You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1261 lines
46KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/channel_layout.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "libavutil/lfg.h"
  29. #include "avcodec.h"
  30. #include "lsp.h"
  31. #include "celp_filters.h"
  32. #include "acelp_filters.h"
  33. #include "acelp_vectors.h"
  34. #include "acelp_pitch_delay.h"
  35. #include "internal.h"
  36. #define AMR_USE_16BIT_TABLES
  37. #include "amr.h"
  38. #include "amrwbdata.h"
  39. typedef struct AMRWBContext {
  40. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  41. enum Mode fr_cur_mode; ///< mode index of current frame
  42. uint8_t fr_quality; ///< frame quality index (FQI)
  43. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  44. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  45. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  46. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  47. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  48. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  49. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  50. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  51. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  52. float *excitation; ///< points to current excitation in excitation_buf[]
  53. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  54. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  55. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  56. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  57. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  58. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  59. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  60. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  61. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  62. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  63. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  64. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  65. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  66. float demph_mem[1]; ///< previous value in the de-emphasis filter
  67. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  68. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  69. AVLFG prng; ///< random number generator for white noise excitation
  70. uint8_t first_frame; ///< flag active during decoding of the first frame
  71. } AMRWBContext;
  72. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  73. {
  74. AMRWBContext *ctx = avctx->priv_data;
  75. int i;
  76. if (avctx->channels > 1) {
  77. avpriv_report_missing_feature(avctx, "multi-channel AMR");
  78. return AVERROR_PATCHWELCOME;
  79. }
  80. avctx->channels = 1;
  81. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  82. avctx->sample_rate = 16000;
  83. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  84. av_lfg_init(&ctx->prng, 1);
  85. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  86. ctx->first_frame = 1;
  87. for (i = 0; i < LP_ORDER; i++)
  88. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  89. for (i = 0; i < 4; i++)
  90. ctx->prediction_error[i] = MIN_ENERGY;
  91. return 0;
  92. }
  93. /**
  94. * Decode the frame header in the "MIME/storage" format. This format
  95. * is simpler and does not carry the auxiliary frame information.
  96. *
  97. * @param[in] ctx The Context
  98. * @param[in] buf Pointer to the input buffer
  99. *
  100. * @return The decoded header length in bytes
  101. */
  102. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  103. {
  104. /* Decode frame header (1st octet) */
  105. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  106. ctx->fr_quality = (buf[0] & 0x4) == 0x4;
  107. return 1;
  108. }
  109. /**
  110. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  111. *
  112. * @param[in] ind Array of 5 indexes
  113. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  114. *
  115. */
  116. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  117. {
  118. int i;
  119. for (i = 0; i < 9; i++)
  120. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  121. for (i = 0; i < 7; i++)
  122. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  123. for (i = 0; i < 5; i++)
  124. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  125. for (i = 0; i < 4; i++)
  126. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  127. for (i = 0; i < 7; i++)
  128. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  129. }
  130. /**
  131. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  132. *
  133. * @param[in] ind Array of 7 indexes
  134. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  135. *
  136. */
  137. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  138. {
  139. int i;
  140. for (i = 0; i < 9; i++)
  141. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  142. for (i = 0; i < 7; i++)
  143. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  144. for (i = 0; i < 3; i++)
  145. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  146. for (i = 0; i < 3; i++)
  147. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  148. for (i = 0; i < 3; i++)
  149. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  150. for (i = 0; i < 3; i++)
  151. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  152. for (i = 0; i < 4; i++)
  153. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  154. }
  155. /**
  156. * Apply mean and past ISF values using the prediction factor.
  157. * Updates past ISF vector.
  158. *
  159. * @param[in,out] isf_q Current quantized ISF
  160. * @param[in,out] isf_past Past quantized ISF
  161. *
  162. */
  163. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  164. {
  165. int i;
  166. float tmp;
  167. for (i = 0; i < LP_ORDER; i++) {
  168. tmp = isf_q[i];
  169. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  170. isf_q[i] += PRED_FACTOR * isf_past[i];
  171. isf_past[i] = tmp;
  172. }
  173. }
  174. /**
  175. * Interpolate the fourth ISP vector from current and past frames
  176. * to obtain an ISP vector for each subframe.
