You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1144 lines
39KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/timer.h"
  29. #include "avcodec.h"
  30. #include "blockdsp.h"
  31. #include "fdctdsp.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "pixblockdsp.h"
  35. #include "dnxhdenc.h"
  36. // The largest value that will not lead to overflow for 10bit samples.
  37. #define DNX10BIT_QMAT_SHIFT 18
  38. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  39. #define LAMBDA_FRAC_BITS 10
  40. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  41. static const AVOption options[] = {
  42. { "nitris_compat", "encode with Avid Nitris compatibility",
  43. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
  44. { NULL }
  45. };
  46. static const AVClass class = {
  47. "dnxhd",
  48. av_default_item_name,
  49. options,
  50. LIBAVUTIL_VERSION_INT
  51. };
  52. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block,
  53. const uint8_t *pixels,
  54. ptrdiff_t line_size)
  55. {
  56. int i;
  57. for (i = 0; i < 4; i++) {
  58. block[0] = pixels[0];
  59. block[1] = pixels[1];
  60. block[2] = pixels[2];
  61. block[3] = pixels[3];
  62. block[4] = pixels[4];
  63. block[5] = pixels[5];
  64. block[6] = pixels[6];
  65. block[7] = pixels[7];
  66. pixels += line_size;
  67. block += 8;
  68. }
  69. memcpy(block, block - 8, sizeof(*block) * 8);
  70. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  71. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  72. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  73. }
  74. static av_always_inline
  75. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block,
  76. const uint8_t *pixels,
  77. ptrdiff_t line_size)
  78. {
  79. int i;
  80. block += 32;
  81. for (i = 0; i < 4; i++) {
  82. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  83. memcpy(block - (i + 1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  84. }
  85. }
  86. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  87. int n, int qscale, int *overflow)
  88. {
  89. const uint8_t *scantable= ctx->intra_scantable.scantable;
  90. const int *qmat = ctx->q_intra_matrix[qscale];
  91. int last_non_zero = 0;
  92. int i;
  93. ctx->fdsp.fdct(block);
  94. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  95. block[0] = (block[0] + 2) >> 2;
  96. for (i = 1; i < 64; ++i) {
  97. int j = scantable[i];
  98. int sign = FF_SIGNBIT(block[j]);
  99. int level = (block[j] ^ sign) - sign;
  100. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  101. block[j] = (level ^ sign) - sign;
  102. if (level)
  103. last_non_zero = i;
  104. }
  105. return last_non_zero;
  106. }
  107. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  108. {
  109. int i, j, level, run;
  110. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  111. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
  112. max_level * 4 * sizeof(*ctx->vlc_codes), fail);
  113. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
  114. max_level * 4 * sizeof(*ctx->vlc_bits), fail);
  115. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  116. 63 * 2, fail);
  117. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  118. 63, fail);
  119. ctx->vlc_codes += max_level * 2;
  120. ctx->vlc_bits += max_level * 2;
  121. for (level = -max_level; level < max_level; level++) {
  122. for (run = 0; run < 2; run++) {
  123. int index = (level << 1) | run;
  124. int sign, offset = 0, alevel = level;
  125. MASK_ABS(sign, alevel);
  126. if (alevel > 64) {
  127. offset = (alevel - 1) >> 6;
  128. alevel -= offset << 6;
  129. }
  130. for (j = 0; j < 257; j++) {
  131. if (ctx->cid_table->ac_level[j] == alevel &&
  132. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  133. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  134. assert(!ctx->vlc_codes[index]);
  135. if (alevel) {
  136. ctx->vlc_codes[index] =
  137. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  138. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  139. } else {
  140. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  141. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  142. }
  143. break;
  144. }
  145. }
  146. assert(!alevel || j < 257);
  147. if (offset) {
  148. ctx->vlc_codes[index] =
  149. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  150. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  151. }
  152. }
  153. }
  154. for (i = 0; i < 62; i++) {
  155. int run = ctx->cid_table->run[i];
  156. assert(run < 63);
  157. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  158. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  159. }
  160. return 0;
  161. fail:
  162. return AVERROR(ENOMEM);
  163. }
  164. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  165. {
