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
  1309. return AVERROR_INVALIDDATA;
  1310. }
  1311. if (FRAME_MBAFF(h)) {
  1312. ff_h264_fill_mbaff_ref_list(h, sl);
  1313. if (h->pps.weighted_bipred_idc == 2 && sl->slice_type_nos == AV_PICTURE_TYPE_B) {
  1314. implicit_weight_table(h, sl, 0);
  1315. implicit_weight_table(h, sl, 1);
  1316. }
  1317. }
  1318. if (sl->slice_type_nos == AV_PICTURE_TYPE_B && !sl->direct_spatial_mv_pred)
  1319. ff_h264_direct_dist_scale_factor(h, sl);
  1320. ff_h264_direct_ref_list_init(h, sl);
  1321. if (sl->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) {
  1322. tmp = get_ue_golomb_31(&sl->gb);
  1323. if (tmp > 2) {
  1324. av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
  1325. return AVERROR_INVALIDDATA;
  1326. }
  1327. sl->cabac_init_idc = tmp;
  1328. }
  1329. sl->last_qscale_diff = 0;
  1330. tmp = h->pps.init_qp + get_se_golomb(&sl->gb);
  1331. if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) {
  1332. av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  1333. return AVERROR_INVALIDDATA;
  1334. }
  1335. sl->qscale = tmp;
  1336. sl->chroma_qp[0] = get_chroma_qp(h, 0, sl->qscale);
  1337. sl->chroma_qp[1] = get_chroma_qp(h, 1, sl->qscale);
  1338. // FIXME qscale / qp ... stuff
  1339. if (sl->slice_type == AV_PICTURE_TYPE_SP)
  1340. get_bits1(&sl->gb); /* sp_for_switch_flag */
  1341. if (sl->slice_type == AV_PICTURE_TYPE_SP ||
  1342. sl->slice_type == AV_PICTURE_TYPE_SI)
  1343. get_se_golomb(&sl->gb); /* slice_qs_delta */
  1344. sl->deblocking_filter = 1;
  1345. sl->slice_alpha_c0_offset = 0;
  1346. sl->slice_beta_offset = 0;
  1347. if (h->pps.deblocking_filter_parameters_present) {
  1348. tmp = get_ue_golomb_31(&sl->gb);
  1349. if (tmp > 2) {
  1350. av_log(h->avctx, AV_LOG_ERROR,
  1351. "deblocking_filter_idc %u out of range\n", tmp);
  1352. return AVERROR_INVALIDDATA;
  1353. }
  1354. sl->deblocking_filter = tmp;
  1355. if (sl->deblocking_filter < 2)
  1356. sl->deblocking_filter ^= 1; // 1<->0
  1357. if (sl->deblocking_filter) {
  1358. sl->slice_alpha_c0_offset = get_se_golomb(&sl->gb) * 2;
  1359. sl->slice_beta_offset = get_se_golomb(&sl->gb) * 2;
  1360. if (sl->slice_alpha_c0_offset > 12 ||
  1361. sl->slice_alpha_c0_offset < -12 ||
  1362. sl->slice_beta_offset > 12 ||
  1363. sl->slice_beta_offset < -12) {
  1364. av_log(h->avctx, AV_LOG_ERROR,
  1365. "deblocking filter parameters %d %d out of range\n",
  1366. sl->slice_alpha_c0_offset, sl->slice_beta_offset);
  1367. return AVERROR_INVALIDDATA;
  1368. }
  1369. }
  1370. }
  1371. if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
  1372. (h->avctx->skip_loop_filter >= AVDISCARD_NONKEY &&
  1373. sl->slice_type_nos != AV_PICTURE_TYPE_I) ||
  1374. (h->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
  1375. sl->slice_type_nos == AV_PICTURE_TYPE_B) ||
  1376. (h->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
  1377. h->nal_ref_idc == 0))
  1378. sl->deblocking_filter = 0;
  1379. if (sl->deblocking_filter == 1 && h->max_contexts > 1) {
  1380. if (h->avctx->flags2 & CODEC_FLAG2_FAST) {
  1381. /* Cheat slightly for speed:
  1382. * Do not bother to deblock across slices. */
  1383. sl->deblocking_filter = 2;
  1384. } else {
  1385. h->max_contexts = 1;
  1386. if (!h->single_decode_warning) {
  1387. av_log(h->avctx, AV_LOG_INFO,
  1388. "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  1389. h->single_decode_warning = 1;
  1390. }
  1391. if (sl != h->slice_ctx) {
  1392. av_log(h->avctx, AV_LOG_ERROR,
  1393. "Deblocking switched inside frame.\n");
  1394. return 1;
  1395. }
  1396. }
  1397. }
  1398. sl->qp_thresh = 15 -
  1399. FFMIN(sl->slice_alpha_c0_offset, sl->slice_beta_offset) -
  1400. FFMAX3(0,
  1401. h->pps.chroma_qp_index_offset[0],
  1402. h->pps.chroma_qp_index_offset[1]) +
