You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

827 lines
29KB

  1. /*
  2. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
  3. * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
  24. * @author Stefan Gehrer <stefan.gehrer@gmx.de>
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "golomb.h"
  29. #include "h264chroma.h"
  30. #include "idctdsp.h"
  31. #include "internal.h"
  32. #include "mathops.h"
  33. #include "qpeldsp.h"
  34. #include "cavs.h"
  35. static const uint8_t alpha_tab[64] = {
  36. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
  37. 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
  38. 22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
  39. 46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
  40. };
  41. static const uint8_t beta_tab[64] = {
  42. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  43. 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
  44. 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
  45. 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
  46. };
  47. static const uint8_t tc_tab[64] = {
  48. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  49. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
  50. 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
  51. 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
  52. };
  53. /** mark block as unavailable, i.e. out of picture
  54. * or not yet decoded */
  55. static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
  56. static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
  57. static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
  58. static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
  59. static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
  60. /*****************************************************************************
  61. *
  62. * in-loop deblocking filter
  63. *
  64. ****************************************************************************/
  65. static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
  66. {
  67. if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
  68. return 2;
  69. if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
  70. return 1;
  71. if (b) {
  72. mvP += MV_BWD_OFFS;
  73. mvQ += MV_BWD_OFFS;
  74. if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
  75. return 1;
  76. } else {
  77. if (mvP->ref != mvQ->ref)
  78. return 1;
  79. }
  80. return 0;
  81. }
  82. #define SET_PARAMS \
  83. alpha = alpha_tab[av_clip_uintp2(qp_avg + h->alpha_offset, 6)]; \
  84. beta = beta_tab[av_clip_uintp2(qp_avg + h->beta_offset, 6)]; \
  85. tc = tc_tab[av_clip_uintp2(qp_avg + h->alpha_offset, 6)];
  86. /**
  87. * in-loop deblocking filter for a single macroblock
  88. *
  89. * boundary strength (bs) mapping:
  90. *
  91. * --4---5--
  92. * 0 2 |
  93. * | 6 | 7 |
  94. * 1 3 |
  95. * ---------
  96. *
  97. */
  98. void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
  99. {
  100. uint8_t bs[8];
  101. int qp_avg, alpha, beta, tc;
  102. int i;
  103. /* save un-deblocked lines */
  104. h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
  105. h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
  106. h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
  107. memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
  108. memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
  109. memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
  110. for (i = 0; i < 8; i++) {
  111. h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
  112. h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
  113. h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
  114. h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
  115. }
  116. if (!h->loop_filter_disable) {
  117. /* determine bs */
  118. if (mb_type == I_8X8)
  119. memset(bs, 2, 8);
  120. else {
  121. memset(bs, 0, 8);
  122. if (ff_cavs_partition_flags[mb_type] & SPLITV) {
  123. bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  124. bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  125. }
  126. if (ff_cavs_partition_flags[mb_type] & SPLITH) {
  127. bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  128. bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  129. }
  130. bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  131. bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  132. bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  133. bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  134. }
  135. if (AV_RN64(bs)) {