  166. // init first elem to 1 to avoid div by 0 in convert_matrix
  167. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  168. int qscale, i;
  169. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  170. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  171. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  172. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  173. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  174. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  175. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  176. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  177. fail);
  178. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  179. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  180. fail);
  181. if (ctx->cid_table->bit_depth == 8) {
  182. for (i = 1; i < 64; i++) {
  183. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  184. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  185. }
  186. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  187. weight_matrix, ctx->m.intra_quant_bias, 1,
  188. ctx->m.avctx->qmax, 1);
  189. for (i = 1; i < 64; i++) {
  190. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  191. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  192. }
  193. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  194. weight_matrix, ctx->m.intra_quant_bias, 1,
  195. ctx->m.avctx->qmax, 1);
  196. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  197. for (i = 0; i < 64; i++) {
  198. ctx->qmatrix_l[qscale][i] <<= 2;
  199. ctx->qmatrix_c[qscale][i] <<= 2;
  200. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  201. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  202. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  203. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  204. }
  205. }
  206. } else {
  207. // 10-bit
  208. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  209. for (i = 1; i < 64; i++) {
  210. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  211. /* The quantization formula from the VC-3 standard is:
  212. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  213. * (qscale * weight_table[i]))
  214. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  215. * The s factor compensates scaling of DCT coefficients done by
  216. * the DCT routines, and therefore is not present in standard.
  217. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  218. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  219. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  220. * (qscale * weight_table[i])
  221. * For 10-bit samples, p / s == 2 */
  222. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  223. (qscale * luma_weight_table[i]);
  224. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  225. (qscale * chroma_weight_table[i]);
  226. }
  227. }
  228. }
  229. return 0;
  230. fail:
  231. return AVERROR(ENOMEM);
  232. }
  233. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  234. {
  235. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc,
  236. 8160 * ctx->m.avctx->qmax * sizeof(RCEntry), fail);
  237. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  238. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  239. ctx->m.mb_num * sizeof(RCCMPEntry), fail);
  240. ctx->frame_bits = (ctx->cid_table->coding_unit_size -
  241. 640 - 4 - ctx->min_padding) * 8;
  242. ctx->qscale = 1;
  243. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  244. return 0;
  245. fail:
  246. return AVERROR(ENOMEM);
  247. }
  248. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  249. {
  250. DNXHDEncContext *ctx = avctx->priv_data;
  251. int i, index, bit_depth, ret;
  252. switch (avctx->pix_fmt) {
  253. case AV_PIX_FMT_YUV422P:
  254. bit_depth = 8;
  255. break;
  256. case AV_PIX_FMT_YUV422P10:
  257. bit_depth = 10;
  258. break;
  259. default:
  260. av_log(avctx, AV_LOG_ERROR,
  261. "pixel format is incompatible with DNxHD\n");
  262. return AVERROR(EINVAL);
  263. }
  264. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  265. if (!ctx->cid) {
  266. av_log(avctx, AV_LOG_ERROR,
  267. "video parameters incompatible with DNxHD\n");
  268. return AVERROR(EINVAL);
  269. }
  270. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  271. index = ff_dnxhd_get_cid_table(ctx->cid);
  272. if (index < 0)
  273. return index;
  274. ctx->cid_table = &ff_dnxhd_cid_table[index];
  275. ctx->m.avctx = avctx;
  276. ctx->m.mb_intra = 1;
  277. ctx->m.h263_aic = 1;
  278. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  279. ff_blockdsp_init(&ctx->bdsp, avctx);
  280. ff_fdctdsp_init(&ctx->m.fdsp, avctx);
  281. ff_mpv_idct_init(&ctx->m);
  282. ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
