You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1114 lines
38KB

  1. /*
  2. * FFV1 encoder for libavcodec
  3. *
  4. * Copyright (c) 2003-2012 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec) encoder
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/avassert.h"
  28. #include "libavutil/pixdesc.h"
  29. #include "libavutil/crc.h"
  30. #include "libavutil/opt.h"
  31. #include "libavutil/imgutils.h"
  32. #include "avcodec.h"
  33. #include "internal.h"
  34. #include "get_bits.h"
  35. #include "put_bits.h"
  36. #include "rangecoder.h"
  37. #include "golomb.h"
  38. #include "mathops.h"
  39. #include "ffv1.h"
  40. static void find_best_state(uint8_t best_state[256][256],
  41. const uint8_t one_state[256])
  42. {
  43. int i, j, k, m;
  44. double l2tab[256];
  45. for (i = 1; i < 256; i++)
  46. l2tab[i] = log2(i / 256.0);
  47. for (i = 0; i < 256; i++) {
  48. double best_len[256];
  49. double p = i / 256.0;
  50. for (j = 0; j < 256; j++)
  51. best_len[j] = 1 << 30;
  52. for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
  53. double occ[256] = { 0 };
  54. double len = 0;
  55. occ[j] = 1.0;
  56. for (k = 0; k < 256; k++) {
  57. double newocc[256] = { 0 };
  58. for (m = 1; m < 256; m++)
  59. if (occ[m]) {
  60. len -= occ[m] * (p * l2tab[m] +
  61. (1 - p) * l2tab[256 - m]);
  62. }
  63. if (len < best_len[k]) {
  64. best_len[k] = len;
  65. best_state[i][k] = j;
  66. }
  67. for (m = 1; m < 256; m++)
  68. if (occ[m]) {
  69. newocc[one_state[m]] += occ[m] * p;
  70. newocc[256 - one_state[256 - m]] += occ[m] * (1 - p);
  71. }
  72. memcpy(occ, newocc, sizeof(occ));
  73. }
  74. }
  75. }
  76. }
  77. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c,
  78. uint8_t *state, int v,
  79. int is_signed,
  80. uint64_t rc_stat[256][2],
  81. uint64_t rc_stat2[32][2])
  82. {
  83. int i;
  84. #define put_rac(C, S, B) \
  85. do { \
  86. if (rc_stat) { \
  87. rc_stat[*(S)][B]++; \
  88. rc_stat2[(S) - state][B]++; \
  89. } \
  90. put_rac(C, S, B); \
  91. } while (0)
  92. if (v) {
  93. const int a = FFABS(v);
  94. const int e = av_log2(a);
  95. put_rac(c, state + 0, 0);
  96. if (e <= 9) {
  97. for (i = 0; i < e; i++)
  98. put_rac(c, state + 1 + i, 1); // 1..10
  99. put_rac(c, state + 1 + i, 0);
  100. for (i = e - 1; i >= 0; i--)
  101. put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31
  102. if (is_signed)
  103. put_rac(c, state + 11 + e, v < 0); // 11..21
  104. } else {
  105. for (i = 0; i < e; i++)
  106. put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10
  107. put_rac(c, state + 1 + 9, 0);
  108. for (i = e - 1; i >= 0; i--)
  109. put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31
  110. if (is_signed)
  111. put_rac(c, state + 11 + 10, v < 0); // 11..21
  112. }
  113. } else {
  114. put_rac(c, state + 0, 1);
  115. }
  116. #undef put_rac
  117. }
  118. static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
  119. int v, int is_signed)
  120. {
  121. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  122. }
  123. static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
  124. int v, int bits)
  125. {
  126. int i, k, code;
  127. v = fold(v - state->bias, bits);
  128. i = state->count;
  129. k = 0;
  130. while (i < state->error_sum) { // FIXME: optimize
  131. k++;
  132. i += i;
  133. }
  134. assert(k <= 13);
  135. #if 0 // JPEG LS
  136. if (k == 0 && 2 * state->drift <= -state->count)
  137. code = v ^ (-1);
  138. else
  139. code = v;
  140. #else
  141. code = v ^ ((2 * state->drift + state->count) >> 31);
  142. #endif
  143. ff_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
  144. state->bias, state->error_sum, state->drift, state->count, k);
  145. set_sr_golomb(pb, code, k, 12, bits);
  146. update_vlc_state(state, v);
  147. }
  148. static av_always_inline int encode_line(FFV1Context *s, int w,
  149. int16_t *sample[3],
  150. int plane_index, int bits)
  151. {
  152. PlaneContext *const p = &s->plane[plane_index];
  153. RangeCoder *const c = &s->c;
  154. int x;
  155. int run_index = s->run_index;
  156. int run_count = 0;
  157. int run_mode = 0;
  158. if (s->ac) {
  159. if (c->bytestream_end - c->bytestream < w * 20) {