  136. if (h->flags & A_AVAIL) {
  137. qp_avg = (h->qp + h->left_qp + 1) >> 1;
  138. SET_PARAMS;
  139. h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
  140. h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
  141. h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
  142. }
  143. qp_avg = h->qp;
  144. SET_PARAMS;
  145. h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
  146. h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
  147. if (h->flags & B_AVAIL) {
  148. qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
  149. SET_PARAMS;
  150. h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
  151. h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
  152. h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
  153. }
  154. }
  155. }
  156. h->left_qp = h->qp;
  157. h->top_qp[h->mbx] = h->qp;
  158. }
  159. #undef SET_PARAMS
  160. /*****************************************************************************
  161. *
  162. * spatial intra prediction
  163. *
  164. ****************************************************************************/
  165. void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top,
  166. uint8_t **left, int block)
  167. {
  168. int i;
  169. switch (block) {
  170. case 0:
  171. *left = h->left_border_y;
  172. h->left_border_y[0] = h->left_border_y[1];
  173. memset(&h->left_border_y[17], h->left_border_y[16], 9);
  174. memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
  175. top[17] = top[16];
  176. top[0] = top[1];
  177. if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
  178. h->left_border_y[0] = top[0] = h->topleft_border_y;
  179. break;
  180. case 1:
  181. *left = h->intern_border_y;
  182. for (i = 0; i < 8; i++)
  183. h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
  184. memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
  185. h->intern_border_y[0] = h->intern_border_y[1];
  186. memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
  187. if (h->flags & C_AVAIL)
  188. memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
  189. else
  190. memset(&top[9], top[8], 9);
  191. top[17] = top[16];
  192. top[0] = top[1];
  193. if (h->flags & B_AVAIL)
  194. h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
  195. break;
  196. case 2:
  197. *left = &h->left_border_y[8];
  198. memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
  199. top[17] = top[16];
  200. top[0] = top[1];
  201. if (h->flags & A_AVAIL)
  202. top[0] = h->left_border_y[8];
  203. break;
  204. case 3:
  205. *left = &h->intern_border_y[8];
  206. for (i = 0; i < 8; i++)
  207. h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
  208. memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
  209. memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
  210. memset(&top[9], top[8], 9);
  211. break;
  212. }
  213. }
  214. void ff_cavs_load_intra_pred_chroma(AVSContext *h)
  215. {
  216. /* extend borders by one pixel */
  217. h->left_border_u[9] = h->left_border_u[8];
  218. h->left_border_v[9] = h->left_border_v[8];
  219. h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
  220. h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
  221. if (h->mbx && h->mby) {
  222. h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
  223. h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
  224. } else {
  225. h->left_border_u[0] = h->left_border_u[1];
  226. h->left_border_v[0] = h->left_border_v[1];
  227. h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
  228. h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
  229. }
  230. }
  231. static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  232. {
  233. int y;
  234. uint64_t a = AV_RN64(&top[1]);
  235. for (y = 0; y < 8; y++)
  236. *((uint64_t *)(d + y * stride)) = a;
  237. }
  238. static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  239. {
  240. int y;
  241. uint64_t a;
  242. for (y = 0; y < 8; y++) {
  243. a = left[y + 1] * 0x0101010101010101ULL;
  244. *((uint64_t *)(d + y * stride)) = a;
  245. }
  246. }
  247. static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  248. {
  249. int y;
  250. uint64_t a = 0x8080808080808080ULL;
  251. for (y = 0; y < 8; y++)
  252. *((uint64_t *)(d + y * stride)) = a;
  253. }
  254. static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  255. {
  256. int x, y, ia;
  257. int ih = 0;
  258. int iv = 0;
  259. const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
  260. for (x = 0; x < 4; x++) {
  261. ih += (x + 1) * (top[5 + x] - top[3 - x]);