  283. ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
  284. if (!ctx->m.dct_quantize)
  285. ctx->m.dct_quantize = ff_dct_quantize_c;
  286. if (ctx->cid_table->bit_depth == 10) {
  287. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  288. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  289. ctx->block_width_l2 = 4;
  290. } else {
  291. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  292. ctx->block_width_l2 = 3;
  293. }
  294. if (ARCH_X86)
  295. ff_dnxhdenc_init_x86(ctx);
  296. ctx->m.mb_height = (avctx->height + 15) / 16;
  297. ctx->m.mb_width = (avctx->width + 15) / 16;
  298. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  299. ctx->interlaced = 1;
  300. ctx->m.mb_height /= 2;
  301. }
  302. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  303. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  304. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  305. // XXX tune lbias/cbias
  306. if ((ret = dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0)) < 0)
  307. return ret;
  308. /* Avid Nitris hardware decoder requires a minimum amount of padding
  309. * in the coding unit payload */
  310. if (ctx->nitris_compat)
  311. ctx->min_padding = 1600;
  312. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  313. return ret;
  314. if ((ret = dnxhd_init_rc(ctx)) < 0)
  315. return ret;
  316. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  317. ctx->m.mb_height * sizeof(uint32_t), fail);
  318. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  319. ctx->m.mb_height * sizeof(uint32_t), fail);
  320. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  321. ctx->m.mb_num * sizeof(uint16_t), fail);
  322. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  323. ctx->m.mb_num * sizeof(uint8_t), fail);
  324. avctx->coded_frame = av_frame_alloc();
  325. if (!avctx->coded_frame)
  326. return AVERROR(ENOMEM);
  327. avctx->coded_frame->key_frame = 1;
  328. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  329. if (avctx->thread_count > MAX_THREADS) {
  330. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  331. return AVERROR(EINVAL);
  332. }
  333. ctx->thread[0] = ctx;
  334. for (i = 1; i < avctx->thread_count; i++) {
  335. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  336. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  337. }
  338. return 0;
  339. fail: // for FF_ALLOCZ_OR_GOTO
  340. return AVERROR(ENOMEM);
  341. }
  342. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  343. {
  344. DNXHDEncContext *ctx = avctx->priv_data;
  345. const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
  346. memset(buf, 0, 640);
  347. memcpy(buf, header_prefix, 5);
  348. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  349. buf[6] = 0x80; // crc flag off
  350. buf[7] = 0xa0; // reserved
  351. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  352. AV_WB16(buf + 0x1a, avctx->width); // SPL
  353. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  354. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  355. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  356. AV_WB32(buf + 0x28, ctx->cid); // CID
  357. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  358. buf[0x5f] = 0x01; // UDL
  359. buf[0x167] = 0x02; // reserved
  360. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  361. buf[0x16d] = ctx->m.mb_height; // Ns
  362. buf[0x16f] = 0x10; // reserved
  363. ctx->msip = buf + 0x170;
  364. return 0;
  365. }
  366. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  367. {
  368. int nbits;
  369. if (diff < 0) {
  370. nbits = av_log2_16bit(-2 * diff);
  371. diff--;
  372. } else {
  373. nbits = av_log2_16bit(2 * diff);
  374. }
  375. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  376. (ctx->cid_table->dc_codes[nbits] << nbits) +
  377. (diff & ((1 << nbits) - 1)));
  378. }
  379. static av_always_inline
  380. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  381. int last_index, int n)
  382. {
  383. int last_non_zero = 0;
  384. int slevel, i, j;
  385. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  386. ctx->m.last_dc[n] = block[0];
  387. for (i = 1; i <= last_index; i++) {
  388. j = ctx->m.intra_scantable.permutated[i];
  389. slevel = block[j];
  390. if (slevel) {
  391. int run_level = i - last_non_zero - 1;
  392. int rlevel = (slevel << 1) | !!run_level;
  393. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  394. if (run_level)
  395. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  396. ctx->run_codes[run_level]);
  397. last_non_zero = i;
  398. }
  399. }
  400. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  401. }
  402. static av_always_inline
  403. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  404. int qscale, int last_index)
