You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

774 lines
24KB

  1. /*
  2. * Copyright (c) 2017 Paul B Mahol
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * An arbitrary audio FIR filter
  23. */
  24. #include <float.h>
  25. #include "libavutil/common.h"
  26. #include "libavutil/float_dsp.h"
  27. #include "libavutil/intreadwrite.h"
  28. #include "libavutil/opt.h"
  29. #include "libavutil/xga_font_data.h"
  30. #include "libavcodec/avfft.h"
  31. #include "audio.h"
  32. #include "avfilter.h"
  33. #include "filters.h"
  34. #include "formats.h"
  35. #include "internal.h"
  36. #include "af_afir.h"
  37. static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len)
  38. {
  39. int n;
  40. for (n = 0; n < len; n++) {
  41. const float cre = c[2 * n ];
  42. const float cim = c[2 * n + 1];
  43. const float tre = t[2 * n ];
  44. const float tim = t[2 * n + 1];
  45. sum[2 * n ] += tre * cre - tim * cim;
  46. sum[2 * n + 1] += tre * cim + tim * cre;
  47. }
  48. sum[2 * n] += t[2 * n] * c[2 * n];
  49. }
  50. static int fir_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs)
  51. {
  52. AudioFIRContext *s = ctx->priv;
  53. AudioFIRSegment *seg = &s->seg[0];
  54. const float *src = (const float *)s->in[0]->extended_data[ch];
  55. float *sum = (float *)seg->sum->extended_data[ch];
  56. AVFrame *out = arg;
  57. float *block, *dst, *ptr;
  58. int n, i, j;
  59. memset(sum, 0, sizeof(*sum) * seg->fft_length);
  60. block = (float *)seg->block->extended_data[ch] + seg->part_index[ch] * seg->block_size;
  61. memset(block, 0, sizeof(*block) * seg->fft_length);
  62. s->fdsp->vector_fmul_scalar(block, src, s->dry_gain, FFALIGN(out->nb_samples, 4));
  63. emms_c();
  64. av_rdft_calc(seg->rdft[ch], block);
  65. block[2 * seg->part_size] = block[1];
  66. block[1] = 0;
  67. j = seg->part_index[ch];
  68. for (i = 0; i < seg->nb_partitions; i++) {
  69. const int coffset = i * seg->coeff_size;
  70. const float *block = (const float *)seg->block->extended_data[ch] + j * seg->block_size;
  71. const FFTComplex *coeff = (const FFTComplex *)seg->coeff->extended_data[ch * !s->one2many] + coffset;
  72. s->fcmul_add(sum, block, (const float *)coeff, seg->part_size);
  73. if (j == 0)
  74. j = seg->nb_partitions;
  75. j--;
  76. }
  77. sum[1] = sum[2 * seg->part_size];
  78. av_rdft_calc(seg->irdft[ch], sum);
  79. dst = (float *)seg->buffer->extended_data[ch];
  80. for (n = 0; n < seg->part_size; n++) {
  81. dst[n] += sum[n];
  82. }
  83. ptr = (float *)out->extended_data[ch];
  84. s->fdsp->vector_fmul_scalar(ptr, dst, s->wet_gain, FFALIGN(out->nb_samples, 4));
  85. emms_c();
  86. dst = (float *)seg->buffer->extended_data[ch];
  87. memcpy(dst, sum + seg->part_size, seg->part_size * sizeof(*dst));
  88. seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;
  89. return 0;
  90. }
  91. static int fir_frame(AudioFIRContext *s, AVFrame *in, AVFilterLink *outlink)
  92. {
  93. AVFilterContext *ctx = outlink->src;
  94. AVFrame *out = NULL;
  95. out = ff_get_audio_buffer(outlink, in->nb_samples);
  96. if (!out) {
  97. av_frame_free(&in);
  98. return AVERROR(ENOMEM);
  99. }
  100. if (s->pts == AV_NOPTS_VALUE)
  101. s->pts = in->pts;
  102. s->in[0] = in;
  103. ctx->internal->execute(ctx, fir_channel, out, NULL, outlink->channels);
  104. out->pts = s->pts;
  105. if (s->pts != AV_NOPTS_VALUE)
