You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

656 lines
23KB

  1. @chapter Muxers
  2. @c man begin MUXERS
  3. Muxers are configured elements in FFmpeg which allow writing
  4. multimedia streams to a particular type of file.
  5. When you configure your FFmpeg build, all the supported muxers
  6. are enabled by default. You can list all available muxers using the
  7. configure option @code{--list-muxers}.
  8. You can disable all the muxers with the configure option
  9. @code{--disable-muxers} and selectively enable / disable single muxers
  10. with the options @code{--enable-muxer=@var{MUXER}} /
  11. @code{--disable-muxer=@var{MUXER}}.
  12. The option @code{-formats} of the ff* tools will display the list of
  13. enabled muxers.
  14. A description of some of the currently available muxers follows.
  15. @anchor{crc}
  16. @section crc
  17. CRC (Cyclic Redundancy Check) testing format.
  18. This muxer computes and prints the Adler-32 CRC of all the input audio
  19. and video frames. By default audio frames are converted to signed
  20. 16-bit raw audio and video frames to raw video before computing the
  21. CRC.
  22. The output of the muxer consists of a single line of the form:
  23. CRC=0x@var{CRC}, where @var{CRC} is a hexadecimal number 0-padded to
  24. 8 digits containing the CRC for all the decoded input frames.
  25. For example to compute the CRC of the input, and store it in the file
  26. @file{out.crc}:
  27. @example
  28. ffmpeg -i INPUT -f crc out.crc
  29. @end example
  30. You can print the CRC to stdout with the command:
  31. @example
  32. ffmpeg -i INPUT -f crc -
  33. @end example
  34. You can select the output format of each frame with @command{ffmpeg} by
  35. specifying the audio and video codec and format. For example to
  36. compute the CRC of the input audio converted to PCM unsigned 8-bit
  37. and the input video converted to MPEG-2 video, use the command:
  38. @example
  39. ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f crc -
  40. @end example
  41. See also the @ref{framecrc} muxer.
  42. @anchor{framecrc}
  43. @section framecrc
  44. Per-packet CRC (Cyclic Redundancy Check) testing format.
  45. This muxer computes and prints the Adler-32 CRC for each audio
  46. and video packet. By default audio frames are converted to signed
  47. 16-bit raw audio and video frames to raw video before computing the
  48. CRC.
  49. The output of the muxer consists of a line for each audio and video
  50. packet of the form:
  51. @example
  52. @var{stream_index}, @var{packet_dts}, @var{packet_pts}, @var{packet_duration}, @var{packet_size}, 0x@var{CRC}
  53. @end example
  54. @var{CRC} is a hexadecimal number 0-padded to 8 digits containing the
  55. CRC of the packet.
  56. For example to compute the CRC of the audio and video frames in
  57. @file{INPUT}, converted to raw audio and video packets, and store it
  58. in the file @file{out.crc}:
  59. @example
  60. ffmpeg -i INPUT -f framecrc out.crc
  61. @end example
  62. To print the information to stdout, use the command:
  63. @example
  64. ffmpeg -i INPUT -f framecrc -
  65. @end example
  66. With @command{ffmpeg}, you can select the output format to which the
  67. audio and video frames are encoded before computing the CRC for each
  68. packet by specifying the audio and video codec. For example, to
  69. compute the CRC of each decoded input audio frame converted to PCM
  70. unsigned 8-bit and of each decoded input video frame converted to
  71. MPEG-2 video, use the command:
  72. @example
  73. ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f framecrc -
  74. @end example
  75. See also the @ref{crc} muxer.
  76. @anchor{framemd5}
  77. @section framemd5
  78. Per-packet MD5 testing format.
  79. This muxer computes and prints the MD5 hash for each audio
  80. and video packet. By default audio frames are converted to signed
  81. 16-bit raw audio and video frames to raw video before computing the
  82. hash.
  83. The output of the muxer consists of a line for each audio and video
  84. packet of the form:
  85. @example
  86. @var{stream_index}, @var{packet_dts}, @var{packet_pts}, @var{packet_duration}, @var{packet_size}, @var{MD5}
  87. @end example
  88. @var{MD5} is a hexadecimal number representing the computed MD5 hash
  89. for the packet.