  177. *
  178. * @param[in,out] isp_q ISPs for each subframe
  179. * @param[in] isp4_past Past ISP for subframe 4
  180. */
  181. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  182. {
  183. int i, k;
  184. for (k = 0; k < 3; k++) {
  185. float c = isfp_inter[k];
  186. for (i = 0; i < LP_ORDER; i++)
  187. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  188. }
  189. }
  190. /**
  191. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  192. * Calculate integer lag and fractional lag always using 1/4 resolution.
  193. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  194. *
  195. * @param[out] lag_int Decoded integer pitch lag
  196. * @param[out] lag_frac Decoded fractional pitch lag
  197. * @param[in] pitch_index Adaptive codebook pitch index
  198. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  199. * @param[in] subframe Current subframe index (0 to 3)
  200. */
  201. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  202. uint8_t *base_lag_int, int subframe)
  203. {
  204. if (subframe == 0 || subframe == 2) {
  205. if (pitch_index < 376) {
  206. *lag_int = (pitch_index + 137) >> 2;
  207. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  208. } else if (pitch_index < 440) {
  209. *lag_int = (pitch_index + 257 - 376) >> 1;
  210. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  211. /* the actual resolution is 1/2 but expressed as 1/4 */
  212. } else {
  213. *lag_int = pitch_index - 280;
  214. *lag_frac = 0;
  215. }
  216. /* minimum lag for next subframe */
  217. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  218. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  219. // XXX: the spec states clearly that *base_lag_int should be
  220. // the nearest integer to *lag_int (minus 8), but the ref code
  221. // actually always uses its floor, I'm following the latter
  222. } else {
  223. *lag_int = (pitch_index + 1) >> 2;
  224. *lag_frac = pitch_index - (*lag_int << 2);
  225. *lag_int += *base_lag_int;
  226. }
  227. }
  228. /**
  229. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  230. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  231. * relative index is used for all subframes except the first.
  232. */
  233. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  234. uint8_t *base_lag_int, int subframe, enum Mode mode)
  235. {
  236. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  237. if (pitch_index < 116) {
  238. *lag_int = (pitch_index + 69) >> 1;
  239. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  240. } else {
  241. *lag_int = pitch_index - 24;
  242. *lag_frac = 0;
  243. }
  244. // XXX: same problem as before
  245. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  246. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  247. } else {
  248. *lag_int = (pitch_index + 1) >> 1;
  249. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  250. *lag_int += *base_lag_int;
  251. }
  252. }
  253. /**
  254. * Find the pitch vector by interpolating the past excitation at the
  255. * pitch delay, which is obtained in this function.
  256. *
  257. * @param[in,out] ctx The context
  258. * @param[in] amr_subframe Current subframe data
  259. * @param[in] subframe Current subframe index (0 to 3)
  260. */
  261. static void decode_pitch_vector(AMRWBContext *ctx,
  262. const AMRWBSubFrame *amr_subframe,
  263. const int subframe)
  264. {
  265. int pitch_lag_int, pitch_lag_frac;
  266. int i;
  267. float *exc = ctx->excitation;
  268. enum Mode mode = ctx->fr_cur_mode;
  269. if (mode <= MODE_8k85) {
  270. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  271. &ctx->base_pitch_lag, subframe, mode);
  272. } else
  273. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  274. &ctx->base_pitch_lag, subframe);
  275. ctx->pitch_lag_int = pitch_lag_int;
  276. pitch_lag_int += pitch_lag_frac > 0;
  277. /* Calculate the pitch vector by interpolating the past excitation at the
  278. pitch lag using a hamming windowed sinc function */
  279. ff_acelp_interpolatef(exc, exc + 1 - pitch_lag_int,
  280. ac_inter, 4,
  281. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  282. LP_ORDER, AMRWB_SFR_SIZE + 1);
  283. /* Check which pitch signal path should be used
  284. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  285. if (amr_subframe->ltp) {
  286. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  287. } else {
  288. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  289. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  290. 0.18 * exc[i + 1];
  291. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  292. }
  293. }
  294. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  295. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  296. /** Get the bit at specified position */
  297. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  298. /**
  299. * The next six functions decode_[i]p_track decode exactly i pulses
  300. * positions and amplitudes (-1 or 1) in a subframe track using
  301. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  302. *
  303. * The results are given in out[], in which a negative number means
  304. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  305. *
  306. * @param[out] out Output buffer (writes i elements)
  307. * @param[in] code Pulse index (no. of bits varies, see below)
  308. * @param[in] m (log2) Number of potential positions
  309. * @param[in] off Offset for decoded positions
  310. */
  311. static inline void decode_1p_track(int *out, int code, int m, int off)
  312. {
  313. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  314. out[0] = BIT_POS(code, m) ? -pos : pos;
  315. }
  316. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  317. {
  318. int pos0 = BIT_STR(code, m, m) + off;
  319. int pos1 = BIT_STR(code, 0, m) + off;