  106. s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);
  107. av_frame_free(&in);
  108. s->in[0] = NULL;
  109. return ff_filter_frame(outlink, out);
  110. }
  111. static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)
  112. {
  113. const uint8_t *font;
  114. int font_height;
  115. int i;
  116. font = avpriv_cga_font, font_height = 8;
  117. for (i = 0; txt[i]; i++) {
  118. int char_y, mask;
  119. uint8_t *p = pic->data[0] + y * pic->linesize[0] + (x + i * 8) * 4;
  120. for (char_y = 0; char_y < font_height; char_y++) {
  121. for (mask = 0x80; mask; mask >>= 1) {
  122. if (font[txt[i] * font_height + char_y] & mask)
  123. AV_WL32(p, color);
  124. p += 4;
  125. }
  126. p += pic->linesize[0] - 8 * 4;
  127. }
  128. }
  129. }
  130. static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
  131. {
  132. int dx = FFABS(x1-x0);
  133. int dy = FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
  134. int err = (dx>dy ? dx : -dy) / 2, e2;
  135. for (;;) {
  136. AV_WL32(out->data[0] + y0 * out->linesize[0] + x0 * 4, color);
  137. if (x0 == x1 && y0 == y1)
  138. break;
  139. e2 = err;
  140. if (e2 >-dx) {
  141. err -= dy;
  142. x0--;
  143. }
  144. if (e2 < dy) {
  145. err += dx;
  146. y0 += sy;
  147. }
  148. }
  149. }
  150. static void draw_response(AVFilterContext *ctx, AVFrame *out)
  151. {
  152. AudioFIRContext *s = ctx->priv;
  153. float *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN;
  154. float min_delay = FLT_MAX, max_delay = FLT_MIN;
  155. int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
  156. char text[32];
  157. int channel, i, x;
  158. memset(out->data[0], 0, s->h * out->linesize[0]);
  159. phase = av_malloc_array(s->w, sizeof(*phase));
  160. mag = av_malloc_array(s->w, sizeof(*mag));
  161. delay = av_malloc_array(s->w, sizeof(*delay));
  162. if (!mag || !phase || !delay)
  163. goto end;
  164. channel = av_clip(s->ir_channel, 0, s->in[1]->channels - 1);
  165. for (i = 0; i < s->w; i++) {
  166. const float *src = (const float *)s->in[1]->extended_data[channel];
  167. double w = i * M_PI / (s->w - 1);
  168. double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;
  169. for (x = 0; x < s->nb_taps; x++) {
  170. real += cos(-x * w) * src[x];
  171. imag += sin(-x * w) * src[x];
  172. real_num += cos(-x * w) * src[x] * x;
  173. imag_num += sin(-x * w) * src[x] * x;
  174. }
  175. mag[i] = hypot(real, imag);
  176. phase[i] = atan2(imag, real);
  177. div = real * real + imag * imag;
  178. delay[i] = (real_num * real + imag_num * imag) / div;
  179. min = fminf(min, mag[i]);
  180. max = fmaxf(max, mag[i]);
  181. min_delay = fminf(min_delay, delay[i]);
  182. max_delay = fmaxf(max_delay, delay[i]);
  183. }
  184. for (i = 0; i < s->w; i++) {
  185. int ymag = mag[i] / max * (s->h - 1);
  186. int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1);
  187. int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);
  188. ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
  189. yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
  190. ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1);
  191. if (prev_ymag < 0)
  192. prev_ymag = ymag;
  193. if (prev_yphase < 0)
  194. prev_yphase = yphase;
  195. if (prev_ydelay < 0)
  196. prev_ydelay = ydelay;
  197. draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF);
  198. draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