  90. For example to compute the MD5 of the audio and video frames in
  91. @file{INPUT}, converted to raw audio and video packets, and store it
  92. in the file @file{out.md5}:
  93. @example
  94. ffmpeg -i INPUT -f framemd5 out.md5
  95. @end example
  96. To print the information to stdout, use the command:
  97. @example
  98. ffmpeg -i INPUT -f framemd5 -
  99. @end example
  100. See also the @ref{md5} muxer.
  101. @anchor{ico}
  102. @section ico
  103. ICO file muxer.
  104. Microsoft's icon file format (ICO) has some strict limitations that should be noted:
  105. @itemize
  106. @item
  107. Size cannot exceed 256 pixels in any dimension
  108. @item
  109. Only BMP and PNG images can be stored
  110. @item
  111. If a BMP image is used, it must be one of the following pixel formats:
  112. @example
  113. BMP Bit Depth FFmpeg Pixel Format
  114. 1bit pal8
  115. 4bit pal8
  116. 8bit pal8
  117. 16bit rgb555le
  118. 24bit bgr24
  119. 32bit bgra
  120. @end example
  121. @item
  122. If a BMP image is used, it must use the BITMAPINFOHEADER DIB header
  123. @item
  124. If a PNG image is used, it must use the rgba pixel format
  125. @end itemize
  126. @anchor{image2}
  127. @section image2
  128. Image file muxer.
  129. The image file muxer writes video frames to image files.
  130. The output filenames are specified by a pattern, which can be used to
  131. produce sequentially numbered series of files.
  132. The pattern may contain the string "%d" or "%0@var{N}d", this string
  133. specifies the position of the characters representing a numbering in
  134. the filenames. If the form "%0@var{N}d" is used, the string
  135. representing the number in each filename is 0-padded to @var{N}
  136. digits. The literal character '%' can be specified in the pattern with
  137. the string "%%".
  138. If the pattern contains "%d" or "%0@var{N}d", the first filename of
  139. the file list specified will contain the number 1, all the following
  140. numbers will be sequential.
  141. The pattern may contain a suffix which is used to automatically
  142. determine the format of the image files to write.
  143. For example the pattern "img-%03d.bmp" will specify a sequence of
  144. filenames of the form @file{img-001.bmp}, @file{img-002.bmp}, ...,
  145. @file{img-010.bmp}, etc.
  146. The pattern "img%%-%d.jpg" will specify a sequence of filenames of the
  147. form @file{img%-1.jpg}, @file{img%-2.jpg}, ..., @file{img%-10.jpg},
  148. etc.
  149. The following example shows how to use @command{ffmpeg} for creating a
  150. sequence of files @file{img-001.jpeg}, @file{img-002.jpeg}, ...,
  151. taking one image every second from the input video:
  152. @example
  153. ffmpeg -i in.avi -vsync 1 -r 1 -f image2 'img-%03d.jpeg'
  154. @end example
  155. Note that with @command{ffmpeg}, if the format is not specified with the
  156. @code{-f} option and the output filename specifies an image file
  157. format, the image2 muxer is automatically selected, so the previous
  158. command can be written as:
  159. @example
  160. ffmpeg -i in.avi -vsync 1 -r 1 'img-%03d.jpeg'
  161. @end example
  162. Note also that the pattern must not necessarily contain "%d" or
  163. "%0@var{N}d", for example to create a single image file
  164. @file{img.jpeg} from the input video you can employ the command:
  165. @example
  166. ffmpeg -i in.avi -f image2 -frames:v 1 img.jpeg
  167. @end example
  168. The image muxer supports the .Y.U.V image file format. This format is
  169. special in that that each image frame consists of three files, for
  170. each of the YUV420P components. To read or write this image file format,
  171. specify the name of the '.Y' file. The muxer will automatically open the
  172. '.U' and '.V' files as required.
  173. @anchor{md5}
  174. @section md5
  175. MD5 testing format.
  176. This muxer computes and prints the MD5 hash of all the input audio
  177. and video frames. By default audio frames are converted to signed
  178. 16-bit raw audio and video frames to raw video before computing the
  179. hash.
  180. The output of the muxer consists of a single line of the form:
  181. MD5=@var{MD5}, where @var{MD5} is a hexadecimal number representing
  182. the computed MD5 hash.