  160. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  161. return AVERROR_INVALIDDATA;
  162. }
  163. } else {
  164. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < w * 4) {
  165. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  166. return AVERROR_INVALIDDATA;
  167. }
  168. }
  169. for (x = 0; x < w; x++) {
  170. int diff, context;
  171. context = get_context(p, sample[0] + x, sample[1] + x, sample[2] + x);
  172. diff = sample[0][x] - predict(sample[0] + x, sample[1] + x);
  173. if (context < 0) {
  174. context = -context;
  175. diff = -diff;
  176. }
  177. diff = fold(diff, bits);
  178. if (s->ac) {
  179. if (s->flags & CODEC_FLAG_PASS1) {
  180. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat,
  181. s->rc_stat2[p->quant_table_index][context]);
  182. } else {
  183. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  184. }
  185. } else {
  186. if (context == 0)
  187. run_mode = 1;
  188. if (run_mode) {
  189. if (diff) {
  190. while (run_count >= 1 << ff_log2_run[run_index]) {
  191. run_count -= 1 << ff_log2_run[run_index];
  192. run_index++;
  193. put_bits(&s->pb, 1, 1);
  194. }
  195. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  196. if (run_index)
  197. run_index--;
  198. run_count = 0;
  199. run_mode = 0;
  200. if (diff > 0)
  201. diff--;
  202. } else {
  203. run_count++;
  204. }
  205. }
  206. ff_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n",
  207. run_count, run_index, run_mode, x,
  208. (int)put_bits_count(&s->pb));
  209. if (run_mode == 0)
  210. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  211. }
  212. }
  213. if (run_mode) {
  214. while (run_count >= 1 << ff_log2_run[run_index]) {
  215. run_count -= 1 << ff_log2_run[run_index];
  216. run_index++;
  217. put_bits(&s->pb, 1, 1);
  218. }
  219. if (run_count)
  220. put_bits(&s->pb, 1, 1);
  221. }
  222. s->run_index = run_index;
  223. return 0;
  224. }
  225. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h,
  226. int stride, int plane_index)
  227. {
  228. int x, y, i;
  229. const int ring_size = s->avctx->context_model ? 3 : 2;
  230. int16_t *sample[3];
  231. s->run_index = 0;
  232. memset(s->sample_buffer, 0, ring_size * (w + 6) * sizeof(*s->sample_buffer));
  233. for (y = 0; y < h; y++) {
  234. for (i = 0; i < ring_size; i++)
  235. sample[i] = s->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
  236. sample[0][-1] = sample[1][0];
  237. sample[1][w] = sample[1][w - 1];
  238. // { START_TIMER
  239. if (s->bits_per_raw_sample <= 8) {
  240. for (x = 0; x < w; x++)
  241. sample[0][x] = src[x + stride * y];
  242. encode_line(s, w, sample, plane_index, 8);
  243. } else {
  244. if (s->packed_at_lsb) {
  245. for (x = 0; x < w; x++)
  246. sample[0][x] = ((uint16_t *)(src + stride * y))[x];
  247. } else {
  248. for (x = 0; x < w; x++)
  249. sample[0][x] =
  250. ((uint16_t *)(src + stride * y))[x] >> (16 - s->bits_per_raw_sample);
  251. }
  252. encode_line(s, w, sample, plane_index, s->bits_per_raw_sample);
  253. }
  254. // STOP_TIMER("encode line") }
  255. }
  256. }
  257. static void encode_rgb_frame(FFV1Context *s, const uint8_t *src[3],
  258. int w, int h, const int stride[3])
  259. {
  260. int x, y, p, i;
  261. const int ring_size = s->avctx->context_model ? 3 : 2;
  262. int16_t *sample[MAX_PLANES][3];
  263. int lbd = s->avctx->bits_per_raw_sample <= 8;
  264. int bits = s->avctx->bits_per_raw_sample > 0
  265. ? s->avctx->bits_per_raw_sample
  266. : 8;
  267. int offset = 1 << bits;
  268. s->run_index = 0;
  269. memset(s->sample_buffer, 0, ring_size * MAX_PLANES *
  270. (w + 6) * sizeof(*s->sample_buffer));
  271. for (y = 0; y < h; y++) {
  272. for (i = 0; i < ring_size; i++)
  273. for (p = 0; p < MAX_PLANES; p++)
  274. sample[p][i] = s->sample_buffer + p * ring_size *
  275. (w + 6) +
  276. ((h + i - y) % ring_size) * (w + 6) + 3;
  277. for (x = 0; x < w; x++) {
  278. int b, g, r, av_uninit(a);
  279. if (lbd) {
  280. unsigned v = *((const uint32_t *)(src[0] + x * 4 + stride[0] * y));
  281. b = v & 0xFF;
  282. g = (v >> 8) & 0xFF;
  283. r = (v >> 16) & 0xFF;
  284. a = v >> 24;
  285. } else {
  286. b = *((const uint16_t *)(src[0] + x * 2 + stride[0] * y));