  320. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  321. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  322. out[1] = pos0 > pos1 ? -out[1] : out[1];
  323. }
  324. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  325. {
  326. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  327. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  328. m - 1, off + half_2p);
  329. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  330. }
  331. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  332. {
  333. int half_4p, subhalf_2p;
  334. int b_offset = 1 << (m - 1);
  335. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  336. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  337. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  338. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  339. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  340. m - 2, off + half_4p + subhalf_2p);
  341. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  342. m - 1, off + half_4p);
  343. break;
  344. case 1: /* 1 pulse in A, 3 pulses in B */
  345. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  346. m - 1, off);
  347. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  348. m - 1, off + b_offset);
  349. break;
  350. case 2: /* 2 pulses in each half */
  351. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  352. m - 1, off);
  353. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  354. m - 1, off + b_offset);
  355. break;
  356. case 3: /* 3 pulses in A, 1 pulse in B */
  357. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  358. m - 1, off);
  359. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  360. m - 1, off + b_offset);
  361. break;
  362. }
  363. }
  364. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  365. {
  366. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  367. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  368. m - 1, off + half_3p);
  369. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  370. }
  371. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  372. {
  373. int b_offset = 1 << (m - 1);
  374. /* which half has more pulses in cases 0 to 2 */
  375. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  376. int half_other = b_offset - half_more;
  377. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  378. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  379. decode_1p_track(out, BIT_STR(code, 0, m),
  380. m - 1, off + half_more);
  381. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  382. m - 1, off + half_more);
  383. break;
  384. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  385. decode_1p_track(out, BIT_STR(code, 0, m),
  386. m - 1, off + half_other);
  387. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  388. m - 1, off + half_more);
  389. break;
  390. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  391. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  392. m - 1, off + half_other);
  393. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  394. m - 1, off + half_more);
  395. break;
  396. case 3: /* 3 pulses in A, 3 pulses in B */
  397. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  398. m - 1, off);
  399. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  400. m - 1, off + b_offset);
  401. break;
  402. }
  403. }
  404. /**
  405. * Decode the algebraic codebook index to pulse positions and signs,
  406. * then construct the algebraic codebook vector.
  407. *
  408. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  409. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  410. * @param[in] pulse_lo LSBs part of the pulse index array
  411. * @param[in] mode Mode of the current frame
  412. */
  413. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  414. const uint16_t *pulse_lo, const enum Mode mode)
  415. {
  416. /* sig_pos stores for each track the decoded pulse position indexes
  417. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  418. int sig_pos[4][6];
  419. int spacing = (mode == MODE_6k60) ? 2 : 4;
  420. int i, j;
  421. switch (mode) {
  422. case MODE_6k60:
  423. for (i = 0; i < 2; i++)
  424. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  425. break;
  426. case MODE_8k85:
  427. for (i = 0; i < 4; i++)
  428. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  429. break;
  430. case MODE_12k65:
  431. for (i = 0; i < 4; i++)
  432. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  433. break;
  434. case MODE_14k25:
  435. for (i = 0; i < 2; i++)
  436. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  437. for (i = 2; i < 4; i++)
  438. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  439. break;
  440. case MODE_15k85:
  441. for (i = 0; i < 4; i++)
  442. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  443. break;
  444. case MODE_18k25:
  445. for (i = 0; i < 4; i++)
  446. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  447. ((int) pulse_hi[i] << 14), 4, 1);
  448. break;
  449. case MODE_19k85:
  450. for (i = 0; i < 2; i++)
  451. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  452. ((int) pulse_hi[i] << 10), 4, 1);
  453. for (i = 2; i < 4; i++)
  454. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  455. ((int) pulse_hi[i] << 14), 4, 1);
  456. break;
  457. case MODE_23k05:
  458. case MODE_23k85:
  459. for (i = 0; i < 4; i++)
  460. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  461. ((int) pulse_hi[i] << 11), 4, 1);
  462. break;
  463. }
  464. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  465. for (i = 0; i < 4; i++)
  466. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  467. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  468. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  469. }
  470. }
  471. /**
  472. * Decode pitch gain and fixed gain correction factor.