  199. draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);
  200. prev_ymag = ymag;
  201. prev_yphase = yphase;
  202. prev_ydelay = ydelay;
  203. }
  204. if (s->w > 400 && s->h > 100) {
  205. drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
  206. snprintf(text, sizeof(text), "%.2f", max);
  207. drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
  208. drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
  209. snprintf(text, sizeof(text), "%.2f", min);
  210. drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
  211. drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD);
  212. snprintf(text, sizeof(text), "%.2f", max_delay);
  213. drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);
  214. drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD);
  215. snprintf(text, sizeof(text), "%.2f", min_delay);
  216. drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
  217. }
  218. end:
  219. av_free(delay);
  220. av_free(phase);
  221. av_free(mag);
  222. }
  223. static int init_segment(AVFilterContext *ctx, AudioFIRSegment *seg, int nb_partitions, int part_size)
  224. {
  225. seg->rdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->rdft));
  226. seg->irdft = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->irdft));
  227. if (!seg->rdft || !seg->irdft)
  228. return AVERROR(ENOMEM);
  229. seg->fft_length = part_size * 4 + 1;
  230. seg->part_size = part_size;
  231. seg->block_size = FFALIGN(seg->fft_length, 32);
  232. seg->coeff_size = FFALIGN(seg->part_size + 1, 32);
  233. seg->nb_partitions = nb_partitions;
  234. seg->segment_size = part_size * nb_partitions;
  235. for (int ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  236. seg->rdft[ch] = av_rdft_init(av_log2(2 * part_size), DFT_R2C);
  237. seg->irdft[ch] = av_rdft_init(av_log2(2 * part_size), IDFT_C2R);
  238. if (!seg->rdft[ch] || !seg->irdft[ch])
  239. return AVERROR(ENOMEM);
  240. }
  241. seg->part_index = av_calloc(ctx->inputs[0]->channels, sizeof(*seg->part_index));
  242. if (!seg->part_index)
  243. return AVERROR(ENOMEM);
  244. seg->sum = ff_get_audio_buffer(ctx->inputs[0], seg->fft_length);
  245. seg->block = ff_get_audio_buffer(ctx->inputs[0], seg->nb_partitions * seg->block_size);
  246. seg->buffer = ff_get_audio_buffer(ctx->inputs[0], seg->part_size);
  247. seg->coeff = ff_get_audio_buffer(ctx->inputs[1], seg->nb_partitions * seg->coeff_size * 2);
  248. if (!seg->buffer || !seg->sum || !seg->block || !seg->coeff)
  249. return AVERROR(ENOMEM);
  250. return 0;
  251. }
  252. static int convert_coeffs(AVFilterContext *ctx)
  253. {
  254. AudioFIRContext *s = ctx->priv;
  255. int ret, i, ch, n, N;
  256. float power = 0;
  257. s->nb_taps = ff_inlink_queued_samples(ctx->inputs[1]);
  258. if (s->nb_taps <= 0)
  259. return AVERROR(EINVAL);
  260. for (n = av_log2(s->minp); (1 << n) < s->nb_taps; n++);
  261. N = FFMIN(n, av_log2(s->maxp));
  262. s->nb_segments = 1;
  263. ret = init_segment(ctx, &s->seg[0], (s->nb_taps + (1 << N) - 1) / (1 << N), 1 << N);
  264. if (ret < 0)
  265. return ret;
  266. ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_taps, s->nb_taps, &s->in[1]);
  267. if (ret < 0)
  268. return ret;
  269. if (ret == 0)
  270. return AVERROR_BUG;
  271. if (s->response)
  272. draw_response(ctx, s->video);
  273. s->gain = 1;
  274. switch (s->gtype) {
  275. case -1:
  276. /* nothing to do */