  1403. 6 * (h->sps.bit_depth_luma - 8);
  1404. h->last_slice_type = slice_type;
  1405. sl->slice_num = ++h->current_slice;
  1406. if (sl->slice_num >= MAX_SLICES) {
  1407. av_log(h->avctx, AV_LOG_ERROR,
  1408. "Too many slices, increase MAX_SLICES and recompile\n");
  1409. }
  1410. for (j = 0; j < 2; j++) {
  1411. int id_list[16];
  1412. int *ref2frm = sl->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
  1413. for (i = 0; i < 16; i++) {
  1414. id_list[i] = 60;
  1415. if (j < sl->list_count && i < sl->ref_count[j] &&
  1416. sl->ref_list[j][i].parent->f->buf[0]) {
  1417. int k;
  1418. AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
  1419. for (k = 0; k < h->short_ref_count; k++)
  1420. if (h->short_ref[k]->f->buf[0]->buffer == buf) {
  1421. id_list[i] = k;
  1422. break;
  1423. }
  1424. for (k = 0; k < h->long_ref_count; k++)
  1425. if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
  1426. id_list[i] = h->short_ref_count + k;
  1427. break;
  1428. }
  1429. }
  1430. }
  1431. ref2frm[0] =
  1432. ref2frm[1] = -1;
  1433. for (i = 0; i < 16; i++)
  1434. ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
  1435. ref2frm[18 + 0] =
  1436. ref2frm[18 + 1] = -1;
  1437. for (i = 16; i < 48; i++)
  1438. ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
  1439. (sl->ref_list[j][i].reference & 3);
  1440. }
  1441. if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
  1442. av_log(h->avctx, AV_LOG_DEBUG,
  1443. "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  1444. sl->slice_num,
  1445. (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
  1446. first_mb_in_slice,
  1447. av_get_picture_type_char(sl->slice_type),
  1448. sl->slice_type_fixed ? " fix" : "",
  1449. h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
  1450. pps_id, h->frame_num,
  1451. h->cur_pic_ptr->field_poc[0],
  1452. h->cur_pic_ptr->field_poc[1],
  1453. sl->ref_count[0], sl->ref_count[1],
  1454. sl->qscale,
  1455. sl->deblocking_filter,
  1456. sl->slice_alpha_c0_offset, sl->slice_beta_offset,
  1457. sl->use_weight,
  1458. sl->use_weight == 1 && sl->use_weight_chroma ? "c" : "",
  1459. sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
  1460. }
  1461. return 0;
  1462. }
  1463. int ff_h264_get_slice_type(const H264SliceContext *sl)
  1464. {
  1465. switch (sl->slice_type) {
  1466. case AV_PICTURE_TYPE_P:
  1467. return 0;
  1468. case AV_PICTURE_TYPE_B:
  1469. return 1;
  1470. case AV_PICTURE_TYPE_I:
  1471. return 2;
  1472. case AV_PICTURE_TYPE_SP:
  1473. return 3;
  1474. case AV_PICTURE_TYPE_SI:
  1475. return 4;
  1476. default:
  1477. return AVERROR_INVALIDDATA;
  1478. }
  1479. }
  1480. static av_always_inline void fill_filter_caches_inter(const H264Context *h,
  1481. H264SliceContext *sl,
  1482. int mb_type, int top_xy,
  1483. int left_xy[LEFT_MBS],
  1484. int top_type,
  1485. int left_type[LEFT_MBS],
  1486. int mb_xy, int list)
  1487. {
  1488. int b_stride = h->b_stride;
  1489. int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
  1490. int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
  1491. if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
  1492. if (USES_LIST(top_type, list)) {
  1493. const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
  1494. const int b8_xy = 4 * top_xy + 2;
  1495. int (*ref2frm)[64] = sl->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][0] + (MB_MBAFF(sl) ? 20 : 2);
  1496. AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
  1497. ref_cache[0 - 1 * 8] =
  1498. ref_cache[1 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 0]];
  1499. ref_cache[2 - 1 * 8] =
  1500. ref_cache[3 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 1]];
  1501. } else {
  1502. AV_ZERO128(mv_dst - 1 * 8);