  405. {
  406. const uint8_t *weight_matrix;
  407. int level;
  408. int i;
  409. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  410. : ctx->cid_table->luma_weight;
  411. for (i = 1; i <= last_index; i++) {
  412. int j = ctx->m.intra_scantable.permutated[i];
  413. level = block[j];
  414. if (level) {
  415. if (level < 0) {
  416. level = (1 - 2 * level) * qscale * weight_matrix[i];
  417. if (ctx->cid_table->bit_depth == 10) {
  418. if (weight_matrix[i] != 8)
  419. level += 8;
  420. level >>= 4;
  421. } else {
  422. if (weight_matrix[i] != 32)
  423. level += 32;
  424. level >>= 6;
  425. }
  426. level = -level;
  427. } else {
  428. level = (2 * level + 1) * qscale * weight_matrix[i];
  429. if (ctx->cid_table->bit_depth == 10) {
  430. if (weight_matrix[i] != 8)
  431. level += 8;
  432. level >>= 4;
  433. } else {
  434. if (weight_matrix[i] != 32)
  435. level += 32;
  436. level >>= 6;
  437. }
  438. }
  439. block[j] = level;
  440. }
  441. }
  442. }
  443. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  444. {
  445. int score = 0;
  446. int i;
  447. for (i = 0; i < 64; i++)
  448. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  449. return score;
  450. }
  451. static av_always_inline
  452. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  453. {
  454. int last_non_zero = 0;
  455. int bits = 0;
  456. int i, j, level;
  457. for (i = 1; i <= last_index; i++) {
  458. j = ctx->m.intra_scantable.permutated[i];
  459. level = block[j];
  460. if (level) {
  461. int run_level = i - last_non_zero - 1;
  462. bits += ctx->vlc_bits[(level << 1) |
  463. !!run_level] + ctx->run_bits[run_level];
  464. last_non_zero = i;
  465. }
  466. }
  467. return bits;
  468. }
  469. static av_always_inline
  470. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  471. {
  472. const int bs = ctx->block_width_l2;
  473. const int bw = 1 << bs;
  474. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  475. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  476. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  477. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  478. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  479. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  480. PixblockDSPContext *pdsp = &ctx->m.pdsp;
  481. pdsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  482. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  483. pdsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  484. pdsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  485. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  486. if (ctx->interlaced) {
  487. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  488. ptr_y + ctx->dct_y_offset,
  489. ctx->m.linesize);
  490. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  491. ptr_y + ctx->dct_y_offset + bw,
  492. ctx->m.linesize);
  493. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  494. ptr_u + ctx->dct_uv_offset,
  495. ctx->m.uvlinesize);
  496. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  497. ptr_v + ctx->dct_uv_offset,
  498. ctx->m.uvlinesize);
  499. } else {
  500. ctx->bdsp.clear_block(ctx->blocks[4]);
  501. ctx->bdsp.clear_block(ctx->blocks[5]);
  502. ctx->bdsp.clear_block(ctx->blocks[6]);
  503. ctx->bdsp.clear_block(ctx->blocks[7]);
  504. }
  505. } else {
  506. pdsp->get_pixels(ctx->blocks[4],
  507. ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  508. pdsp->get_pixels(ctx->blocks[5],
  509. ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  510. pdsp->get_pixels(ctx->blocks[6],
  511. ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  512. pdsp->get_pixels(ctx->blocks[7],
  513. ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  514. }
  515. }
  516. static av_always_inline
  517. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  518. {
  519. if (i & 2) {
  520. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  521. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  522. return 1 + (i & 1);
  523. } else {
  524. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  525. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  526. return 0;
  527. }
  528. }
  529. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  530. int jobnr, int threadnr)
  531. {
  532. DNXHDEncContext *ctx = avctx->priv_data;
  533. int mb_y = jobnr, mb_x;
  534. int qscale = ctx->qscale;
  535. LOCAL_ALIGNED_16(int16_t, block, [64]);
  536. ctx = ctx->thread[threadnr];
  537. ctx->m.last_dc[0] =
  538. ctx->m.last_dc[1] =
  539. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  540. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  541. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  542. int ssd = 0;
  543. int ac_bits = 0;