  262. iv += (x + 1) * (left[5 + x] - left[3 - x]);
  263. }
  264. ia = (top[8] + left[8]) << 4;
  265. ih = (17 * ih + 16) >> 5;
  266. iv = (17 * iv + 16) >> 5;
  267. for (y = 0; y < 8; y++)
  268. for (x = 0; x < 8; x++)
  269. d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
  270. }
  271. #define LOWPASS(ARRAY, INDEX) \
  272. ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
  273. static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  274. {
  275. int x, y;
  276. for (y = 0; y < 8; y++)
  277. for (x = 0; x < 8; x++)
  278. d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
  279. }
  280. static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  281. {
  282. int x, y;
  283. for (y = 0; y < 8; y++)
  284. for (x = 0; x < 8; x++)
  285. d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
  286. }
  287. static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  288. {
  289. int x, y;
  290. for (y = 0; y < 8; y++)
  291. for (x = 0; x < 8; x++)
  292. if (x == y)
  293. d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
  294. else if (x > y)
  295. d[y * stride + x] = LOWPASS(top, x - y);
  296. else
  297. d[y * stride + x] = LOWPASS(left, y - x);
  298. }
  299. static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  300. {
  301. int x, y;
  302. for (y = 0; y < 8; y++)
  303. for (x = 0; x < 8; x++)
  304. d[y * stride + x] = LOWPASS(left, y + 1);
  305. }
  306. static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
  307. {
  308. int x, y;
  309. for (y = 0; y < 8; y++)
  310. for (x = 0; x < 8; x++)
  311. d[y * stride + x] = LOWPASS(top, x + 1);
  312. }
  313. #undef LOWPASS
  314. static inline void modify_pred(const int8_t *mod_table, int *mode)
  315. {
  316. *mode = mod_table[*mode];
  317. if (*mode < 0) {
  318. av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
  319. *mode = 0;
  320. }
  321. }
  322. void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
  323. {
  324. /* save pred modes before they get modified */
  325. h->pred_mode_Y[3] = h->pred_mode_Y[5];
  326. h->pred_mode_Y[6] = h->pred_mode_Y[8];
  327. h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
  328. h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
  329. /* modify pred modes according to availability of neighbour samples */
  330. if (!(h->flags & A_AVAIL)) {
  331. modify_pred(left_modifier_l, &h->pred_mode_Y[4]);
  332. modify_pred(left_modifier_l, &h->pred_mode_Y[7]);
  333. modify_pred(left_modifier_c, pred_mode_uv);
  334. }
  335. if (!(h->flags & B_AVAIL)) {
  336. modify_pred(top_modifier_l, &h->pred_mode_Y[4]);
  337. modify_pred(top_modifier_l, &h->pred_mode_Y[5]);
  338. modify_pred(top_modifier_c, pred_mode_uv);
  339. }
  340. }
  341. /*****************************************************************************
  342. *
  343. * motion compensation
  344. *
  345. ****************************************************************************/
  346. static inline void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height,
  347. int delta, int list, uint8_t *dest_y,
  348. uint8_t *dest_cb, uint8_t *dest_cr,
  349. int src_x_offset, int src_y_offset,
  350. qpel_mc_func *qpix_op,
  351. h264_chroma_mc_func chroma_op, cavs_vector *mv)
  352. {
  353. const int mx = mv->x + src_x_offset * 8;
  354. const int my = mv->y + src_y_offset * 8;
  355. const int luma_xy = (mx & 3) + ((my & 3) << 2);
  356. uint8_t *src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
  357. uint8_t *src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
  358. uint8_t *src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
  359. int extra_width = 0;
  360. int extra_height = extra_width;
  361. const int full_mx = mx >> 2;
  362. const int full_my = my >> 2;
  363. const int pic_width = 16 * h->mb_width;
  364. const int pic_height = 16 * h->mb_height;
  365. int emu = 0;
  366. if (!pic->data[0])
  367. return;
  368. if (mx & 7)
  369. extra_width -= 3;
  370. if (my & 7)
  371. extra_height -= 3;
  372. if (full_mx < 0 - extra_width ||
  373. full_my < 0 - extra_height ||
  374. full_mx + 16 /* FIXME */ > pic_width + extra_width ||
  375. full_my + 16 /* FIXME */ > pic_height + extra_height) {
  376. h->vdsp.emulated_edge_mc(h->edge_emu_buffer,
  377. src_y - 2 - 2 * h->l_stride,
  378. h->l_stride, h->l_stride,
  379. 16 + 5, 16 + 5 /* FIXME */,
  380. full_mx - 2, full_my - 2,
  381. pic_width, pic_height);
  382. src_y = h->edge_emu_buffer + 2 + 2 * h->l_stride;
  383. emu = 1;
  384. }
  385. // FIXME try variable height perhaps?