  183. For example to compute the MD5 hash of the input converted to raw
  184. audio and video, and store it in the file @file{out.md5}:
  185. @example
  186. ffmpeg -i INPUT -f md5 out.md5
  187. @end example
  188. You can print the MD5 to stdout with the command:
  189. @example
  190. ffmpeg -i INPUT -f md5 -
  191. @end example
  192. See also the @ref{framemd5} muxer.
  193. @section MOV/MP4/ISMV
  194. The mov/mp4/ismv muxer supports fragmentation. Normally, a MOV/MP4
  195. file has all the metadata about all packets stored in one location
  196. (written at the end of the file, it can be moved to the start for
  197. better playback by adding @var{faststart} to the @var{movflags}, or
  198. using the @command{qt-faststart} tool). A fragmented
  199. file consists of a number of fragments, where packets and metadata
  200. about these packets are stored together. Writing a fragmented
  201. file has the advantage that the file is decodable even if the
  202. writing is interrupted (while a normal MOV/MP4 is undecodable if
  203. it is not properly finished), and it requires less memory when writing
  204. very long files (since writing normal MOV/MP4 files stores info about
  205. every single packet in memory until the file is closed). The downside
  206. is that it is less compatible with other applications.
  207. Fragmentation is enabled by setting one of the AVOptions that define
  208. how to cut the file into fragments:
  209. @table @option
  210. @item -moov_size @var{bytes}
  211. Reserves space for the moov atom at the beginning of the file instead of placing the
  212. moov atom at the end. If the space reserved is insufficient, muxing will fail.
  213. @item -movflags frag_keyframe
  214. Start a new fragment at each video keyframe.
  215. @item -frag_duration @var{duration}
  216. Create fragments that are @var{duration} microseconds long.
  217. @item -frag_size @var{size}
  218. Create fragments that contain up to @var{size} bytes of payload data.
  219. @item -movflags frag_custom
  220. Allow the caller to manually choose when to cut fragments, by
  221. calling @code{av_write_frame(ctx, NULL)} to write a fragment with
  222. the packets written so far. (This is only useful with other
  223. applications integrating libavformat, not from @command{ffmpeg}.)
  224. @item -min_frag_duration @var{duration}
  225. Don't create fragments that are shorter than @var{duration} microseconds long.
  226. @end table
  227. If more than one condition is specified, fragments are cut when
  228. one of the specified conditions is fulfilled. The exception to this is
  229. @code{-min_frag_duration}, which has to be fulfilled for any of the other
  230. conditions to apply.
  231. Additionally, the way the output file is written can be adjusted
  232. through a few other options:
  233. @table @option
  234. @item -movflags empty_moov
  235. Write an initial moov atom directly at the start of the file, without
  236. describing any samples in it. Generally, an mdat/moov pair is written
  237. at the start of the file, as a normal MOV/MP4 file, containing only
  238. a short portion of the file. With this option set, there is no initial
  239. mdat atom, and the moov atom only describes the tracks but has
  240. a zero duration.
  241. Files written with this option set do not work in QuickTime.
  242. This option is implicitly set when writing ismv (Smooth Streaming) files.
  243. @item -movflags separate_moof
  244. Write a separate moof (movie fragment) atom for each track. Normally,
  245. packets for all tracks are written in a moof atom (which is slightly
  246. more efficient), but with this option set, the muxer writes one moof/mdat
  247. pair for each track, making it easier to separate tracks.
  248. This option is implicitly set when writing ismv (Smooth Streaming) files.
  249. @item -movflags faststart
  250. Run a second pass moving the moov atom on top of the file. This
  251. operation can take a while, and will not work in various situations such
  252. as fragmented output, thus it is not enabled by default.
  253. @end table
  254. Smooth Streaming content can be pushed in real time to a publishing
  255. point on IIS with this muxer. Example:
  256. @example
  257. ffmpeg -re @var{<normal input/transcoding options>} -movflags isml+frag_keyframe -f ismv http://server/publishingpoint.isml/Streams(Encoder1)
  258. @end example
  259. @section mpegts
  260. MPEG transport stream muxer.
  261. This muxer implements ISO 13818-1 and part of ETSI EN 300 468.
  262. The muxer options are:
  263. @table @option
  264. @item -mpegts_original_network_id @var{number}
  265. Set the original_network_id (default 0x0001). This is unique identifier
  266. of a network in DVB. Its main use is in the unique identification of a
  267. service through the path Original_Network_ID, Transport_Stream_ID.
  268. @item -mpegts_transport_stream_id @var{number}
  269. Set the transport_stream_id (default 0x0001). This identifies a
  270. transponder in DVB.