  277. break;
  278. case 0:
  279. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  280. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  281. for (i = 0; i < s->nb_taps; i++)
  282. power += FFABS(time[i]);
  283. }
  284. s->gain = ctx->inputs[1]->channels / power;
  285. break;
  286. case 1:
  287. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  288. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  289. for (i = 0; i < s->nb_taps; i++)
  290. power += time[i];
  291. }
  292. s->gain = ctx->inputs[1]->channels / power;
  293. break;
  294. case 2:
  295. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  296. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  297. for (i = 0; i < s->nb_taps; i++)
  298. power += time[i] * time[i];
  299. }
  300. s->gain = sqrtf(ch / power);
  301. break;
  302. default:
  303. return AVERROR_BUG;
  304. }
  305. s->gain = FFMIN(s->gain * s->ir_gain, 1.f);
  306. av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain);
  307. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  308. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  309. s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(s->nb_taps, 4));
  310. }
  311. av_log(ctx, AV_LOG_DEBUG, "nb_taps: %d\n", s->nb_taps);
  312. av_log(ctx, AV_LOG_DEBUG, "nb_segments: %d\n", s->nb_segments);
  313. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  314. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  315. int toffset = 0;
  316. for (i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++)
  317. time[i] = 0;
  318. av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);
  319. for (int segment = 0; segment < s->nb_segments; segment++) {
  320. AudioFIRSegment *seg = &s->seg[segment];
  321. float *block = (float *)seg->block->extended_data[ch];
  322. FFTComplex *coeff = (FFTComplex *)seg->coeff->extended_data[ch];
  323. av_log(ctx, AV_LOG_DEBUG, "segment: %d\n", segment);
  324. for (i = 0; i < seg->nb_partitions; i++) {
  325. const float scale = 1.f / seg->part_size;
  326. const int coffset = i * seg->coeff_size;
  327. const int remaining = s->nb_taps - toffset;
  328. const int size = remaining >= seg->part_size ? seg->part_size : remaining;
  329. memset(block, 0, sizeof(*block) * seg->fft_length);
  330. memcpy(block, time + toffset, size * sizeof(*block));
  331. av_rdft_calc(seg->rdft[0], block);
  332. coeff[coffset].re = block[0] * scale;
  333. coeff[coffset].im = 0;
  334. for (n = 1; n < seg->part_size; n++) {
  335. coeff[coffset + n].re = block[2 * n] * scale;
  336. coeff[coffset + n].im = block[2 * n + 1] * scale;
  337. }
  338. coeff[coffset + seg->part_size].re = block[1] * scale;
  339. coeff[coffset + seg->part_size].im = 0;
  340. toffset += size;
  341. }
  342. av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
  343. av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
  344. av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
  345. }
  346. }
  347. av_frame_free(&s->in[1]);
  348. s->have_coeffs = 1;
  349. return 0;
  350. }
  351. static int check_ir(AVFilterLink *link, AVFrame *frame)
  352. {
  353. AVFilterContext *ctx = link->dst;
  354. AudioFIRContext *s = ctx->priv;
  355. int nb_taps, max_nb_taps;
  356. nb_taps = ff_inlink_queued_samples(link);
  357. max_nb_taps = s->max_ir_len * ctx->outputs[0]->sample_rate;
  358. if (nb_taps > max_nb_taps) {