  386. qpix_op[luma_xy](dest_y, src_y, h->l_stride);
  387. if (emu) {
  388. h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb,
  389. h->c_stride, h->c_stride,
  390. 9, 9 /* FIXME */,
  391. mx >> 3, my >> 3,
  392. pic_width >> 1, pic_height >> 1);
  393. src_cb = h->edge_emu_buffer;
  394. }
  395. chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx & 7, my & 7);
  396. if (emu) {
  397. h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr,
  398. h->c_stride, h->c_stride,
  399. 9, 9 /* FIXME */,
  400. mx >> 3, my >> 3,
  401. pic_width >> 1, pic_height >> 1);
  402. src_cr = h->edge_emu_buffer;
  403. }
  404. chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx & 7, my & 7);
  405. }
  406. static inline void mc_part_std(AVSContext *h, int chroma_height, int delta,
  407. uint8_t *dest_y,
  408. uint8_t *dest_cb,
  409. uint8_t *dest_cr,
  410. int x_offset, int y_offset,
  411. qpel_mc_func *qpix_put,
  412. h264_chroma_mc_func chroma_put,
  413. qpel_mc_func *qpix_avg,
  414. h264_chroma_mc_func chroma_avg,
  415. cavs_vector *mv)
  416. {
  417. qpel_mc_func *qpix_op = qpix_put;
  418. h264_chroma_mc_func chroma_op = chroma_put;
  419. dest_y += x_offset * 2 + y_offset * h->l_stride * 2;
  420. dest_cb += x_offset + y_offset * h->c_stride;
  421. dest_cr += x_offset + y_offset * h->c_stride;
  422. x_offset += 8 * h->mbx;
  423. y_offset += 8 * h->mby;
  424. if (mv->ref >= 0) {
  425. AVFrame *ref = h->DPB[mv->ref].f;
  426. mc_dir_part(h, ref, chroma_height, delta, 0,
  427. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  428. qpix_op, chroma_op, mv);
  429. qpix_op = qpix_avg;
  430. chroma_op = chroma_avg;
  431. }
  432. if ((mv + MV_BWD_OFFS)->ref >= 0) {
  433. AVFrame *ref = h->DPB[0].f;
  434. mc_dir_part(h, ref, chroma_height, delta, 1,
  435. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  436. qpix_op, chroma_op, mv + MV_BWD_OFFS);
  437. }
  438. }
  439. void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
  440. {
  441. if (ff_cavs_partition_flags[mb_type] == 0) { // 16x16
  442. mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
  443. h->cdsp.put_cavs_qpel_pixels_tab[0],
  444. h->h264chroma.put_h264_chroma_pixels_tab[0],
  445. h->cdsp.avg_cavs_qpel_pixels_tab[0],
  446. h->h264chroma.avg_h264_chroma_pixels_tab[0],
  447. &h->mv[MV_FWD_X0]);
  448. } else {
  449. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
  450. h->cdsp.put_cavs_qpel_pixels_tab[1],
  451. h->h264chroma.put_h264_chroma_pixels_tab[1],
  452. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  453. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  454. &h->mv[MV_FWD_X0]);
  455. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
  456. h->cdsp.put_cavs_qpel_pixels_tab[1],
  457. h->h264chroma.put_h264_chroma_pixels_tab[1],
  458. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  459. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  460. &h->mv[MV_FWD_X1]);
  461. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
  462. h->cdsp.put_cavs_qpel_pixels_tab[1],
  463. h->h264chroma.put_h264_chroma_pixels_tab[1],
  464. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  465. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  466. &h->mv[MV_FWD_X2]);
  467. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
  468. h->cdsp.put_cavs_qpel_pixels_tab[1],
  469. h->h264chroma.put_h264_chroma_pixels_tab[1],
  470. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  471. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  472. &h->mv[MV_FWD_X3]);
  473. }
  474. }
  475. /*****************************************************************************