  1503. AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
  1504. }
  1505. if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
  1506. if (USES_LIST(left_type[LTOP], list)) {
  1507. const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
  1508. const int b8_xy = 4 * left_xy[LTOP] + 1;
  1509. int (*ref2frm)[64] = sl->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][0] + (MB_MBAFF(sl) ? 20 : 2);
  1510. AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
  1511. AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
  1512. AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
  1513. AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
  1514. ref_cache[-1 + 0] =
  1515. ref_cache[-1 + 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
  1516. ref_cache[-1 + 16] =
  1517. ref_cache[-1 + 24] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
  1518. } else {
  1519. AV_ZERO32(mv_dst - 1 + 0);
  1520. AV_ZERO32(mv_dst - 1 + 8);
  1521. AV_ZERO32(mv_dst - 1 + 16);
  1522. AV_ZERO32(mv_dst - 1 + 24);
  1523. ref_cache[-1 + 0] =
  1524. ref_cache[-1 + 8] =
  1525. ref_cache[-1 + 16] =
  1526. ref_cache[-1 + 24] = LIST_NOT_USED;
  1527. }
  1528. }
  1529. }
  1530. if (!USES_LIST(mb_type, list)) {
  1531. fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
  1532. AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
  1533. AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
  1534. AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
  1535. AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
  1536. return;
  1537. }
  1538. {
  1539. int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
  1540. int (*ref2frm)[64] = sl->ref2frm[sl->slice_num & (MAX_SLICES - 1)][0] + (MB_MBAFF(sl) ? 20 : 2);
  1541. uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]], ref2frm[list][ref[1]]) & 0x00FF00FF) * 0x0101;
  1542. uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]], ref2frm[list][ref[3]]) & 0x00FF00FF) * 0x0101;
  1543. AV_WN32A(&ref_cache[0 * 8], ref01);
  1544. AV_WN32A(&ref_cache[1 * 8], ref01);
  1545. AV_WN32A(&ref_cache[2 * 8], ref23);
  1546. AV_WN32A(&ref_cache[3 * 8], ref23);
  1547. }
  1548. {
  1549. int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
  1550. AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
  1551. AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
  1552. AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
  1553. AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
  1554. }
  1555. }
  1556. /**
  1557. *
  1558. * @return non zero if the loop filter can be skipped
  1559. */
  1560. static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
  1561. {
  1562. const int mb_xy = sl->mb_xy;
  1563. int top_xy, left_xy[LEFT_MBS];
  1564. int top_type, left_type[LEFT_MBS];
  1565. uint8_t *nnz;
  1566. uint8_t *nnz_cache;
  1567. top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
  1568. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  1569. * stuff, I can't imagine that these complex rules are worth it. */
  1570. left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
  1571. if (FRAME_MBAFF(h)) {
  1572. const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
  1573. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  1574. if (sl->mb_y & 1) {
  1575. if (left_mb_field_flag != curr_mb_field_flag)
  1576. left_xy[LTOP] -= h->mb_stride;
  1577. } else {
  1578. if (curr_mb_field_flag)
  1579. top_xy += h->mb_stride &
  1580. (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
  1581. if (left_mb_field_flag != curr_mb_field_flag)
  1582. left_xy[LBOT] += h->mb_stride;
  1583. }
  1584. }
  1585. sl->top_mb_xy = top_xy;
  1586. sl->left_mb_xy[LTOP] = left_xy[LTOP];
  1587. sl->left_mb_xy[LBOT] = left_xy[LBOT];
  1588. {
  1589. /* For sufficiently low qp, filtering wouldn't do anything.