  287. g = *((const uint16_t *)(src[1] + x * 2 + stride[1] * y));
  288. r = *((const uint16_t *)(src[2] + x * 2 + stride[2] * y));
  289. }
  290. b -= g;
  291. r -= g;
  292. g += (b + r) >> 2;
  293. b += offset;
  294. r += offset;
  295. sample[0][0][x] = g;
  296. sample[1][0][x] = b;
  297. sample[2][0][x] = r;
  298. sample[3][0][x] = a;
  299. }
  300. for (p = 0; p < 3 + s->transparency; p++) {
  301. sample[p][0][-1] = sample[p][1][0];
  302. sample[p][1][w] = sample[p][1][w - 1];
  303. if (lbd)
  304. encode_line(s, w, sample[p], (p + 1) / 2, 9);
  305. else
  306. encode_line(s, w, sample[p], (p + 1) / 2, bits + 1);
  307. }
  308. }
  309. }
  310. static void write_quant_table(RangeCoder *c, int16_t *quant_table)
  311. {
  312. int last = 0;
  313. int i;
  314. uint8_t state[CONTEXT_SIZE];
  315. memset(state, 128, sizeof(state));
  316. for (i = 1; i < 128; i++)
  317. if (quant_table[i] != quant_table[i - 1]) {
  318. put_symbol(c, state, i - last - 1, 0);
  319. last = i;
  320. }
  321. put_symbol(c, state, i - last - 1, 0);
  322. }
  323. static void write_quant_tables(RangeCoder *c,
  324. int16_t quant_table[MAX_CONTEXT_INPUTS][256])
  325. {
  326. int i;
  327. for (i = 0; i < 5; i++)
  328. write_quant_table(c, quant_table[i]);
  329. }
  330. static void write_header(FFV1Context *f)
  331. {
  332. uint8_t state[CONTEXT_SIZE];
  333. int i, j;
  334. RangeCoder *const c = &f->slice_context[0]->c;
  335. memset(state, 128, sizeof(state));
  336. if (f->version < 2) {
  337. put_symbol(c, state, f->version, 0);
  338. put_symbol(c, state, f->ac, 0);
  339. if (f->ac > 1) {
  340. for (i = 1; i < 256; i++)
  341. put_symbol(c, state,
  342. f->state_transition[i] - c->one_state[i], 1);
  343. }
  344. put_symbol(c, state, f->colorspace, 0); // YUV cs type
  345. if (f->version > 0)
  346. put_symbol(c, state, f->bits_per_raw_sample, 0);
  347. put_rac(c, state, f->chroma_planes);
  348. put_symbol(c, state, f->chroma_h_shift, 0);
  349. put_symbol(c, state, f->chroma_v_shift, 0);
  350. put_rac(c, state, f->transparency);
  351. write_quant_tables(c, f->quant_table);
  352. } else if (f->version < 3) {
  353. put_symbol(c, state, f->slice_count, 0);
  354. for (i = 0; i < f->slice_count; i++) {
  355. FFV1Context *fs = f->slice_context[i];
  356. put_symbol(c, state,
  357. (fs->slice_x + 1) * f->num_h_slices / f->width, 0);
  358. put_symbol(c, state,
  359. (fs->slice_y + 1) * f->num_v_slices / f->height, 0);
  360. put_symbol(c, state,
  361. (fs->slice_width + 1) * f->num_h_slices / f->width - 1,
  362. 0);
  363. put_symbol(c, state,
  364. (fs->slice_height + 1) * f->num_v_slices / f->height - 1,
  365. 0);
  366. for (j = 0; j < f->plane_count; j++) {
  367. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  368. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  369. }
  370. }
  371. }
  372. }
  373. static int write_extradata(FFV1Context *f)
  374. {
  375. RangeCoder *const c = &f->c;
  376. uint8_t state[CONTEXT_SIZE];
  377. int i, j, k;
  378. uint8_t state2[32][CONTEXT_SIZE];
  379. unsigned v;
  380. memset(state2, 128, sizeof(state2));
  381. memset(state, 128, sizeof(state));
  382. f->avctx->extradata_size = 10000 + 4 +
  383. (11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32;
  384. f->avctx->extradata = av_malloc(f->avctx->extradata_size);
  385. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  386. ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
  387. put_symbol(c, state, f->version, 0);
  388. if (f->version > 2) {
  389. if (f->version == 3)
  390. f->minor_version = 2;
  391. put_symbol(c, state, f->minor_version, 0);
  392. }
  393. put_symbol(c, state, f->ac, 0);
  394. if (f->ac > 1)
  395. for (i = 1; i < 256; i++)
  396. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  397. put_symbol(c, state, f->colorspace, 0); // YUV cs type
  398. put_symbol(c, state, f->bits_per_raw_sample, 0);
  399. put_rac(c, state, f->chroma_planes);
  400. put_symbol(c, state, f->chroma_h_shift, 0);
  401. put_symbol(c, state, f->chroma_v_shift, 0);
  402. put_rac(c, state, f->transparency);
  403. put_symbol(c, state, f->num_h_slices - 1, 0);
  404. put_symbol(c, state, f->num_v_slices - 1, 0);
  405. put_symbol(c, state, f->quant_table_count, 0);