  473. *
  474. * @param[in] vq_gain Vector-quantized index for gains
  475. * @param[in] mode Mode of the current frame
  476. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  477. * @param[out] pitch_gain Decoded pitch gain
  478. */
  479. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  480. float *fixed_gain_factor, float *pitch_gain)
  481. {
  482. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  483. qua_gain_7b[vq_gain]);
  484. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  485. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  486. }
  487. /**
  488. * Apply pitch sharpening filters to the fixed codebook vector.
  489. *
  490. * @param[in] ctx The context
  491. * @param[in,out] fixed_vector Fixed codebook excitation
  492. */
  493. // XXX: Spec states this procedure should be applied when the pitch
  494. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  495. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  496. {
  497. int i;
  498. /* Tilt part */
  499. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  500. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  501. /* Periodicity enhancement part */
  502. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  503. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  504. }
  505. /**
  506. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  507. *
  508. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  509. * @param[in] p_gain, f_gain Pitch and fixed gains
  510. */
  511. // XXX: There is something wrong with the precision here! The magnitudes
  512. // of the energies are not correct. Please check the reference code carefully
  513. static float voice_factor(float *p_vector, float p_gain,
  514. float *f_vector, float f_gain)
  515. {
  516. double p_ener = (double) avpriv_scalarproduct_float_c(p_vector, p_vector,
  517. AMRWB_SFR_SIZE) *
  518. p_gain * p_gain;
  519. double f_ener = (double) avpriv_scalarproduct_float_c(f_vector, f_vector,
  520. AMRWB_SFR_SIZE) *
  521. f_gain * f_gain;
  522. return (p_ener - f_ener) / (p_ener + f_ener);
  523. }
  524. /**
  525. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  526. * also known as "adaptive phase dispersion".
  527. *
  528. * @param[in] ctx The context
  529. * @param[in,out] fixed_vector Unfiltered fixed vector
  530. * @param[out] buf Space for modified vector if necessary
  531. *
  532. * @return The potentially overwritten filtered fixed vector address
  533. */
  534. static float *anti_sparseness(AMRWBContext *ctx,
  535. float *fixed_vector, float *buf)
  536. {
  537. int ir_filter_nr;
  538. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  539. return fixed_vector;
  540. if (ctx->pitch_gain[0] < 0.6) {
  541. ir_filter_nr = 0; // strong filtering
  542. } else if (ctx->pitch_gain[0] < 0.9) {
  543. ir_filter_nr = 1; // medium filtering
  544. } else
  545. ir_filter_nr = 2; // no filtering
  546. /* detect 'onset' */
  547. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  548. if (ir_filter_nr < 2)
  549. ir_filter_nr++;
  550. } else {
  551. int i, count = 0;
  552. for (i = 0; i < 6; i++)
  553. if (ctx->pitch_gain[i] < 0.6)
  554. count++;
  555. if (count > 2)
  556. ir_filter_nr = 0;
  557. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  558. ir_filter_nr--;
  559. }
  560. /* update ir filter strength history */
  561. ctx->prev_ir_filter_nr = ir_filter_nr;
  562. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  563. if (ir_filter_nr < 2) {
  564. int i;
  565. const float *coef = ir_filters_lookup[ir_filter_nr];
  566. /* Circular convolution code in the reference
  567. * decoder was modified to avoid using one
  568. * extra array. The filtered vector is given by:
  569. *
  570. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  571. */
  572. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  573. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  574. if (fixed_vector[i])
  575. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  576. AMRWB_SFR_SIZE);
  577. fixed_vector = buf;
  578. }
  579. return fixed_vector;
  580. }
  581. /**
  582. * Calculate a stability factor {teta} based on distance between
  583. * current and past isf. A value of 1 shows maximum signal stability.