  271. @item -mpegts_service_id @var{number}
  272. Set the service_id (default 0x0001) also known as program in DVB.
  273. @item -mpegts_pmt_start_pid @var{number}
  274. Set the first PID for PMT (default 0x1000, max 0x1f00).
  275. @item -mpegts_start_pid @var{number}
  276. Set the first PID for data packets (default 0x0100, max 0x0f00).
  277. @end table
  278. The recognized metadata settings in mpegts muxer are @code{service_provider}
  279. and @code{service_name}. If they are not set the default for
  280. @code{service_provider} is "FFmpeg" and the default for
  281. @code{service_name} is "Service01".
  282. @example
  283. ffmpeg -i file.mpg -c copy \
  284. -mpegts_original_network_id 0x1122 \
  285. -mpegts_transport_stream_id 0x3344 \
  286. -mpegts_service_id 0x5566 \
  287. -mpegts_pmt_start_pid 0x1500 \
  288. -mpegts_start_pid 0x150 \
  289. -metadata service_provider="Some provider" \
  290. -metadata service_name="Some Channel" \
  291. -y out.ts
  292. @end example
  293. @section null
  294. Null muxer.
  295. This muxer does not generate any output file, it is mainly useful for
  296. testing or benchmarking purposes.
  297. For example to benchmark decoding with @command{ffmpeg} you can use the
  298. command:
  299. @example
  300. ffmpeg -benchmark -i INPUT -f null out.null
  301. @end example
  302. Note that the above command does not read or write the @file{out.null}
  303. file, but specifying the output file is required by the @command{ffmpeg}
  304. syntax.
  305. Alternatively you can write the command as:
  306. @example
  307. ffmpeg -benchmark -i INPUT -f null -
  308. @end example
  309. @section matroska
  310. Matroska container muxer.
  311. This muxer implements the matroska and webm container specs.
  312. The recognized metadata settings in this muxer are:
  313. @table @option
  314. @item title=@var{title name}
  315. Name provided to a single track
  316. @end table
  317. @table @option
  318. @item language=@var{language name}
  319. Specifies the language of the track in the Matroska languages form
  320. @end table
  321. @table @option
  322. @item stereo_mode=@var{mode}
  323. Stereo 3D video layout of two views in a single video track
  324. @table @option
  325. @item mono
  326. video is not stereo
  327. @item left_right
  328. Both views are arranged side by side, Left-eye view is on the left
  329. @item bottom_top
  330. Both views are arranged in top-bottom orientation, Left-eye view is at bottom
  331. @item top_bottom
  332. Both views are arranged in top-bottom orientation, Left-eye view is on top
  333. @item checkerboard_rl
  334. Each view is arranged in a checkerboard interleaved pattern, Left-eye view being first
  335. @item checkerboard_lr
  336. Each view is arranged in a checkerboard interleaved pattern, Right-eye view being first
  337. @item row_interleaved_rl
  338. Each view is constituted by a row based interleaving, Right-eye view is first row
  339. @item row_interleaved_lr
  340. Each view is constituted by a row based interleaving, Left-eye view is first row
  341. @item col_interleaved_rl
  342. Both views are arranged in a column based interleaving manner, Right-eye view is first column
  343. @item col_interleaved_lr
  344. Both views are arranged in a column based interleaving manner, Left-eye view is first column
  345. @item anaglyph_cyan_red
  346. All frames are in anaglyph format viewable through red-cyan filters
  347. @item right_left
  348. Both views are arranged side by side, Right-eye view is on the left
  349. @item anaglyph_green_magenta
  350. All frames are in anaglyph format viewable through green-magenta filters
  351. @item block_lr
  352. Both eyes laced in one Block, Left-eye view is first
  353. @item block_rl
  354. Both eyes laced in one Block, Right-eye view is first
  355. @end table
  356. @end table
  357. For example a 3D WebM clip can be created using the following command line:
  358. @example
  359. ffmpeg -i sample_left_right_clip.mpg -an -c:v libvpx -metadata stereo_mode=left_right -y stereo_clip.webm
  360. @end example
  361. @section segment, stream_segment, ssegment
  362. Basic stream segmenter.
  363. The segmenter muxer outputs streams to a number of separate files of nearly
  364. fixed duration. Output filename pattern can be set in a fashion similar to
  365. @ref{image2}.
  366. @code{stream_segment} is a variant of the muxer used to write to
  367. streaming output formats, i.e. which do not require global headers,
  368. and is recommended for outputting e.g. to MPEG transport stream segments.
  369. @code{ssegment} is a shorter alias for @code{stream_segment}.
  370. Every segment starts with a video keyframe, if a video stream is present.
  371. Note that if you want accurate splitting for a video file, you need to
  372. make the input key frames correspond to the exact splitting times
  373. expected by the segmenter, or the segment muxer will start the new
  374. segment with the key frame found next after the specified start
  375. time.