  406. for (i = 0; i < f->quant_table_count; i++)
  407. write_quant_tables(c, f->quant_tables[i]);
  408. for (i = 0; i < f->quant_table_count; i++) {
  409. for (j = 0; j < f->context_count[i] * CONTEXT_SIZE; j++)
  410. if (f->initial_states[i] && f->initial_states[i][0][j] != 128)
  411. break;
  412. if (j < f->context_count[i] * CONTEXT_SIZE) {
  413. put_rac(c, state, 1);
  414. for (j = 0; j < f->context_count[i]; j++)
  415. for (k = 0; k < CONTEXT_SIZE; k++) {
  416. int pred = j ? f->initial_states[i][j - 1][k] : 128;
  417. put_symbol(c, state2[k],
  418. (int8_t)(f->initial_states[i][j][k] - pred), 1);
  419. }
  420. } else {
  421. put_rac(c, state, 0);
  422. }
  423. }
  424. if (f->version > 2) {
  425. put_symbol(c, state, f->ec, 0);
  426. }
  427. f->avctx->extradata_size = ff_rac_terminate(c);
  428. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0,
  429. f->avctx->extradata, f->avctx->extradata_size);
  430. AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
  431. f->avctx->extradata_size += 4;
  432. return 0;
  433. }
  434. static int sort_stt(FFV1Context *s, uint8_t stt[256])
  435. {
  436. int i, i2, changed, print = 0;
  437. do {
  438. changed = 0;
  439. for (i = 12; i < 244; i++) {
  440. for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
  441. #define COST(old, new) \
  442. s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \
  443. s->rc_stat[old][1] * -log2((new) / 256.0)
  444. #define COST2(old, new) \
  445. COST(old, new) + COST(256 - (old), 256 - (new))
  446. double size0 = COST2(i, i) + COST2(i2, i2);
  447. double sizeX = COST2(i, i2) + COST2(i2, i);
  448. if (sizeX < size0 && i != 128 && i2 != 128) {
  449. int j;
  450. FFSWAP(int, stt[i], stt[i2]);
  451. FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
  452. FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
  453. if (i != 256 - i2) {
  454. FFSWAP(int, stt[256 - i], stt[256 - i2]);
  455. FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
  456. FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
  457. }
  458. for (j = 1; j < 256; j++) {
  459. if (stt[j] == i)
  460. stt[j] = i2;
  461. else if (stt[j] == i2)
  462. stt[j] = i;
  463. if (i != 256 - i2) {
  464. if (stt[256 - j] == 256 - i)
  465. stt[256 - j] = 256 - i2;
  466. else if (stt[256 - j] == 256 - i2)
  467. stt[256 - j] = 256 - i;
  468. }
  469. }
  470. print = changed = 1;
  471. }
  472. }
  473. }
  474. } while (changed);
  475. return print;
  476. }
  477. static av_cold int init_slices_state(FFV1Context *f)
  478. {
  479. int i, ret;
  480. for (i = 0; i < f->slice_count; i++) {
  481. FFV1Context *fs = f->slice_context[i];
  482. if ((ret = ffv1_init_slice_state(f, fs)) < 0)
  483. return AVERROR(ENOMEM);
  484. }
  485. return 0;
  486. }
  487. static av_cold int ffv1_encode_init(AVCodecContext *avctx)
  488. {
  489. FFV1Context *s = avctx->priv_data;
  490. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
  491. int i, j, k, m, ret;
  492. ffv1_common_init(avctx);
  493. s->version = 0;
  494. if ((avctx->flags & (CODEC_FLAG_PASS1 | CODEC_FLAG_PASS2)) ||
  495. avctx->slices > 1)
  496. s->version = FFMAX(s->version, 2);
  497. if (avctx->level == 3) {
  498. s->version = 3;
  499. }
  500. if (s->ec < 0) {
  501. s->ec = (s->version >= 3);
  502. }
  503. if (s->version >= 2 &&
  504. avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
  505. av_log(avctx, AV_LOG_ERROR,
  506. "Version %d requested, please set -strict experimental in "
  507. "order to enable it\n",
  508. s->version);
  509. return AVERROR(ENOSYS);
  510. }
  511. s->ac = avctx->coder_type > 0 ? 2 : 0;
  512. s->plane_count = 3;
  513. switch (avctx->pix_fmt) {
  514. case AV_PIX_FMT_YUV444P9:
  515. case AV_PIX_FMT_YUV422P9:
  516. case AV_PIX_FMT_YUV420P9:
  517. if (!avctx->bits_per_raw_sample)
  518. s->bits_per_raw_sample = 9;
  519. case AV_PIX_FMT_YUV444P10:
  520. case AV_PIX_FMT_YUV420P10:
  521. case AV_PIX_FMT_YUV422P10:
  522. s->packed_at_lsb = 1;
  523. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  524. s->bits_per_raw_sample = 10;
  525. case AV_PIX_FMT_GRAY16:
  526. case AV_PIX_FMT_YUV444P16:
  527. case AV_PIX_FMT_YUV422P16:
  528. case AV_PIX_FMT_YUV420P16:
  529. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
  530. s->bits_per_raw_sample = 16;
  531. } else if (!s->bits_per_raw_sample) {
  532. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  533. }
  534. if (s->bits_per_raw_sample <= 8) {
  535. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  536. return AVERROR_INVALIDDATA;
  537. }
  538. if (!s->ac && avctx->coder_type == -1) {
  539. av_log(avctx, AV_LOG_INFO,
  540. "bits_per_raw_sample > 8, forcing coder 1\n");
  541. s->ac = 2;
  542. }
  543. if (!s->ac) {
  544. av_log(
  545. avctx, AV_LOG_ERROR,
  546. "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  547. return AVERROR_INVALIDDATA;
  548. }
  549. s->version = FFMAX(s->version, 1);
  550. case AV_PIX_FMT_GRAY8:
  551. case AV_PIX_FMT_YUV444P:
  552. case AV_PIX_FMT_YUV440P:
  553. case AV_PIX_FMT_YUV422P:
  554. case AV_PIX_FMT_YUV420P:
  555. case AV_PIX_FMT_YUV411P:
  556. case AV_PIX_FMT_YUV410P:
  557. s->chroma_planes = desc->nb_components < 3 ? 0 : 1;
  558. s->colorspace = 0;
  559. break;
  560. case AV_PIX_FMT_YUVA444P:
  561. case AV_PIX_FMT_YUVA422P:
  562. case AV_PIX_FMT_YUVA420P:
  563. s->chroma_planes = 1;
  564. s->colorspace = 0;
  565. s->transparency = 1;
  566. break;
  567. case AV_PIX_FMT_RGB32:
  568. s->colorspace = 1;
  569. s->transparency = 1;
  570. break;
  571. case AV_PIX_FMT_GBRP9:
  572. if (!avctx->bits_per_raw_sample)
  573. s->bits_per_raw_sample = 9;
  574. case AV_PIX_FMT_GBRP10:
  575. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  576. s->bits_per_raw_sample = 10;
  577. case AV_PIX_FMT_GBRP16:
  578. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  579. s->bits_per_raw_sample = 16;
  580. else if (!s->bits_per_raw_sample)
  581. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  582. s->colorspace = 1;
  583. s->chroma_planes = 1;
  584. s->version = FFMAX(s->version, 1);
  585. break;
  586. default:
  587. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  588. return AVERROR_INVALIDDATA;
  589. }
  590. if (s->transparency) {
  591. av_log(
  592. avctx, AV_LOG_WARNING,
  593. "Storing alpha plane, this will require a recent FFV1 decoder to playback!\n");
  594. }
  595. if (avctx->context_model > 1U) {
  596. av_log(avctx, AV_LOG_ERROR,
  597. "Invalid context model %d, valid values are 0 and 1\n",
  598. avctx->context_model);
  599. return AVERROR(EINVAL);
  600. }
  601. if (s->ac > 1)
  602. for (i = 1; i < 256; i++)
  603. s->state_transition[i] = ffv1_ver2_state[i];
  604. for (i = 0; i < 256; i++) {
  605. s->quant_table_count = 2;
  606. if (s->bits_per_raw_sample <= 8) {
  607. s->quant_tables[0][0][i] = ffv1_quant11[i];
  608. s->quant_tables[0][1][i] = ffv1_quant11[i] * 11;
  609. s->quant_tables[0][2][i] = ffv1_quant11[i] * 11 * 11;
  610. s->quant_tables[1][0][i] = ffv1_quant11[i];
  611. s->quant_tables[1][1][i] = ffv1_quant11[i] * 11;
  612. s->quant_tables[1][2][i] = ffv1_quant5[i] * 11 * 11;
  613. s->quant_tables[1][3][i] = ffv1_quant5[i] * 5 * 11 * 11;
  614. s->quant_tables[1][4][i] = ffv1_quant5[i] * 5 * 5 * 11 * 11;
  615. } else {
  616. s->quant_tables[0][0][i] = ffv1_quant9_10bit[i];
  617. s->quant_tables[0][1][i] = ffv1_quant9_10bit[i] * 11;
  618. s->quant_tables[0][2][i] = ffv1_quant9_10bit[i] * 11 * 11;
  619. s->quant_tables[1][0][i] = ffv1_quant9_10bit[i];
  620. s->quant_tables[1][1][i] = ffv1_quant9_10bit[i] * 11;
  621. s->quant_tables[1][2][i] = ffv1_quant5_10bit[i] * 11 * 11;
  622. s->quant_tables[1][3][i] = ffv1_quant5_10bit[i] * 5 * 11 * 11;
  623. s->quant_tables[1][4][i] = ffv1_quant5_10bit[i] * 5 * 5 * 11 * 11;
  624. }
  625. }
  626. s->context_count[0] = (11 * 11 * 11 + 1) / 2;
  627. s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
  628. memcpy(s->quant_table, s->quant_tables[avctx->context_model],
  629. sizeof(s->quant_table));
  630. for (i = 0; i < s->plane_count; i++) {
  631. PlaneContext *const p = &s->plane[i];
  632. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  633. p->quant_table_index = avctx->context_model;
  634. p->context_count = s->context_count[p->quant_table_index];
  635. }
  636. if ((ret = ffv1_allocate_initial_states(s)) < 0)
  637. return ret;
  638. avctx->coded_frame = av_frame_alloc();
  639. if (!avctx->coded_frame)