  476. *
  477. * motion vector prediction
  478. *
  479. ****************************************************************************/
  480. static inline void scale_mv(AVSContext *h, int *d_x, int *d_y,
  481. cavs_vector *src, int distp)
  482. {
  483. int den = h->scale_den[src->ref];
  484. *d_x = (src->x * distp * den + 256 + FF_SIGNBIT(src->x)) >> 9;
  485. *d_y = (src->y * distp * den + 256 + FF_SIGNBIT(src->y)) >> 9;
  486. }
  487. static inline void mv_pred_median(AVSContext *h,
  488. cavs_vector *mvP,
  489. cavs_vector *mvA,
  490. cavs_vector *mvB,
  491. cavs_vector *mvC)
  492. {
  493. int ax, ay, bx, by, cx, cy;
  494. int len_ab, len_bc, len_ca, len_mid;
  495. /* scale candidates according to their temporal span */
  496. scale_mv(h, &ax, &ay, mvA, mvP->dist);
  497. scale_mv(h, &bx, &by, mvB, mvP->dist);
  498. scale_mv(h, &cx, &cy, mvC, mvP->dist);
  499. /* find the geometrical median of the three candidates */
  500. len_ab = abs(ax - bx) + abs(ay - by);
  501. len_bc = abs(bx - cx) + abs(by - cy);
  502. len_ca = abs(cx - ax) + abs(cy - ay);
  503. len_mid = mid_pred(len_ab, len_bc, len_ca);
  504. if (len_mid == len_ab) {
  505. mvP->x = cx;
  506. mvP->y = cy;
  507. } else if (len_mid == len_bc) {
  508. mvP->x = ax;
  509. mvP->y = ay;
  510. } else {
  511. mvP->x = bx;
  512. mvP->y = by;
  513. }
  514. }
  515. void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
  516. enum cavs_mv_pred mode, enum cavs_block size, int ref)
  517. {
  518. cavs_vector *mvP = &h->mv[nP];
  519. cavs_vector *mvA = &h->mv[nP-1];
  520. cavs_vector *mvB = &h->mv[nP-4];
  521. cavs_vector *mvC = &h->mv[nC];
  522. const cavs_vector *mvP2 = NULL;
  523. mvP->ref = ref;
  524. mvP->dist = h->dist[mvP->ref];
  525. if (mvC->ref == NOT_AVAIL)
  526. mvC = &h->mv[nP - 5]; // set to top-left (mvD)
  527. if (mode == MV_PRED_PSKIP &&
  528. (mvA->ref == NOT_AVAIL ||
  529. mvB->ref == NOT_AVAIL ||
  530. (mvA->x | mvA->y | mvA->ref) == 0 ||
  531. (mvB->x | mvB->y | mvB->ref) == 0)) {
  532. mvP2 = &un_mv;
  533. /* if there is only one suitable candidate, take it */
  534. } else if (mvA->ref >= 0 && mvB->ref < 0 && mvC->ref < 0) {
  535. mvP2 = mvA;
  536. } else if (mvA->ref < 0 && mvB->ref >= 0 && mvC->ref < 0) {
  537. mvP2 = mvB;
  538. } else if (mvA->ref < 0 && mvB->ref < 0 && mvC->ref >= 0) {
  539. mvP2 = mvC;
  540. } else if (mode == MV_PRED_LEFT && mvA->ref == ref) {
  541. mvP2 = mvA;
  542. } else if (mode == MV_PRED_TOP && mvB->ref == ref) {
  543. mvP2 = mvB;
  544. } else if (mode == MV_PRED_TOPRIGHT && mvC->ref == ref) {
  545. mvP2 = mvC;
  546. }
  547. if (mvP2) {
  548. mvP->x = mvP2->x;
  549. mvP->y = mvP2->y;
  550. } else
  551. mv_pred_median(h, mvP, mvA, mvB, mvC);
  552. if (mode < MV_PRED_PSKIP) {
  553. mvP->x += get_se_golomb(&h->gb);
  554. mvP->y += get_se_golomb(&h->gb);
  555. }
  556. set_mvs(mvP, size);
  557. }
  558. /*****************************************************************************
  559. *
  560. * macroblock level
  561. *
  562. ****************************************************************************/
  563. /**
  564. * initialise predictors for motion vectors and intra prediction
  565. */
  566. void ff_cavs_init_mb(AVSContext *h)
  567. {
  568. int i;
  569. /* copy predictors from top line (MB B and C) into cache */
  570. for (i = 0; i < 3; i++) {
  571. h->mv[MV_FWD_B2 + i] = h->top_mv[0][h->mbx * 2 + i];
  572. h->mv[MV_BWD_B2 + i] = h->top_mv[1][h->mbx * 2 + i];
  573. }
  574. h->pred_mode_Y[1] = h->top_pred_Y[h->mbx * 2 + 0];