  584. */
  585. static float stability_factor(const float *isf, const float *isf_past)
  586. {
  587. int i;
  588. float acc = 0.0;
  589. for (i = 0; i < LP_ORDER - 1; i++)
  590. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  591. // XXX: This part is not so clear from the reference code
  592. // the result is more accurate changing the "/ 256" to "* 512"
  593. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  594. }
  595. /**
  596. * Apply a non-linear fixed gain smoothing in order to reduce
  597. * fluctuation in the energy of excitation.
  598. *
  599. * @param[in] fixed_gain Unsmoothed fixed gain
  600. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  601. * @param[in] voice_fac Frame voicing factor
  602. * @param[in] stab_fac Frame stability factor
  603. *
  604. * @return The smoothed gain
  605. */
  606. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  607. float voice_fac, float stab_fac)
  608. {
  609. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  610. float g0;
  611. // XXX: the following fixed-point constants used to in(de)crement
  612. // gain by 1.5dB were taken from the reference code, maybe it could
  613. // be simpler
  614. if (fixed_gain < *prev_tr_gain) {
  615. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  616. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  617. } else
  618. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  619. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  620. *prev_tr_gain = g0; // update next frame threshold
  621. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  622. }
  623. /**
  624. * Filter the fixed_vector to emphasize the higher frequencies.
  625. *
  626. * @param[in,out] fixed_vector Fixed codebook vector
  627. * @param[in] voice_fac Frame voicing factor
  628. */
  629. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  630. {
  631. int i;
  632. float cpe = 0.125 * (1 + voice_fac);
  633. float last = fixed_vector[0]; // holds c(i - 1)
  634. fixed_vector[0] -= cpe * fixed_vector[1];
  635. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  636. float cur = fixed_vector[i];
  637. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  638. last = cur;
  639. }
  640. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  641. }
  642. /**
  643. * Conduct 16th order linear predictive coding synthesis from excitation.
  644. *
  645. * @param[in] ctx Pointer to the AMRWBContext
  646. * @param[in] lpc Pointer to the LPC coefficients
  647. * @param[out] excitation Buffer for synthesis final excitation
  648. * @param[in] fixed_gain Fixed codebook gain for synthesis
  649. * @param[in] fixed_vector Algebraic codebook vector
  650. * @param[in,out] samples Pointer to the output samples and memory
  651. */
  652. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  653. float fixed_gain, const float *fixed_vector,
  654. float *samples)
  655. {
  656. ff_weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  657. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  658. /* emphasize pitch vector contribution in low bitrate modes */
  659. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  660. int i;
  661. float energy = avpriv_scalarproduct_float_c(excitation, excitation,
  662. AMRWB_SFR_SIZE);
  663. // XXX: Weird part in both ref code and spec. A unknown parameter
  664. // {beta} seems to be identical to the current pitch gain
  665. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  666. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  667. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  668. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  669. energy, AMRWB_SFR_SIZE);
  670. }
  671. ff_celp_lp_synthesis_filterf(samples, lpc, excitation,
  672. AMRWB_SFR_SIZE, LP_ORDER);
  673. }
  674. /**
  675. * Apply to synthesis a de-emphasis filter of the form:
  676. * H(z) = 1 / (1 - m * z^-1)
  677. *
  678. * @param[out] out Output buffer
  679. * @param[in] in Input samples array with in[-1]
  680. * @param[in] m Filter coefficient
  681. * @param[in,out] mem State from last filtering
  682. */
  683. static void de_emphasis(float *out, float *in, float m, float mem[1])
  684. {
  685. int i;
  686. out[0] = in[0] + m * mem[0];
  687. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  688. out[i] = in[i] + out[i - 1] * m;
  689. mem[0] = out[AMRWB_SFR_SIZE - 1];
  690. }
  691. /**
  692. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  693. * a FIR interpolation filter. Uses past data from before *in address.