  544. int dc_bits = 0;
  545. int i;
  546. dnxhd_get_blocks(ctx, mb_x, mb_y);
  547. for (i = 0; i < 8; i++) {
  548. int16_t *src_block = ctx->blocks[i];
  549. int overflow, nbits, diff, last_index;
  550. int n = dnxhd_switch_matrix(ctx, i);
  551. memcpy(block, src_block, 64 * sizeof(*block));
  552. last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  553. qscale, &overflow);
  554. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  555. diff = block[0] - ctx->m.last_dc[n];
  556. if (diff < 0)
  557. nbits = av_log2_16bit(-2 * diff);
  558. else
  559. nbits = av_log2_16bit(2 * diff);
  560. assert(nbits < ctx->cid_table->bit_depth + 4);
  561. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  562. ctx->m.last_dc[n] = block[0];
  563. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  564. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  565. ctx->m.idsp.idct(block);
  566. ssd += dnxhd_ssd_block(block, src_block);
  567. }
  568. }
  569. ctx->mb_rc[qscale][mb].ssd = ssd;
  570. ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
  571. 8 * ctx->vlc_bits[0];
  572. }
  573. return 0;
  574. }
  575. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  576. int jobnr, int threadnr)
  577. {
  578. DNXHDEncContext *ctx = avctx->priv_data;
  579. int mb_y = jobnr, mb_x;
  580. ctx = ctx->thread[threadnr];
  581. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
  582. ctx->slice_size[jobnr]);
  583. ctx->m.last_dc[0] =
  584. ctx->m.last_dc[1] =
  585. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  586. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  587. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  588. int qscale = ctx->mb_qscale[mb];
  589. int i;
  590. put_bits(&ctx->m.pb, 12, qscale << 1);
  591. dnxhd_get_blocks(ctx, mb_x, mb_y);
  592. for (i = 0; i < 8; i++) {
  593. int16_t *block = ctx->blocks[i];
  594. int overflow, n = dnxhd_switch_matrix(ctx, i);
  595. int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  596. qscale, &overflow);
  597. // START_TIMER;
  598. dnxhd_encode_block(ctx, block, last_index, n);
  599. // STOP_TIMER("encode_block");
  600. }
  601. }
  602. if (put_bits_count(&ctx->m.pb) & 31)
  603. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  604. flush_put_bits(&ctx->m.pb);
  605. return 0;
  606. }
  607. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  608. {
  609. int mb_y, mb_x;
  610. int offset = 0;
  611. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  612. int thread_size;
  613. ctx->slice_offs[mb_y] = offset;
  614. ctx->slice_size[mb_y] = 0;
  615. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  616. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  617. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  618. }
  619. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  620. ctx->slice_size[mb_y] >>= 3;
  621. thread_size = ctx->slice_size[mb_y];
  622. offset += thread_size;
  623. }
  624. }
  625. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  626. int jobnr, int threadnr)
  627. {
  628. DNXHDEncContext *ctx = avctx->priv_data;
  629. int mb_y = jobnr, mb_x, x, y;
  630. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  631. ((avctx->height >> ctx->interlaced) & 0xF);
  632. ctx = ctx->thread[threadnr];
  633. if (ctx->cid_table->bit_depth == 8) {
  634. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  635. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  636. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  637. int sum;
  638. int varc;
  639. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  640. sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
  641. varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
  642. } else {
  643. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  644. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  645. sum = varc = 0;
  646. for (y = 0; y < bh; y++) {
  647. for (x = 0; x < bw; x++) {
  648. uint8_t val = pix[x + y * ctx->m.linesize];
  649. sum += val;
  650. varc += val * val;
  651. }
  652. }
  653. }
  654. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  655. ctx->mb_cmp[mb].value = varc;
  656. ctx->mb_cmp[mb].mb = mb;
  657. }
  658. } else { // 10-bit
  659. int const linesize = ctx->m.linesize >> 1;
  660. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  661. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  662. ((mb_y << 4) * linesize) + (mb_x << 4);
  663. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  664. int sum = 0;
  665. int sqsum = 0;
  666. int mean, sqmean;
  667. int i, j;
  668. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  669. for (i = 0; i < 16; ++i) {
  670. for (j = 0; j < 16; ++j) {
  671. // Turn 16-bit pixels into 10-bit ones.