  575. h->pred_mode_Y[2] = h->top_pred_Y[h->mbx * 2 + 1];
  576. /* clear top predictors if MB B is not available */
  577. if (!(h->flags & B_AVAIL)) {
  578. h->mv[MV_FWD_B2] = un_mv;
  579. h->mv[MV_FWD_B3] = un_mv;
  580. h->mv[MV_BWD_B2] = un_mv;
  581. h->mv[MV_BWD_B3] = un_mv;
  582. h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
  583. h->flags &= ~(C_AVAIL | D_AVAIL);
  584. } else if (h->mbx) {
  585. h->flags |= D_AVAIL;
  586. }
  587. if (h->mbx == h->mb_width - 1) // MB C not available
  588. h->flags &= ~C_AVAIL;
  589. /* clear top-right predictors if MB C is not available */
  590. if (!(h->flags & C_AVAIL)) {
  591. h->mv[MV_FWD_C2] = un_mv;
  592. h->mv[MV_BWD_C2] = un_mv;
  593. }
  594. /* clear top-left predictors if MB D is not available */
  595. if (!(h->flags & D_AVAIL)) {
  596. h->mv[MV_FWD_D3] = un_mv;
  597. h->mv[MV_BWD_D3] = un_mv;
  598. }
  599. }
  600. /**
  601. * save predictors for later macroblocks and increase
  602. * macroblock address
  603. * @return 0 if end of frame is reached, 1 otherwise
  604. */
  605. int ff_cavs_next_mb(AVSContext *h)
  606. {
  607. int i;
  608. h->flags |= A_AVAIL;
  609. h->cy += 16;
  610. h->cu += 8;
  611. h->cv += 8;
  612. /* copy mvs as predictors to the left */
  613. for (i = 0; i <= 20; i += 4)
  614. h->mv[i] = h->mv[i + 2];
  615. /* copy bottom mvs from cache to top line */
  616. h->top_mv[0][h->mbx * 2 + 0] = h->mv[MV_FWD_X2];
  617. h->top_mv[0][h->mbx * 2 + 1] = h->mv[MV_FWD_X3];
  618. h->top_mv[1][h->mbx * 2 + 0] = h->mv[MV_BWD_X2];
  619. h->top_mv[1][h->mbx * 2 + 1] = h->mv[MV_BWD_X3];
  620. /* next MB address */
  621. h->mbidx++;
  622. h->mbx++;
  623. if (h->mbx == h->mb_width) { // New mb line
  624. h->flags = B_AVAIL | C_AVAIL;
  625. /* clear left pred_modes */
  626. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  627. /* clear left mv predictors */
  628. for (i = 0; i <= 20; i += 4)
  629. h->mv[i] = un_mv;
  630. h->mbx = 0;
  631. h->mby++;
  632. /* re-calculate sample pointers */
  633. h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
  634. h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
  635. h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
  636. if (h->mby == h->mb_height) { // Frame end
  637. return 0;
  638. }
  639. }
  640. return 1;
  641. }
  642. /*****************************************************************************
  643. *
  644. * frame level
  645. *
  646. ****************************************************************************/
  647. void ff_cavs_init_pic(AVSContext *h)
  648. {
  649. int i;
  650. /* clear some predictors */
  651. for (i = 0; i <= 20; i += 4)
  652. h->mv[i] = un_mv;
  653. h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
  654. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  655. h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
  656. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  657. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  658. h->cy = h->cur.f->data[0];
  659. h->cu = h->cur.f->data[1];
  660. h->cv = h->cur.f->data[2];
  661. h->l_stride = h->cur.f->linesize[0];
  662. h->c_stride = h->cur.f->linesize[1];
  663. h->luma_scan[2] = 8 * h->l_stride;
  664. h->luma_scan[3] = 8 * h->l_stride + 8;
  665. h->mbx = h->mby = h->mbidx = 0;
  666. h->flags = 0;
  667. }
  668. /*****************************************************************************
  669. *
  670. * headers and interface
  671. *
  672. ****************************************************************************/
  673. /**
  674. * some predictions require data from the top-neighbouring macroblock.