  694. *
  695. * @param[out] out Buffer for interpolated signal
  696. * @param[in] in Current signal data (length 0.8*o_size)
  697. * @param[in] o_size Output signal length
  698. */
  699. static void upsample_5_4(float *out, const float *in, int o_size)
  700. {
  701. const float *in0 = in - UPS_FIR_SIZE + 1;
  702. int i, j, k;
  703. int int_part = 0, frac_part;
  704. i = 0;
  705. for (j = 0; j < o_size / 5; j++) {
  706. out[i] = in[int_part];
  707. frac_part = 4;
  708. i++;
  709. for (k = 1; k < 5; k++) {
  710. out[i] = avpriv_scalarproduct_float_c(in0 + int_part,
  711. upsample_fir[4 - frac_part],
  712. UPS_MEM_SIZE);
  713. int_part++;
  714. frac_part--;
  715. i++;
  716. }
  717. }
  718. }
  719. /**
  720. * Calculate the high-band gain based on encoded index (23k85 mode) or
  721. * on the low-band speech signal and the Voice Activity Detection flag.
  722. *
  723. * @param[in] ctx The context
  724. * @param[in] synth LB speech synthesis at 12.8k
  725. * @param[in] hb_idx Gain index for mode 23k85 only
  726. * @param[in] vad VAD flag for the frame
  727. */
  728. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  729. uint16_t hb_idx, uint8_t vad)
  730. {
  731. int wsp = (vad > 0);
  732. float tilt;
  733. if (ctx->fr_cur_mode == MODE_23k85)
  734. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  735. tilt = avpriv_scalarproduct_float_c(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  736. avpriv_scalarproduct_float_c(synth, synth, AMRWB_SFR_SIZE);
  737. /* return gain bounded by [0.1, 1.0] */
  738. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  739. }
  740. /**
  741. * Generate the high-band excitation with the same energy from the lower
  742. * one and scaled by the given gain.
  743. *
  744. * @param[in] ctx The context
  745. * @param[out] hb_exc Buffer for the excitation
  746. * @param[in] synth_exc Low-band excitation used for synthesis
  747. * @param[in] hb_gain Wanted excitation gain
  748. */
  749. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  750. const float *synth_exc, float hb_gain)
  751. {
  752. int i;
  753. float energy = avpriv_scalarproduct_float_c(synth_exc, synth_exc,
  754. AMRWB_SFR_SIZE);
  755. /* Generate a white-noise excitation */
  756. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  757. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  758. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  759. energy * hb_gain * hb_gain,
  760. AMRWB_SFR_SIZE_16k);
  761. }
  762. /**
  763. * Calculate the auto-correlation for the ISF difference vector.
  764. */
  765. static float auto_correlation(float *diff_isf, float mean, int lag)
  766. {
  767. int i;
  768. float sum = 0.0;
  769. for (i = 7; i < LP_ORDER - 2; i++) {
  770. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  771. sum += prod * prod;
  772. }
  773. return sum;
  774. }
  775. /**
  776. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  777. * used at mode 6k60 LP filter for the high frequency band.
  778. *
  779. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  780. * values on input
  781. */
  782. static void extrapolate_isf(float isf[LP_ORDER_16k])
  783. {
  784. float diff_isf[LP_ORDER - 2], diff_mean;
  785. float corr_lag[3];
  786. float est, scale;
  787. int i, j, i_max_corr;
  788. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  789. /* Calculate the difference vector */
  790. for (i = 0; i < LP_ORDER - 2; i++)
  791. diff_isf[i] = isf[i + 1] - isf[i];
  792. diff_mean = 0.0;
  793. for (i = 2; i < LP_ORDER - 2; i++)
  794. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  795. /* Find which is the maximum autocorrelation */
  796. i_max_corr = 0;
  797. for (i = 0; i < 3; i++) {
  798. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  799. if (corr_lag[i] > corr_lag[i_max_corr])
  800. i_max_corr = i;
  801. }
  802. i_max_corr++;
  803. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  804. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  805. - isf[i - 2 - i_max_corr];
  806. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  807. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  808. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  809. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  810. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  811. diff_isf[j] = scale * (isf[i] - isf[i - 1]);
  812. /* Stability insurance */
  813. for (i = 1; i < LP_ORDER_16k - LP_ORDER; i++)
  814. if (diff_isf[i] + diff_isf[i - 1] < 5.0) {
  815. if (diff_isf[i] > diff_isf[i - 1]) {
  816. diff_isf[i - 1] = 5.0 - diff_isf[i];
  817. } else
  818. diff_isf[i] = 5.0 - diff_isf[i - 1];
  819. }
  820. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  821. isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15));
  822. /* Scale the ISF vector for 16000 Hz */
  823. for (i = 0; i < LP_ORDER_16k - 1; i++)
  824. isf[i] *= 0.8;
  825. }
  826. /**
  827. * Spectral expand the LP coefficients using the equation:
  828. * y[i] = x[i] * (gamma ** i)
  829. *
  830. * @param[out] out Output buffer (may use input array)
  831. * @param[in] lpc LP coefficients array
  832. * @param[in] gamma Weighting factor
  833. * @param[in] size LP array size
  834. */
  835. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  836. {
  837. int i;
  838. float fac = gamma;
  839. for (i = 0; i < size; i++) {
  840. out[i] = lpc[i] * fac;
  841. fac *= gamma;
  842. }
  843. }
  844. /**
  845. * Conduct 20th order linear predictive coding synthesis for the high
  846. * frequency band excitation at 16kHz.