  1590. * This is a conservative estimate: could also check beta_offset
  1591. * and more accurate chroma_qp. */
  1592. int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
  1593. int qp = h->cur_pic.qscale_table[mb_xy];
  1594. if (qp <= qp_thresh &&
  1595. (left_xy[LTOP] < 0 ||
  1596. ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
  1597. (top_xy < 0 ||
  1598. ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
  1599. if (!FRAME_MBAFF(h))
  1600. return 1;
  1601. if ((left_xy[LTOP] < 0 ||
  1602. ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
  1603. (top_xy < h->mb_stride ||
  1604. ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
  1605. return 1;
  1606. }
  1607. }
  1608. top_type = h->cur_pic.mb_type[top_xy];
  1609. left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
  1610. left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
  1611. if (sl->deblocking_filter == 2) {
  1612. if (h->slice_table[top_xy] != sl->slice_num)
  1613. top_type = 0;
  1614. if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
  1615. left_type[LTOP] = left_type[LBOT] = 0;
  1616. } else {
  1617. if (h->slice_table[top_xy] == 0xFFFF)
  1618. top_type = 0;
  1619. if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
  1620. left_type[LTOP] = left_type[LBOT] = 0;
  1621. }
  1622. sl->top_type = top_type;
  1623. sl->left_type[LTOP] = left_type[LTOP];
  1624. sl->left_type[LBOT] = left_type[LBOT];
  1625. if (IS_INTRA(mb_type))
  1626. return 0;
  1627. fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
  1628. top_type, left_type, mb_xy, 0);
  1629. if (sl->list_count == 2)
  1630. fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
  1631. top_type, left_type, mb_xy, 1);
  1632. nnz = h->non_zero_count[mb_xy];
  1633. nnz_cache = sl->non_zero_count_cache;
  1634. AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
  1635. AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
  1636. AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
  1637. AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
  1638. sl->cbp = h->cbp_table[mb_xy];
  1639. if (top_type) {
  1640. nnz = h->non_zero_count[top_xy];
  1641. AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
  1642. }
  1643. if (left_type[LTOP]) {
  1644. nnz = h->non_zero_count[left_xy[LTOP]];
  1645. nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
  1646. nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
  1647. nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
  1648. nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
  1649. }
  1650. /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
  1651. * from what the loop filter needs */
  1652. if (!CABAC(h) && h->pps.transform_8x8_mode) {
  1653. if (IS_8x8DCT(top_type)) {
  1654. nnz_cache[4 + 8 * 0] =
  1655. nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
  1656. nnz_cache[6 + 8 * 0] =
  1657. nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
  1658. }
  1659. if (IS_8x8DCT(left_type[LTOP])) {
  1660. nnz_cache[3 + 8 * 1] =
  1661. nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
  1662. }
  1663. if (IS_8x8DCT(left_type[LBOT])) {
  1664. nnz_cache[3 + 8 * 3] =
  1665. nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
  1666. }
  1667. if (IS_8x8DCT(mb_type)) {
  1668. nnz_cache[scan8[0]] =
  1669. nnz_cache[scan8[1]] =
  1670. nnz_cache[scan8[2]] =
  1671. nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
  1672. nnz_cache[scan8[0 + 4]] =
  1673. nnz_cache[scan8[1 + 4]] =
  1674. nnz_cache[scan8[2 + 4]] =
  1675. nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