  640. return AVERROR(ENOMEM);
  641. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  642. if (!s->transparency)
  643. s->plane_count = 2;
  644. av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift,
  645. &s->chroma_v_shift);
  646. s->picture_number = 0;
  647. if (avctx->flags & (CODEC_FLAG_PASS1 | CODEC_FLAG_PASS2)) {
  648. for (i = 0; i < s->quant_table_count; i++) {
  649. s->rc_stat2[i] = av_mallocz(s->context_count[i] *
  650. sizeof(*s->rc_stat2[i]));
  651. if (!s->rc_stat2[i])
  652. return AVERROR(ENOMEM);
  653. }
  654. }
  655. if (avctx->stats_in) {
  656. char *p = avctx->stats_in;
  657. uint8_t best_state[256][256];
  658. int gob_count = 0;
  659. char *next;
  660. av_assert0(s->version >= 2);
  661. for (;; ) {
  662. for (j = 0; j < 256; j++)
  663. for (i = 0; i < 2; i++) {
  664. s->rc_stat[j][i] = strtol(p, &next, 0);
  665. if (next == p) {
  666. av_log(avctx, AV_LOG_ERROR,
  667. "2Pass file invalid at %d %d [%s]\n", j, i, p);
  668. return AVERROR_INVALIDDATA;
  669. }
  670. p = next;
  671. }
  672. for (i = 0; i < s->quant_table_count; i++)
  673. for (j = 0; j < s->context_count[i]; j++) {
  674. for (k = 0; k < 32; k++)
  675. for (m = 0; m < 2; m++) {
  676. s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
  677. if (next == p) {
  678. av_log(avctx, AV_LOG_ERROR,
  679. "2Pass file invalid at %d %d %d %d [%s]\n",
  680. i, j, k, m, p);
  681. return AVERROR_INVALIDDATA;
  682. }
  683. p = next;
  684. }
  685. }
  686. gob_count = strtol(p, &next, 0);
  687. if (next == p || gob_count <= 0) {
  688. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
  689. return AVERROR_INVALIDDATA;
  690. }
  691. p = next;
  692. while (*p == '\n' || *p == ' ')
  693. p++;
  694. if (p[0] == 0)
  695. break;
  696. }
  697. sort_stt(s, s->state_transition);
  698. find_best_state(best_state, s->state_transition);
  699. for (i = 0; i < s->quant_table_count; i++) {
  700. for (j = 0; j < s->context_count[i]; j++)
  701. for (k = 0; k < 32; k++) {
  702. double p = 128;
  703. if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1]) {
  704. p = 256.0 * s->rc_stat2[i][j][k][1] /
  705. (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1]);
  706. }
  707. s->initial_states[i][j][k] =
  708. best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0] +
  709. s->rc_stat2[i][j][k][1]) /
  710. gob_count, 0, 255)];
  711. }
  712. }
  713. }
  714. if (s->version > 1) {
  715. for (s->num_v_slices = 2; s->num_v_slices < 9; s->num_v_slices++)
  716. for (s->num_h_slices = s->num_v_slices;
  717. s->num_h_slices < 2 * s->num_v_slices; s->num_h_slices++)
  718. if (avctx->slices == s->num_h_slices * s->num_v_slices &&
  719. avctx->slices <= 64 || !avctx->slices)
  720. goto slices_ok;
  721. av_log(avctx, AV_LOG_ERROR,
  722. "Unsupported number %d of slices requested, please specify a "
  723. "supported number with -slices (ex:4,6,9,12,16, ...)\n",
  724. avctx->slices);
  725. return AVERROR(ENOSYS);
  726. slices_ok:
  727. write_extradata(s);
  728. }
  729. if ((ret = ffv1_init_slice_contexts(s)) < 0)
  730. return ret;
  731. if ((ret = init_slices_state(s)) < 0)
  732. return ret;
  733. #define STATS_OUT_SIZE 1024 * 1024 * 6
  734. if (avctx->flags & CODEC_FLAG_PASS1) {
  735. avctx->stats_out = av_mallocz(STATS_OUT_SIZE);
  736. for (i = 0; i < s->quant_table_count; i++)
  737. for (j = 0; j < s->slice_count; j++) {
  738. FFV1Context *sf = s->slice_context[j];
  739. av_assert0(!sf->rc_stat2[i]);
  740. sf->rc_stat2[i] = av_mallocz(s->context_count[i] *
  741. sizeof(*sf->rc_stat2[i]));
  742. if (!sf->rc_stat2[i])
  743. return AVERROR(ENOMEM);
  744. }
  745. }
  746. return 0;
  747. }
  748. static void encode_slice_header(FFV1Context *f, FFV1Context *fs)
  749. {
  750. RangeCoder *c = &fs->c;
  751. uint8_t state[CONTEXT_SIZE];
  752. int j;
  753. memset(state, 128, sizeof(state));
  754. put_symbol(c, state, (fs->slice_x + 1) * f->num_h_slices / f->width, 0);
  755. put_symbol(c, state, (fs->slice_y + 1) * f->num_v_slices / f->height, 0);
  756. put_symbol(c, state, (fs->slice_width + 1) * f->num_h_slices / f->width - 1,
  757. 0);
  758. put_symbol(c, state,
  759. (fs->slice_height + 1) * f->num_v_slices / f->height - 1,