  675. * this data has to be stored for one complete row of macroblocks
  676. * and this storage space is allocated here
  677. */
  678. void ff_cavs_init_top_lines(AVSContext *h)
  679. {
  680. /* alloc top line of predictors */
  681. h->top_qp = av_mallocz(h->mb_width);
  682. h->top_mv[0] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
  683. h->top_mv[1] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
  684. h->top_pred_Y = av_mallocz(h->mb_width * 2 * sizeof(*h->top_pred_Y));
  685. h->top_border_y = av_mallocz((h->mb_width + 1) * 16);
  686. h->top_border_u = av_mallocz(h->mb_width * 10);
  687. h->top_border_v = av_mallocz(h->mb_width * 10);
  688. /* alloc space for co-located MVs and types */
  689. h->col_mv = av_mallocz(h->mb_width * h->mb_height * 4 *
  690. sizeof(cavs_vector));
  691. h->col_type_base = av_mallocz(h->mb_width * h->mb_height);
  692. h->block = av_mallocz(64 * sizeof(int16_t));
  693. }
  694. av_cold int ff_cavs_init(AVCodecContext *avctx)
  695. {
  696. AVSContext *h = avctx->priv_data;
  697. ff_blockdsp_init(&h->bdsp, avctx);
  698. ff_h264chroma_init(&h->h264chroma, 8);
  699. ff_idctdsp_init(&h->idsp, avctx);
  700. ff_videodsp_init(&h->vdsp, 8);
  701. ff_cavsdsp_init(&h->cdsp, avctx);
  702. ff_init_scantable_permutation(h->idsp.idct_permutation,
  703. h->cdsp.idct_perm);
  704. ff_init_scantable(h->idsp.idct_permutation, &h->scantable, ff_zigzag_direct);
  705. h->avctx = avctx;
  706. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  707. h->cur.f = av_frame_alloc();
  708. h->DPB[0].f = av_frame_alloc();
  709. h->DPB[1].f = av_frame_alloc();
  710. if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
  711. ff_cavs_end(avctx);
  712. return AVERROR(ENOMEM);
  713. }
  714. h->luma_scan[0] = 0;
  715. h->luma_scan[1] = 8;
  716. h->intra_pred_l[INTRA_L_VERT] = intra_pred_vert;
  717. h->intra_pred_l[INTRA_L_HORIZ] = intra_pred_horiz;
  718. h->intra_pred_l[INTRA_L_LP] = intra_pred_lp;
  719. h->intra_pred_l[INTRA_L_DOWN_LEFT] = intra_pred_down_left;
  720. h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
  721. h->intra_pred_l[INTRA_L_LP_LEFT] = intra_pred_lp_left;
  722. h->intra_pred_l[INTRA_L_LP_TOP] = intra_pred_lp_top;
  723. h->intra_pred_l[INTRA_L_DC_128] = intra_pred_dc_128;
  724. h->intra_pred_c[INTRA_C_LP] = intra_pred_lp;
  725. h->intra_pred_c[INTRA_C_HORIZ] = intra_pred_horiz;
  726. h->intra_pred_c[INTRA_C_VERT] = intra_pred_vert;
  727. h->intra_pred_c[INTRA_C_PLANE] = intra_pred_plane;
  728. h->intra_pred_c[INTRA_C_LP_LEFT] = intra_pred_lp_left;
  729. h->intra_pred_c[INTRA_C_LP_TOP] = intra_pred_lp_top;
  730. h->intra_pred_c[INTRA_C_DC_128] = intra_pred_dc_128;
  731. h->mv[7] = un_mv;
  732. h->mv[19] = un_mv;
  733. return 0;
  734. }
  735. av_cold int ff_cavs_end(AVCodecContext *avctx)
  736. {
  737. AVSContext *h = avctx->priv_data;
  738. av_frame_free(&h->cur.f);
  739. av_frame_free(&h->DPB[0].f);
  740. av_frame_free(&h->DPB[1].f);
  741. av_free(h->top_qp);
  742. av_free(h->top_mv[0]);
  743. av_free(h->top_mv[1]);
  744. av_free(h->top_pred_Y);
  745. av_free(h->top_border_y);
  746. av_free(h->top_border_u);
  747. av_free(h->top_border_v);
  748. av_free(h->col_mv);
  749. av_free(h->col_type_base);
  750. av_free(h->block);
  751. av_freep(&h->edge_emu_buffer);
  752. return 0;
  753. }