  1676. nnz_cache[scan8[0 + 8]] =
  1677. nnz_cache[scan8[1 + 8]] =
  1678. nnz_cache[scan8[2 + 8]] =
  1679. nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
  1680. nnz_cache[scan8[0 + 12]] =
  1681. nnz_cache[scan8[1 + 12]] =
  1682. nnz_cache[scan8[2 + 12]] =
  1683. nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
  1684. }
  1685. }
  1686. return 0;
  1687. }
  1688. static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
  1689. {
  1690. uint8_t *dest_y, *dest_cb, *dest_cr;
  1691. int linesize, uvlinesize, mb_x, mb_y;
  1692. const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
  1693. const int old_slice_type = sl->slice_type;
  1694. const int pixel_shift = h->pixel_shift;
  1695. const int block_h = 16 >> h->chroma_y_shift;
  1696. if (sl->deblocking_filter) {
  1697. for (mb_x = start_x; mb_x < end_x; mb_x++)
  1698. for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
  1699. int mb_xy, mb_type;
  1700. mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
  1701. sl->slice_num = h->slice_table[mb_xy];
  1702. mb_type = h->cur_pic.mb_type[mb_xy];
  1703. sl->list_count = h->list_counts[mb_xy];
  1704. if (FRAME_MBAFF(h))
  1705. sl->mb_mbaff =
  1706. sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
  1707. sl->mb_x = mb_x;
  1708. sl->mb_y = mb_y;
  1709. dest_y = h->cur_pic.f->data[0] +
  1710. ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
  1711. dest_cb = h->cur_pic.f->data[1] +
  1712. (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
  1713. mb_y * sl->uvlinesize * block_h;
  1714. dest_cr = h->cur_pic.f->data[2] +
  1715. (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
  1716. mb_y * sl->uvlinesize * block_h;
  1717. // FIXME simplify above
  1718. if (MB_FIELD(sl)) {
  1719. linesize = sl->mb_linesize = sl->linesize * 2;
  1720. uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
  1721. if (mb_y & 1) { // FIXME move out of this function?
  1722. dest_y -= sl->linesize * 15;
  1723. dest_cb -= sl->uvlinesize * (block_h - 1);
  1724. dest_cr -= sl->uvlinesize * (block_h - 1);
  1725. }
  1726. } else {
  1727. linesize = sl->mb_linesize = sl->linesize;
  1728. uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
  1729. }
  1730. backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
  1731. uvlinesize, 0);
  1732. if (fill_filter_caches(h, sl, mb_type))
  1733. continue;
  1734. sl->chroma_qp[0] = get_chroma_qp(h, 0, h->cur_pic.qscale_table[mb_xy]);
  1735. sl->chroma_qp[1] = get_chroma_qp(h, 1, h->cur_pic.qscale_table[mb_xy]);
  1736. if (FRAME_MBAFF(h)) {
  1737. ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
  1738. linesize, uvlinesize);
  1739. } else {
  1740. ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
  1741. dest_cr, linesize, uvlinesize);
  1742. }
  1743. }
  1744. }
  1745. sl->slice_type = old_slice_type;
  1746. sl->mb_x = end_x;
  1747. sl->mb_y = end_mb_y - FRAME_MBAFF(h);
  1748. sl->chroma_qp[0] = get_chroma_qp(h, 0, sl->qscale);
  1749. sl->chroma_qp[1] = get_chroma_qp(h, 1, sl->qscale);
  1750. }
  1751. static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
  1752. {
  1753. const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
  1754. int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
  1755. h->cur_pic.mb_type[mb_xy - 1] :
  1756. (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
  1757. h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
  1758. sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  1759. }
  1760. /**
  1761. * Draw edges and report progress for the last MB row.