  359. av_log(ctx, AV_LOG_ERROR, "Too big number of coefficients: %d > %d.\n", nb_taps, max_nb_taps);
  360. return AVERROR(EINVAL);
  361. }
  362. return 0;
  363. }
  364. static int activate(AVFilterContext *ctx)
  365. {
  366. AudioFIRContext *s = ctx->priv;
  367. AVFilterLink *outlink = ctx->outputs[0];
  368. AVFrame *in = NULL;
  369. int ret, status;
  370. int64_t pts;
  371. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
  372. if (s->response)
  373. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[1], ctx);
  374. if (!s->eof_coeffs) {
  375. AVFrame *ir = NULL;
  376. ret = check_ir(ctx->inputs[1], ir);
  377. if (ret < 0)
  378. return ret;
  379. if (ff_outlink_get_status(ctx->inputs[1]) == AVERROR_EOF)
  380. s->eof_coeffs = 1;
  381. if (!s->eof_coeffs) {
  382. if (ff_outlink_frame_wanted(ctx->outputs[0]))
  383. ff_inlink_request_frame(ctx->inputs[1]);
  384. else if (s->response && ff_outlink_frame_wanted(ctx->outputs[1]))
  385. ff_inlink_request_frame(ctx->inputs[1]);
  386. return 0;
  387. }
  388. }
  389. if (!s->have_coeffs && s->eof_coeffs) {
  390. ret = convert_coeffs(ctx);
  391. if (ret < 0)
  392. return ret;
  393. }
  394. ret = ff_inlink_consume_samples(ctx->inputs[0], s->seg[0].part_size, s->seg[0].part_size, &in);
  395. if (ret > 0)
  396. ret = fir_frame(s, in, outlink);
  397. if (ret < 0)
  398. return ret;
  399. if (s->response && s->have_coeffs) {
  400. int64_t old_pts = s->video->pts;
  401. int64_t new_pts = av_rescale_q(s->pts, ctx->inputs[0]->time_base, ctx->outputs[1]->time_base);
  402. if (ff_outlink_frame_wanted(ctx->outputs[1]) && old_pts < new_pts) {
  403. s->video->pts = new_pts;
  404. return ff_filter_frame(ctx->outputs[1], av_frame_clone(s->video));
  405. }
  406. }
  407. if (ff_inlink_queued_samples(ctx->inputs[0]) >= s->seg[0].part_size) {
  408. ff_filter_set_ready(ctx, 10);
  409. return 0;
  410. }
  411. if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
  412. if (status == AVERROR_EOF) {
  413. ff_outlink_set_status(ctx->outputs[0], status, pts);
  414. if (s->response)
  415. ff_outlink_set_status(ctx->outputs[1], status, pts);
  416. return 0;
  417. }
  418. }
  419. if (ff_outlink_frame_wanted(ctx->outputs[0]) &&
  420. !ff_outlink_get_status(ctx->inputs[0])) {
  421. ff_inlink_request_frame(ctx->inputs[0]);
  422. return 0;
  423. }
  424. if (s->response &&
  425. ff_outlink_frame_wanted(ctx->outputs[1]) &&
  426. !ff_outlink_get_status(ctx->inputs[0])) {
  427. ff_inlink_request_frame(ctx->inputs[0]);
  428. return 0;
  429. }
  430. return FFERROR_NOT_READY;
  431. }
  432. static int query_formats(AVFilterContext *ctx)
  433. {
  434. AudioFIRContext *s = ctx->priv;
  435. AVFilterFormats *formats;
  436. AVFilterChannelLayouts *layouts;
  437. static const enum AVSampleFormat sample_fmts[] = {
  438. AV_SAMPLE_FMT_FLTP,
  439. AV_SAMPLE_FMT_NONE
  440. };
  441. static const enum AVPixelFormat pix_fmts[] = {
  442. AV_PIX_FMT_RGB0,
  443. AV_PIX_FMT_NONE
  444. };
  445. int ret;
  446. if (s->response) {
  447. AVFilterLink *videolink = ctx->outputs[1];
  448. formats = ff_make_format_list(pix_fmts);
  449. if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0)
  450. return ret;
  451. }
  452. layouts = ff_all_channel_counts();
  453. if (!layouts)
  454. return AVERROR(ENOMEM);
  455. if (s->ir_format) {
  456. ret = ff_set_common_channel_layouts(ctx, layouts);
  457. if (ret < 0)