  847. *
  848. * @param[in] ctx The context
  849. * @param[in] subframe Current subframe index (0 to 3)
  850. * @param[in,out] samples Pointer to the output speech samples
  851. * @param[in] exc Generated white-noise scaled excitation
  852. * @param[in] isf Current frame isf vector
  853. * @param[in] isf_past Past frame final isf vector
  854. */
  855. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  856. const float *exc, const float *isf, const float *isf_past)
  857. {
  858. float hb_lpc[LP_ORDER_16k];
  859. enum Mode mode = ctx->fr_cur_mode;
  860. if (mode == MODE_6k60) {
  861. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  862. double e_isp[LP_ORDER_16k];
  863. ff_weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  864. 1.0 - isfp_inter[subframe], LP_ORDER);
  865. extrapolate_isf(e_isf);
  866. e_isf[LP_ORDER_16k - 1] *= 2.0;
  867. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  868. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  869. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  870. } else {
  871. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  872. }
  873. ff_celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  874. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  875. }
  876. /**
  877. * Apply a 15th order filter to high-band samples.
  878. * The filter characteristic depends on the given coefficients.
  879. *
  880. * @param[out] out Buffer for filtered output
  881. * @param[in] fir_coef Filter coefficients
  882. * @param[in,out] mem State from last filtering (updated)
  883. * @param[in] in Input speech data (high-band)
  884. *
  885. * @remark It is safe to pass the same array in in and out parameters
  886. */
  887. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  888. float mem[HB_FIR_SIZE], const float *in)
  889. {
  890. int i, j;
  891. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  892. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  893. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  894. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  895. out[i] = 0.0;
  896. for (j = 0; j <= HB_FIR_SIZE; j++)
  897. out[i] += data[i + j] * fir_coef[j];
  898. }
  899. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  900. }
  901. /**
  902. * Update context state before the next subframe.