  672. int const sample = (unsigned) pix[j] >> 6;
  673. sum += sample;
  674. sqsum += sample * sample;
  675. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  676. }
  677. pix += linesize;
  678. }
  679. mean = sum >> 8; // 16*16 == 2^8
  680. sqmean = sqsum >> 8;
  681. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  682. ctx->mb_cmp[mb].mb = mb;
  683. }
  684. }
  685. return 0;
  686. }
  687. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  688. {
  689. int lambda, up_step, down_step;
  690. int last_lower = INT_MAX, last_higher = 0;
  691. int x, y, q;
  692. for (q = 1; q < avctx->qmax; q++) {
  693. ctx->qscale = q;
  694. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  695. NULL, NULL, ctx->m.mb_height);
  696. }
  697. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  698. lambda = ctx->lambda;
  699. for (;;) {
  700. int bits = 0;
  701. int end = 0;
  702. if (lambda == last_higher) {
  703. lambda++;
  704. end = 1; // need to set final qscales/bits
  705. }
  706. for (y = 0; y < ctx->m.mb_height; y++) {
  707. for (x = 0; x < ctx->m.mb_width; x++) {
  708. unsigned min = UINT_MAX;
  709. int qscale = 1;
  710. int mb = y * ctx->m.mb_width + x;
  711. for (q = 1; q < avctx->qmax; q++) {
  712. unsigned score = ctx->mb_rc[q][mb].bits * lambda +
  713. ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
  714. if (score < min) {
  715. min = score;
  716. qscale = q;
  717. }
  718. }
  719. bits += ctx->mb_rc[qscale][mb].bits;
  720. ctx->mb_qscale[mb] = qscale;
  721. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  722. }
  723. bits = (bits + 31) & ~31; // padding
  724. if (bits > ctx->frame_bits)
  725. break;
  726. }
  727. // ff_dlog(ctx->m.avctx,
  728. // "lambda %d, up %u, down %u, bits %d, frame %d\n",
  729. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  730. if (end) {
  731. if (bits > ctx->frame_bits)
  732. return AVERROR(EINVAL);
  733. break;
  734. }
  735. if (bits < ctx->frame_bits) {
  736. last_lower = FFMIN(lambda, last_lower);
  737. if (last_higher != 0)
  738. lambda = (lambda+last_higher)>>1;
  739. else
  740. lambda -= down_step;
  741. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  742. up_step = 1<<LAMBDA_FRAC_BITS;
  743. lambda = FFMAX(1, lambda);
  744. if (lambda == last_lower)
  745. break;
  746. } else {
  747. last_higher = FFMAX(lambda, last_higher);
  748. if (last_lower != INT_MAX)
  749. lambda = (lambda+last_lower)>>1;
  750. else if ((int64_t)lambda + up_step > INT_MAX)
  751. return AVERROR(EINVAL);
  752. else
  753. lambda += up_step;
  754. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  755. down_step = 1<<LAMBDA_FRAC_BITS;
  756. }
  757. }
  758. //ff_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  759. ctx->lambda = lambda;
  760. return 0;
  761. }
  762. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  763. {
  764. int bits = 0;
  765. int up_step = 1;
  766. int down_step = 1;
  767. int last_higher = 0;
  768. int last_lower = INT_MAX;
  769. int qscale;
  770. int x, y;
  771. qscale = ctx->qscale;
  772. for (;;) {
  773. bits = 0;
  774. ctx->qscale = qscale;
  775. // XXX avoid recalculating bits
  776. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  777. NULL, NULL, ctx->m.mb_height);
  778. for (y = 0; y < ctx->m.mb_height; y++) {
  779. for (x = 0; x < ctx->m.mb_width; x++)
  780. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  781. bits = (bits+31)&~31; // padding
  782. if (bits > ctx->frame_bits)
  783. break;
  784. }
  785. // ff_dlog(ctx->m.avctx,
  786. // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  787. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
  788. // last_higher, last_lower);
  789. if (bits < ctx->frame_bits) {
  790. if (qscale == 1)
  791. return 1;
  792. if (last_higher == qscale - 1) {
  793. qscale = last_higher;
  794. break;