  458. return ret;
  459. } else {
  460. AVFilterChannelLayouts *mono = NULL;
  461. ret = ff_add_channel_layout(&mono, AV_CH_LAYOUT_MONO);
  462. if (ret)
  463. return ret;
  464. if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts)) < 0)
  465. return ret;
  466. if ((ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts)) < 0)
  467. return ret;
  468. if ((ret = ff_channel_layouts_ref(mono, &ctx->inputs[1]->out_channel_layouts)) < 0)
  469. return ret;
  470. }
  471. formats = ff_make_format_list(sample_fmts);
  472. if ((ret = ff_set_common_formats(ctx, formats)) < 0)
  473. return ret;
  474. formats = ff_all_samplerates();
  475. return ff_set_common_samplerates(ctx, formats);
  476. }
  477. static int config_output(AVFilterLink *outlink)
  478. {
  479. AVFilterContext *ctx = outlink->src;
  480. AudioFIRContext *s = ctx->priv;
  481. s->one2many = ctx->inputs[1]->channels == 1;
  482. outlink->sample_rate = ctx->inputs[0]->sample_rate;
  483. outlink->time_base = ctx->inputs[0]->time_base;
  484. outlink->channel_layout = ctx->inputs[0]->channel_layout;
  485. outlink->channels = ctx->inputs[0]->channels;
  486. s->nb_channels = outlink->channels;
  487. s->nb_coef_channels = ctx->inputs[1]->channels;
  488. s->pts = AV_NOPTS_VALUE;
  489. return 0;
  490. }
  491. static void uninit_segment(AVFilterContext *ctx, AudioFIRSegment *seg)
  492. {
  493. AudioFIRContext *s = ctx->priv;
  494. if (seg->rdft) {
  495. for (int ch = 0; ch < s->nb_channels; ch++) {
  496. av_rdft_end(seg->rdft[ch]);
  497. }
  498. }
  499. av_freep(&seg->rdft);
  500. if (seg->irdft) {
  501. for (int ch = 0; ch < s->nb_channels; ch++) {
  502. av_rdft_end(seg->irdft[ch]);
  503. }
  504. }
  505. av_freep(&seg->irdft);
  506. av_freep(&seg->part_index);
  507. av_frame_free(&seg->block);
  508. av_frame_free(&seg->sum);
  509. av_frame_free(&seg->buffer);
  510. av_frame_free(&seg->coeff);
  511. }
  512. static av_cold void uninit(AVFilterContext *ctx)
  513. {
  514. AudioFIRContext *s = ctx->priv;
  515. for (int i = 0; i < s->nb_segments; i++) {
  516. uninit_segment(ctx, &s->seg[i]);
  517. }
  518. av_freep(&s->fdsp);
  519. av_frame_free(&s->in[1]);
  520. for (int i = 0; i < ctx->nb_outputs; i++)
  521. av_freep(&ctx->output_pads[i].name);
  522. av_frame_free(&s->video);
  523. }
  524. static int config_video(AVFilterLink *outlink)
  525. {
  526. AVFilterContext *ctx = outlink->src;
  527. AudioFIRContext *s = ctx->priv;
  528. outlink->sample_aspect_ratio = (AVRational){1,1};
  529. outlink->w = s->w;
  530. outlink->h = s->h;
  531. outlink->frame_rate = s->frame_rate;
  532. outlink->time_base = av_inv_q(outlink->frame_rate);
  533. av_frame_free(&s->video);
  534. s->video = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  535. if (!s->video)
  536. return AVERROR(ENOMEM);
  537. return 0;
  538. }
  539. static av_cold int init(AVFilterContext *ctx)
  540. {
  541. AudioFIRContext *s = ctx->priv;
  542. AVFilterPad pad, vpad;
  543. int ret;
  544. pad = (AVFilterPad){
  545. .name = av_strdup("default"),
  546. .type = AVMEDIA_TYPE_AUDIO,
  547. .config_props = config_output,
  548. };
  549. if (!pad.name)
  550. return AVERROR(ENOMEM);
  551. if (s->response) {
  552. vpad = (AVFilterPad){
  553. .name = av_strdup("filter_response"),
  554. .type = AVMEDIA_TYPE_VIDEO,
  555. .config_props = config_video,
  556. };
  557. if (!vpad.name)
  558. return AVERROR(ENOMEM);