  903. */
  904. static void update_sub_state(AMRWBContext *ctx)
  905. {
  906. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  907. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  908. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  909. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  910. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  911. LP_ORDER * sizeof(float));
  912. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  913. UPS_MEM_SIZE * sizeof(float));
  914. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  915. LP_ORDER_16k * sizeof(float));
  916. }
  917. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  918. int *got_frame_ptr, AVPacket *avpkt)
  919. {
  920. AMRWBContext *ctx = avctx->priv_data;
  921. AVFrame *frame = data;
  922. AMRWBFrame *cf = &ctx->frame;
  923. const uint8_t *buf = avpkt->data;
  924. int buf_size = avpkt->size;
  925. int expected_fr_size, header_size;
  926. float *buf_out;
  927. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  928. float fixed_gain_factor; // fixed gain correction factor (gamma)
  929. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  930. float synth_fixed_gain; // the fixed gain that synthesis should use
  931. float voice_fac, stab_fac; // parameters used for gain smoothing
  932. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  933. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  934. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  935. float hb_gain;
  936. int sub, i, ret;
  937. /* get output buffer */
  938. frame->nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  939. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  940. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  941. return ret;
  942. }
  943. buf_out = (float *)frame->data[0];
  944. header_size = decode_mime_header(ctx, buf);
  945. if (ctx->fr_cur_mode > MODE_SID) {
  946. av_log(avctx, AV_LOG_ERROR,
  947. "Invalid mode %d\n", ctx->fr_cur_mode);
  948. return AVERROR_INVALIDDATA;
  949. }
  950. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  951. if (buf_size < expected_fr_size) {
  952. av_log(avctx, AV_LOG_ERROR,
  953. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  954. *got_frame_ptr = 0;
  955. return AVERROR_INVALIDDATA;
  956. }
  957. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  958. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  959. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  960. avpriv_request_sample(avctx, "SID mode");
  961. return AVERROR_PATCHWELCOME;
  962. }
  963. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  964. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  965. /* Decode the quantized ISF vector */
  966. if (ctx->fr_cur_mode == MODE_6k60) {
  967. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  968. } else {
  969. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  970. }
  971. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  972. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  973. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  974. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  975. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  976. /* Generate a ISP vector for each subframe */
  977. if (ctx->first_frame) {
  978. ctx->first_frame = 0;
  979. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  980. }
  981. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  982. for (sub = 0; sub < 4; sub++)
  983. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  984. for (sub = 0; sub < 4; sub++) {
  985. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  986. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  987. /* Decode adaptive codebook (pitch vector) */
  988. decode_pitch_vector(ctx, cur_subframe, sub);
  989. /* Decode innovative codebook (fixed vector) */
  990. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  991. cur_subframe->pul_il, ctx->fr_cur_mode);
  992. pitch_sharpening(ctx, ctx->fixed_vector);
  993. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  994. &fixed_gain_factor, &ctx->pitch_gain[0]);
  995. ctx->fixed_gain[0] =
  996. ff_amr_set_fixed_gain(fixed_gain_factor,
  997. avpriv_scalarproduct_float_c(ctx->fixed_vector,
  998. ctx->fixed_vector,
  999. AMRWB_SFR_SIZE) /
  1000. AMRWB_SFR_SIZE,
  1001. ctx->prediction_error,
  1002. ENERGY_MEAN, energy_pred_fac);
  1003. /* Calculate voice factor and store tilt for next subframe */
  1004. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  1005. ctx->fixed_vector, ctx->fixed_gain[0]);
  1006. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  1007. /* Construct current excitation */
  1008. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  1009. ctx->excitation[i] *= ctx->pitch_gain[0];
  1010. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  1011. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1012. }
  1013. /* Post-processing of excitation elements */
  1014. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1015. voice_fac, stab_fac);
  1016. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1017. spare_vector);
  1018. pitch_enhancer(synth_fixed_vector, voice_fac);
  1019. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1020. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1021. /* Synthesis speech post-processing */
  1022. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1023. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1024. ff_acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1025. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1026. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1027. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1028. AMRWB_SFR_SIZE_16k);
  1029. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1030. ff_acelp_apply_order_2_transfer_function(hb_samples,
  1031. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1032. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1033. hb_gain = find_hb_gain(ctx, hb_samples,
  1034. cur_subframe->hb_gain, cf->vad);
  1035. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1036. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1037. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1038. /* High-band post-processing filters */
  1039. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1040. &ctx->samples_hb[LP_ORDER_16k]);
  1041. if (ctx->fr_cur_mode == MODE_23k85)
  1042. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1043. hb_samples);
  1044. /* Add the low and high frequency bands */
  1045. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1046. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1047. /* Update buffers and history */
  1048. update_sub_state(ctx);
  1049. }
  1050. /* update state for next frame */
  1051. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1052. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1053. *got_frame_ptr = 1;
  1054. return expected_fr_size;
  1055. }
  1056. AVCodec ff_amrwb_decoder = {
  1057. .name = "amrwb",
  1058. .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
  1059. .type = AVMEDIA_TYPE_AUDIO,
  1060. .id = AV_CODEC_ID_AMR_WB,
  1061. .priv_data_size = sizeof(AMRWBContext),
  1062. .init = amrwb_decode_init,
  1063. .decode = amrwb_decode_frame,
  1064. .capabilities = CODEC_CAP_DR1,
  1065. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1066. AV_SAMPLE_FMT_NONE },
  1067. };