  795. }
  796. last_lower = FFMIN(qscale, last_lower);
  797. if (last_higher != 0)
  798. qscale = (qscale + last_higher) >> 1;
  799. else
  800. qscale -= down_step++;
  801. if (qscale < 1)
  802. qscale = 1;
  803. up_step = 1;
  804. } else {
  805. if (last_lower == qscale + 1)
  806. break;
  807. last_higher = FFMAX(qscale, last_higher);
  808. if (last_lower != INT_MAX)
  809. qscale = (qscale + last_lower) >> 1;
  810. else
  811. qscale += up_step++;
  812. down_step = 1;
  813. if (qscale >= ctx->m.avctx->qmax)
  814. return AVERROR(EINVAL);
  815. }
  816. }
  817. //ff_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  818. ctx->qscale = qscale;
  819. return 0;
  820. }
  821. #define BUCKET_BITS 8
  822. #define RADIX_PASSES 4
  823. #define NBUCKETS (1 << BUCKET_BITS)
  824. static inline int get_bucket(int value, int shift)
  825. {
  826. value >>= shift;
  827. value &= NBUCKETS - 1;
  828. return NBUCKETS - 1 - value;
  829. }
  830. static void radix_count(const RCCMPEntry *data, int size,
  831. int buckets[RADIX_PASSES][NBUCKETS])
  832. {
  833. int i, j;
  834. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  835. for (i = 0; i < size; i++) {
  836. int v = data[i].value;
  837. for (j = 0; j < RADIX_PASSES; j++) {
  838. buckets[j][get_bucket(v, 0)]++;
  839. v >>= BUCKET_BITS;
  840. }
  841. assert(!v);
  842. }
  843. for (j = 0; j < RADIX_PASSES; j++) {
  844. int offset = size;
  845. for (i = NBUCKETS - 1; i >= 0; i--)
  846. buckets[j][i] = offset -= buckets[j][i];
  847. assert(!buckets[j][0]);
  848. }
  849. }
  850. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  851. int size, int buckets[NBUCKETS], int pass)
  852. {
  853. int shift = pass * BUCKET_BITS;
  854. int i;
  855. for (i = 0; i < size; i++) {
  856. int v = get_bucket(data[i].value, shift);
  857. int pos = buckets[v]++;
  858. dst[pos] = data[i];
  859. }
  860. }
  861. static void radix_sort(RCCMPEntry *data, int size)
  862. {
  863. int buckets[RADIX_PASSES][NBUCKETS];
  864. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  865. radix_count(data, size, buckets);
  866. radix_sort_pass(tmp, data, size, buckets[0], 0);
  867. radix_sort_pass(data, tmp, size, buckets[1], 1);
  868. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  869. radix_sort_pass(tmp, data, size, buckets[2], 2);
  870. radix_sort_pass(data, tmp, size, buckets[3], 3);
  871. }
  872. av_free(tmp);
  873. }
  874. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  875. {
  876. int max_bits = 0;
  877. int ret, x, y;
  878. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  879. return ret;
  880. for (y = 0; y < ctx->m.mb_height; y++) {
  881. for (x = 0; x < ctx->m.mb_width; x++) {
  882. int mb = y * ctx->m.mb_width + x;
  883. int delta_bits;
  884. ctx->mb_qscale[mb] = ctx->qscale;
  885. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  886. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  887. if (!RC_VARIANCE) {
  888. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
  889. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  890. ctx->mb_cmp[mb].mb = mb;
  891. ctx->mb_cmp[mb].value =
  892. delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
  893. ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
  894. delta_bits
  895. : INT_MIN; // avoid increasing qscale
  896. }
  897. }
  898. max_bits += 31; // worst padding
  899. }
  900. if (!ret) {
  901. if (RC_VARIANCE)
  902. avctx->execute2(avctx, dnxhd_mb_var_thread,
  903. NULL, NULL, ctx->m.mb_height);
  904. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  905. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  906. int mb = ctx->mb_cmp[x].mb;
  907. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
  908. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  909. ctx->mb_qscale[mb] = ctx->qscale + 1;