  1762. */
  1763. static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
  1764. {
  1765. int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
  1766. int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
  1767. int height = 16 << FRAME_MBAFF(h);
  1768. int deblock_border = (16 + 4) << FRAME_MBAFF(h);
  1769. if (sl->deblocking_filter) {
  1770. if ((top + height) >= pic_height)
  1771. height += deblock_border;
  1772. top -= deblock_border;
  1773. }
  1774. if (top >= pic_height || (top + height) < 0)
  1775. return;
  1776. height = FFMIN(height, pic_height - top);
  1777. if (top < 0) {
  1778. height = top + height;
  1779. top = 0;
  1780. }
  1781. ff_h264_draw_horiz_band(h, sl, top, height);
  1782. if (h->droppable)
  1783. return;
  1784. ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
  1785. h->picture_structure == PICT_BOTTOM_FIELD);
  1786. }
  1787. static void er_add_slice(H264SliceContext *sl,
  1788. int startx, int starty,
  1789. int endx, int endy, int status)
  1790. {
  1791. #if CONFIG_ERROR_RESILIENCE
  1792. ERContext *er = &sl->er;
  1793. if (!sl->h264->enable_er)
  1794. return;
  1795. er->ref_count = sl->ref_count[0];
  1796. ff_er_add_slice(er, startx, starty, endx, endy, status);
  1797. #endif
  1798. }
  1799. static int decode_slice(struct AVCodecContext *avctx, void *arg)
  1800. {
  1801. H264SliceContext *sl = arg;
  1802. const H264Context *h = sl->h264;
  1803. int lf_x_start = sl->mb_x;
  1804. int ret;
  1805. sl->linesize = h->cur_pic_ptr->f->linesize[0];
  1806. sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
  1807. ret = alloc_scratch_buffers(sl, sl->linesize);
  1808. if (ret < 0)
  1809. return ret;
  1810. sl->mb_skip_run = -1;
  1811. sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
  1812. avctx->codec_id != AV_CODEC_ID_H264 ||
  1813. (CONFIG_GRAY && (h->flags & CODEC_FLAG_GRAY));
  1814. if (h->pps.cabac) {
  1815. /* realign */
  1816. align_get_bits(&sl->gb);
  1817. /* init cabac */
  1818. ff_init_cabac_decoder(&sl->cabac,
  1819. sl->gb.buffer + get_bits_count(&sl->gb) / 8,
  1820. (get_bits_left(&sl->gb) + 7) / 8);
  1821. ff_h264_init_cabac_states(h, sl);
  1822. for (;;) {
  1823. // START_TIMER
  1824. int ret = ff_h264_decode_mb_cabac(h, sl);
  1825. int eos;
  1826. // STOP_TIMER("decode_mb_cabac")
  1827. if (ret >= 0)
  1828. ff_h264_hl_decode_mb(h, sl);
  1829. // FIXME optimal? or let mb_decode decode 16x32 ?
  1830. if (ret >= 0 && FRAME_MBAFF(h)) {
  1831. sl->mb_y++;
  1832. ret = ff_h264_decode_mb_cabac(h, sl);
  1833. if (ret >= 0)
  1834. ff_h264_hl_decode_mb(h, sl);
  1835. sl->mb_y--;
  1836. }
  1837. eos = get_cabac_terminate(&sl->cabac);
  1838. if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
  1839. sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
  1840. er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
  1841. sl->mb_y, ER_MB_END);
  1842. if (sl->mb_x >= lf_x_start)
  1843. loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
  1844. return 0;
  1845. }
  1846. if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
  1847. av_log(h->avctx, AV_LOG_ERROR,
  1848. "error while decoding MB %d %d, bytestream %td\n",
  1849. sl->mb_x, sl->mb_y,
  1850. sl->cabac.bytestream_end - sl->cabac.bytestream);
  1851. er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
  1852. sl->mb_y, ER_MB_ERROR);
  1853. return AVERROR_INVALIDDATA;
  1854. }
  1855. if (++sl->mb_x >= h->mb_width) {
  1856. loop_filter(h, sl, lf_x_start, sl->mb_x);
  1857. sl->mb_x = lf_x_start = 0;
  1858. decode_finish_row(h, sl);
  1859. ++sl->mb_y;
  1860. if (FIELD_OR_MBAFF_PICTURE(h)) {
  1861. ++sl->mb_y;
  1862. if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
  1863. predict_field_decoding_flag(h, sl);
  1864. }
  1865. }
  1866. if (eos || sl->mb_y >= h->mb_height) {
  1867. ff_tlog(h->avctx, "slice end %d %d\n",
  1868. get_bits_count(&sl->gb), sl->gb.size_in_bits);
  1869. er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
  1870. sl->mb_y, ER_MB_END);
  1871. if (sl->mb_x > lf_x_start)
  1872. loop_filter(h, sl, lf_x_start, sl->mb_x);
  1873. return 0;
  1874. }
  1875. }
  1876. } else {
  1877. for (;;) {
  1878. int ret = ff_h264_decode_mb_cavlc(h, sl);
  1879. if (ret >= 0)
  1880. ff_h264_hl_decode_mb(h, sl);
  1881. // FIXME optimal? or let mb_decode decode 16x32 ?