  760. 0);
  761. for (j = 0; j < f->plane_count; j++) {
  762. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  763. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  764. }
  765. if (!f->avctx->coded_frame->interlaced_frame)
  766. put_symbol(c, state, 3, 0);
  767. else
  768. put_symbol(c, state, 1 + !f->avctx->coded_frame->top_field_first, 0);
  769. put_symbol(c, state, f->avctx->coded_frame->sample_aspect_ratio.num, 0);
  770. put_symbol(c, state, f->avctx->coded_frame->sample_aspect_ratio.den, 0);
  771. }
  772. static int encode_slice(AVCodecContext *c, void *arg)
  773. {
  774. FFV1Context *fs = *(void **)arg;
  775. FFV1Context *f = fs->avctx->priv_data;
  776. int width = fs->slice_width;
  777. int height = fs->slice_height;
  778. int x = fs->slice_x;
  779. int y = fs->slice_y;
  780. const AVFrame *const p = f->frame;
  781. const int ps = (av_pix_fmt_desc_get(c->pix_fmt)->flags & AV_PIX_FMT_FLAG_PLANAR)
  782. ? (f->bits_per_raw_sample > 8) + 1
  783. : 4;
  784. if (c->coded_frame->key_frame)
  785. ffv1_clear_slice_state(f, fs);
  786. if (f->version > 2) {
  787. encode_slice_header(f, fs);
  788. }
  789. if (!fs->ac) {
  790. if (f->version > 2)
  791. put_rac(&fs->c, (uint8_t[]) { 129 }, 0);
  792. fs->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate( &fs->c) : 0;
  793. init_put_bits(&fs->pb, fs->c.bytestream_start + fs->ac_byte_count,
  794. fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count);
  795. }
  796. if (f->colorspace == 0) {
  797. const int chroma_width = -((-width) >> f->chroma_h_shift);
  798. const int chroma_height = -((-height) >> f->chroma_v_shift);
  799. const int cx = x >> f->chroma_h_shift;
  800. const int cy = y >> f->chroma_v_shift;
  801. encode_plane(fs, p->data[0] + ps * x + y * p->linesize[0],
  802. width, height, p->linesize[0], 0);
  803. if (f->chroma_planes) {
  804. encode_plane(fs, p->data[1] + ps * cx + cy * p->linesize[1],
  805. chroma_width, chroma_height, p->linesize[1], 1);
  806. encode_plane(fs, p->data[2] + ps * cx + cy * p->linesize[2],
  807. chroma_width, chroma_height, p->linesize[2], 1);
  808. }
  809. if (fs->transparency)
  810. encode_plane(fs, p->data[3] + ps * x + y * p->linesize[3], width,
  811. height, p->linesize[3], 2);
  812. } else {
  813. const uint8_t *planes[3] = { p->data[0] + ps * x + y * p->linesize[0],
  814. p->data[1] + ps * x + y * p->linesize[1],
  815. p->data[2] + ps * x + y * p->linesize[2] };
  816. encode_rgb_frame(fs, planes, width, height, p->linesize);
  817. }
  818. emms_c();
  819. return 0;
  820. }
  821. static int ffv1_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  822. const AVFrame *pict, int *got_packet)
  823. {
  824. FFV1Context *f = avctx->priv_data;
  825. RangeCoder *const c = &f->slice_context[0]->c;
  826. AVFrame *const p = avctx->coded_frame;
  827. int used_count = 0;
  828. uint8_t keystate = 128;
  829. uint8_t *buf_p;
  830. int i, ret;
  831. f->frame = pict;
  832. if ((ret = ff_alloc_packet(pkt, avctx->width * avctx->height *
  833. ((8 * 2 + 1 + 1) * 4) / 8 +
  834. FF_MIN_BUFFER_SIZE)) < 0) {
  835. av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n");
  836. return ret;
  837. }
  838. ff_init_range_encoder(c, pkt->data, pkt->size);
  839. ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
  840. if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
  841. put_rac(c, &keystate, 1);
  842. p->key_frame = 1;
  843. f->gob_count++;
  844. write_header(f);
  845. } else {
  846. put_rac(c, &keystate, 0);
  847. p->key_frame = 0;
  848. }
  849. if (f->ac > 1) {
  850. int i;
  851. for (i = 1; i < 256; i++) {
  852. c->one_state[i] = f->state_transition[i];
  853. c->zero_state[256 - i] = 256 - c->one_state[i];
  854. }
  855. }
  856. for (i = 1; i < f->slice_count; i++) {
  857. FFV1Context *fs = f->slice_context[i];
  858. uint8_t *start = pkt->data +
  859. (pkt->size - used_count) * (int64_t)i / f->slice_count;
  860. int len = pkt->size / f->slice_count;
  861. ff_init_range_encoder(&fs->c, start, len);
  862. }
  863. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL,
  864. f->slice_count, sizeof(void *));
  865. buf_p = pkt->data;
  866. for (i = 0; i < f->slice_count; i++) {