  910. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
  911. }
  912. }
  913. return 0;
  914. }
  915. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  916. {
  917. int i;
  918. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  919. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  920. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  921. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  922. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  923. }
  924. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  925. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  926. }
  927. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  928. const AVFrame *frame, int *got_packet)
  929. {
  930. DNXHDEncContext *ctx = avctx->priv_data;
  931. int first_field = 1;
  932. int offset, i, ret;
  933. uint8_t *buf;
  934. if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
  935. av_log(avctx, AV_LOG_ERROR,
  936. "output buffer is too small to compress picture\n");
  937. return ret;
  938. }
  939. buf = pkt->data;
  940. dnxhd_load_picture(ctx, frame);
  941. encode_coding_unit:
  942. for (i = 0; i < 3; i++) {
  943. ctx->src[i] = frame->data[i];
  944. if (ctx->interlaced && ctx->cur_field)
  945. ctx->src[i] += frame->linesize[i];
  946. }
  947. dnxhd_write_header(avctx, buf);
  948. if (avctx->mb_decision == FF_MB_DECISION_RD)
  949. ret = dnxhd_encode_rdo(avctx, ctx);
  950. else
  951. ret = dnxhd_encode_fast(avctx, ctx);
  952. if (ret < 0) {
  953. av_log(avctx, AV_LOG_ERROR,
  954. "picture could not fit ratecontrol constraints, increase qmax\n");
  955. return ret;
  956. }
  957. dnxhd_setup_threads_slices(ctx);
  958. offset = 0;
  959. for (i = 0; i < ctx->m.mb_height; i++) {
  960. AV_WB32(ctx->msip + i * 4, offset);
  961. offset += ctx->slice_size[i];
  962. assert(!(ctx->slice_size[i] & 3));
  963. }
  964. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  965. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  966. memset(buf + 640 + offset, 0,
  967. ctx->cid_table->coding_unit_size - 4 - offset - 640);
  968. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  969. if (ctx->interlaced && first_field) {
  970. first_field = 0;
  971. ctx->cur_field ^= 1;
  972. buf += ctx->cid_table->coding_unit_size;
  973. goto encode_coding_unit;
  974. }
  975. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  976. pkt->flags |= AV_PKT_FLAG_KEY;
  977. *got_packet = 1;
  978. return 0;
  979. }
  980. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  981. {
  982. DNXHDEncContext *ctx = avctx->priv_data;
  983. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  984. int i;
  985. av_free(ctx->vlc_codes - max_level * 2);
  986. av_free(ctx->vlc_bits - max_level * 2);
  987. av_freep(&ctx->run_codes);
  988. av_freep(&ctx->run_bits);
  989. av_freep(&ctx->mb_bits);
  990. av_freep(&ctx->mb_qscale);
  991. av_freep(&ctx->mb_rc);
  992. av_freep(&ctx->mb_cmp);
  993. av_freep(&ctx->slice_size);
  994. av_freep(&ctx->slice_offs);
  995. av_freep(&ctx->qmatrix_c);
  996. av_freep(&ctx->qmatrix_l);
  997. av_freep(&ctx->qmatrix_c16);
  998. av_freep(&ctx->qmatrix_l16);
  999. for (i = 1; i < avctx->thread_count; i++)
  1000. av_freep(&ctx->thread[i]);
  1001. av_frame_free(&avctx->coded_frame);
  1002. return 0;
  1003. }
  1004. AVCodec ff_dnxhd_encoder = {
  1005. .name = "dnxhd",
  1006. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1007. .type = AVMEDIA_TYPE_VIDEO,
  1008. .id = AV_CODEC_ID_DNXHD,
  1009. .priv_data_size = sizeof(DNXHDEncContext),
  1010. .init = dnxhd_encode_init,
  1011. .encode2 = dnxhd_encode_picture,
  1012. .close = dnxhd_encode_end,
  1013. .capabilities = CODEC_CAP_SLICE_THREADS,
  1014. .pix_fmts = (const enum AVPixelFormat[]) {
  1015. AV_PIX_FMT_YUV422P,
  1016. AV_PIX_FMT_YUV422P10,
  1017. AV_PIX_FMT_NONE
  1018. },
  1019. .priv_class = &class,
  1020. };