  559. }
  560. ret = ff_insert_outpad(ctx, 0, &pad);
  561. if (ret < 0) {
  562. av_freep(&pad.name);
  563. return ret;
  564. }
  565. if (s->response) {
  566. ret = ff_insert_outpad(ctx, 1, &vpad);
  567. if (ret < 0) {
  568. av_freep(&vpad.name);
  569. return ret;
  570. }
  571. }
  572. s->fcmul_add = fcmul_add_c;
  573. s->fdsp = avpriv_float_dsp_alloc(0);
  574. if (!s->fdsp)
  575. return AVERROR(ENOMEM);
  576. if (ARCH_X86)
  577. ff_afir_init_x86(s);
  578. return 0;
  579. }
  580. static const AVFilterPad afir_inputs[] = {
  581. {
  582. .name = "main",
  583. .type = AVMEDIA_TYPE_AUDIO,
  584. },{
  585. .name = "ir",
  586. .type = AVMEDIA_TYPE_AUDIO,
  587. },
  588. { NULL }
  589. };
  590. #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  591. #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  592. #define OFFSET(x) offsetof(AudioFIRContext, x)
  593. static const AVOption afir_options[] = {
  594. { "dry", "set dry gain", OFFSET(dry_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  595. { "wet", "set wet gain", OFFSET(wet_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  596. { "length", "set IR length", OFFSET(length), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  597. { "gtype", "set IR auto gain type",OFFSET(gtype), AV_OPT_TYPE_INT, {.i64=0}, -1, 2, AF, "gtype" },
  598. { "none", "without auto gain", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "gtype" },
  599. { "peak", "peak gain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "gtype" },
  600. { "dc", "DC gain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "gtype" },
  601. { "gn", "gain to noise", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "gtype" },
  602. { "irgain", "set IR gain", OFFSET(ir_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  603. { "irfmt", "set IR format", OFFSET(ir_format), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, AF, "irfmt" },
  604. { "mono", "single channel", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "irfmt" },
  605. { "input", "same as input", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "irfmt" },
  606. { "maxir", "set max IR length", OFFSET(max_ir_len), AV_OPT_TYPE_FLOAT, {.dbl=30}, 0.1, 60, AF },
  607. { "response", "show IR frequency response", OFFSET(response), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
  608. { "channel", "set IR channel to display frequency response", OFFSET(ir_channel), AV_OPT_TYPE_INT, {.i64=0}, 0, 1024, VF },
  609. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, VF },
  610. { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT32_MAX, VF },
  611. { "minp", "set min partition size", OFFSET(minp), AV_OPT_TYPE_INT, {.i64=16}, 16, 32768, AF },
  612. { "maxp", "set max partition size", OFFSET(maxp), AV_OPT_TYPE_INT, {.i64=8192}, 16, 32768, AF },
  613. { NULL }
  614. };
  615. AVFILTER_DEFINE_CLASS(afir);
  616. AVFilter ff_af_afir = {
  617. .name = "afir",
  618. .description = NULL_IF_CONFIG_SMALL("Apply Finite Impulse Response filter with supplied coefficients in 2nd stream."),
  619. .priv_size = sizeof(AudioFIRContext),
  620. .priv_class = &afir_class,
  621. .query_formats = query_formats,
  622. .init = init,
  623. .activate = activate,
  624. .uninit = uninit,
  625. .inputs = afir_inputs,
  626. .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS |
  627. AVFILTER_FLAG_SLICE_THREADS,
  628. };