  867. FFV1Context *fs = f->slice_context[i];
  868. int bytes;
  869. if (fs->ac) {
  870. uint8_t state = 129;
  871. put_rac(&fs->c, &state, 0);
  872. bytes = ff_rac_terminate(&fs->c);
  873. } else {
  874. flush_put_bits(&fs->pb); // FIXME: nicer padding
  875. bytes = fs->ac_byte_count + (put_bits_count(&fs->pb) + 7) / 8;
  876. }
  877. if (i > 0 || f->version > 2) {
  878. av_assert0(bytes < pkt->size / f->slice_count);
  879. memmove(buf_p, fs->c.bytestream_start, bytes);
  880. av_assert0(bytes < (1 << 24));
  881. AV_WB24(buf_p + bytes, bytes);
  882. bytes += 3;
  883. }
  884. if (f->ec) {
  885. unsigned v;
  886. buf_p[bytes++] = 0;
  887. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, bytes);
  888. AV_WL32(buf_p + bytes, v);
  889. bytes += 4;
  890. }
  891. buf_p += bytes;
  892. }
  893. if ((avctx->flags & CODEC_FLAG_PASS1) && (f->picture_number & 31) == 0) {
  894. int j, k, m;
  895. char *p = avctx->stats_out;
  896. char *end = p + STATS_OUT_SIZE;
  897. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  898. for (i = 0; i < f->quant_table_count; i++)
  899. memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
  900. for (j = 0; j < f->slice_count; j++) {
  901. FFV1Context *fs = f->slice_context[j];
  902. for (i = 0; i < 256; i++) {
  903. f->rc_stat[i][0] += fs->rc_stat[i][0];
  904. f->rc_stat[i][1] += fs->rc_stat[i][1];
  905. }
  906. for (i = 0; i < f->quant_table_count; i++) {
  907. for (k = 0; k < f->context_count[i]; k++)
  908. for (m = 0; m < 32; m++) {
  909. f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
  910. f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
  911. }
  912. }
  913. }
  914. for (j = 0; j < 256; j++) {
  915. snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
  916. f->rc_stat[j][0], f->rc_stat[j][1]);
  917. p += strlen(p);
  918. }
  919. snprintf(p, end - p, "\n");
  920. for (i = 0; i < f->quant_table_count; i++) {
  921. for (j = 0; j < f->context_count[i]; j++)
  922. for (m = 0; m < 32; m++) {
  923. snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
  924. f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  925. p += strlen(p);
  926. }
  927. }
  928. snprintf(p, end - p, "%d\n", f->gob_count);
  929. } else if (avctx->flags & CODEC_FLAG_PASS1)
  930. avctx->stats_out[0] = '\0';
  931. f->picture_number++;
  932. pkt->size = buf_p - pkt->data;
  933. pkt->flags |= AV_PKT_FLAG_KEY * p->key_frame;
  934. *got_packet = 1;
  935. return 0;
  936. }
  937. static av_cold int ffv1_encode_close(AVCodecContext *avctx)
  938. {
  939. av_frame_free(&avctx->coded_frame);
  940. ffv1_close(avctx);
  941. return 0;
  942. }
  943. #define OFFSET(x) offsetof(FFV1Context, x)
  944. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  945. static const AVOption options[] = {
  946. { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT,
  947. { .i64 = -1 }, -1, 1, VE },
  948. { NULL }
  949. };
  950. static const AVClass class = {
  951. .class_name = "ffv1 encoder",
  952. .item_name = av_default_item_name,
  953. .option = options,
  954. .version = LIBAVUTIL_VERSION_INT,
  955. };
  956. static const AVCodecDefault ffv1_defaults[] = {
  957. { "coder", "-1" },
  958. { NULL },
  959. };
  960. AVCodec ff_ffv1_encoder = {
  961. .name = "ffv1",
  962. .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  963. .type = AVMEDIA_TYPE_VIDEO,
  964. .id = AV_CODEC_ID_FFV1,
  965. .priv_data_size = sizeof(FFV1Context),
  966. .init = ffv1_encode_init,
  967. .encode2 = ffv1_encode_frame,
  968. .close = ffv1_encode_close,
  969. .capabilities = CODEC_CAP_SLICE_THREADS,
  970. .pix_fmts = (const enum AVPixelFormat[]) {
  971. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
  972. AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
  973. AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9,
  974. AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
  975. AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
  976. AV_PIX_FMT_RGB32,
  977. AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
  978. AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
  979. AV_PIX_FMT_GRAY16, AV_PIX_FMT_GRAY8,
  980. AV_PIX_FMT_NONE
  981. },
  982. .defaults = ffv1_defaults,
  983. .priv_class = &class,
  984. };