  1882. if (ret >= 0 && FRAME_MBAFF(h)) {
  1883. sl->mb_y++;
  1884. ret = ff_h264_decode_mb_cavlc(h, sl);
  1885. if (ret >= 0)
  1886. ff_h264_hl_decode_mb(h, sl);
  1887. sl->mb_y--;
  1888. }
  1889. if (ret < 0) {
  1890. av_log(h->avctx, AV_LOG_ERROR,
  1891. "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
  1892. er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
  1893. sl->mb_y, ER_MB_ERROR);
  1894. return ret;
  1895. }
  1896. if (++sl->mb_x >= h->mb_width) {
  1897. loop_filter(h, sl, lf_x_start, sl->mb_x);
  1898. sl->mb_x = lf_x_start = 0;
  1899. decode_finish_row(h, sl);
  1900. ++sl->mb_y;
  1901. if (FIELD_OR_MBAFF_PICTURE(h)) {
  1902. ++sl->mb_y;
  1903. if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
  1904. predict_field_decoding_flag(h, sl);
  1905. }
  1906. if (sl->mb_y >= h->mb_height) {
  1907. ff_tlog(h->avctx, "slice end %d %d\n",
  1908. get_bits_count(&sl->gb), sl->gb.size_in_bits);
  1909. if (get_bits_left(&sl->gb) == 0) {
  1910. er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
  1911. sl->mb_x - 1, sl->mb_y, ER_MB_END);
  1912. return 0;
  1913. } else {
  1914. er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
  1915. sl->mb_x - 1, sl->mb_y, ER_MB_END);
  1916. return AVERROR_INVALIDDATA;
  1917. }
  1918. }
  1919. }
  1920. if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
  1921. ff_tlog(h->avctx, "slice end %d %d\n",
  1922. get_bits_count(&sl->gb), sl->gb.size_in_bits);
  1923. if (get_bits_left(&sl->gb) == 0) {
  1924. er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
  1925. sl->mb_x - 1, sl->mb_y, ER_MB_END);
  1926. if (sl->mb_x > lf_x_start)
  1927. loop_filter(h, sl, lf_x_start, sl->mb_x);
  1928. return 0;
  1929. } else {
  1930. er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
  1931. sl->mb_y, ER_MB_ERROR);
  1932. return AVERROR_INVALIDDATA;
  1933. }
  1934. }
  1935. }
  1936. }
  1937. }
  1938. /**
  1939. * Call decode_slice() for each context.
  1940. *
  1941. * @param h h264 master context
  1942. * @param context_count number of contexts to execute
  1943. */
  1944. int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count)
  1945. {
  1946. AVCodecContext *const avctx = h->avctx;
  1947. H264SliceContext *sl;
  1948. int i;
  1949. if (h->avctx->hwaccel)
  1950. return 0;
  1951. if (context_count == 1) {
  1952. int ret = decode_slice(avctx, &h->slice_ctx[0]);
  1953. h->mb_y = h->slice_ctx[0].mb_y;
  1954. return ret;
  1955. } else {
  1956. for (i = 1; i < context_count; i++) {
  1957. sl = &h->slice_ctx[i];
  1958. sl->er.error_count = 0;
  1959. }
  1960. avctx->execute(avctx, decode_slice, h->slice_ctx,
  1961. NULL, context_count, sizeof(h->slice_ctx[0]));
  1962. /* pull back stuff from slices to master context */
  1963. sl = &h->slice_ctx[context_count - 1];
  1964. h->mb_y = sl->mb_y;
  1965. for (i = 1; i < context_count; i++)
  1966. h->slice_ctx[0].er.error_count += h->slice_ctx[i].er.error_count;
  1967. }
  1968. return 0;
  1969. }