  376. The segment muxer works best with a single constant frame rate video.
  377. Optionally it can generate a list of the created segments, by setting
  378. the option @var{segment_list}. The list type is specified by the
  379. @var{segment_list_type} option.
  380. The segment muxer supports the following options:
  381. @table @option
  382. @item segment_format @var{format}
  383. Override the inner container format, by default it is guessed by the filename
  384. extension.
  385. @item segment_list @var{name}
  386. Generate also a listfile named @var{name}. If not specified no
  387. listfile is generated.
  388. @item segment_list_flags @var{flags}
  389. Set flags affecting the segment list generation.
  390. It currently supports the following flags:
  391. @table @var
  392. @item cache
  393. Allow caching (only affects M3U8 list files).
  394. @item live
  395. Allow live-friendly file generation.
  396. This currently only affects M3U8 lists. In particular, write a fake
  397. EXT-X-TARGETDURATION duration field at the top of the file, based on
  398. the specified @var{segment_time}.
  399. @end table
  400. Default value is @code{cache}.
  401. @item segment_list_size @var{size}
  402. Overwrite the listfile once it reaches @var{size} entries. If 0
  403. the listfile is never overwritten. Default value is 0.
  404. @item segment_list type @var{type}
  405. Specify the format for the segment list file.
  406. The following values are recognized:
  407. @table @option
  408. @item flat
  409. Generate a flat list for the created segments, one segment per line.
  410. @item csv, ext
  411. Generate a list for the created segments, one segment per line,
  412. each line matching the format (comma-separated values):
  413. @example
  414. @var{segment_filename},@var{segment_start_time},@var{segment_end_time}
  415. @end example
  416. @var{segment_filename} is the name of the output file generated by the
  417. muxer according to the provided pattern. CSV escaping (according to
  418. RFC4180) is applied if required.
  419. @var{segment_start_time} and @var{segment_end_time} specify
  420. the segment start and end time expressed in seconds.
  421. A list file with the suffix @code{".csv"} or @code{".ext"} will
  422. auto-select this format.
  423. @code{ext} is deprecated in favor or @code{csv}.
  424. @item m3u8
  425. Generate an extended M3U8 file, version 4, compliant with
  426. @url{http://tools.ietf.org/id/draft-pantos-http-live-streaming-08.txt}.
  427. A list file with the suffix @code{".m3u8"} will auto-select this format.
  428. @end table
  429. If not specified the type is guessed from the list file name suffix.
  430. @item segment_time @var{time}
  431. Set segment duration to @var{time}. Default value is "2".
  432. @item segment_time_delta @var{delta}
  433. Specify the accuracy time when selecting the start time for a
  434. segment. Default value is "0".
  435. When delta is specified a key-frame will start a new segment if its
  436. PTS satisfies the relation:
  437. @example
  438. PTS >= start_time - time_delta
  439. @end example
  440. This option is useful when splitting video content, which is always
  441. split at GOP boundaries, in case a key frame is found just before the
  442. specified split time.
  443. In particular may be used in combination with the @file{ffmpeg} option
  444. @var{force_key_frames}. The key frame times specified by
  445. @var{force_key_frames} may not be set accurately because of rounding
  446. issues, with the consequence that a key frame time may result set just
  447. before the specified time. For constant frame rate videos a value of
  448. 1/2*@var{frame_rate} should address the worst case mismatch between
  449. the specified time and the time set by @var{force_key_frames}.
  450. @item segment_times @var{times}
  451. Specify a list of split points. @var{times} contains a list of comma
  452. separated duration specifications, in increasing order.
  453. @item segment_wrap @var{limit}
  454. Wrap around segment index once it reaches @var{limit}.
  455. @end table
  456. Some examples follow.
  457. @itemize
  458. @item
  459. To remux the content of file @file{in.mkv} to a list of segments
  460. @file{out-000.nut}, @file{out-001.nut}, etc., and write the list of
  461. generated segments to @file{out.list}:
  462. @example
  463. ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.list out%03d.nut
  464. @end example
  465. @item
  466. As the example above, but segment the input file according to the split
  467. points specified by the @var{segment_times} option:
  468. @example
  469. ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 out%03d.nut
  470. @end example
  471. @item
  472. As the example above, but use the @code{ffmpeg} @var{force_key_frames}
  473. option to force key frames in the input at the specified location, together
  474. with the segment option @var{segment_time_delta} to account for
  475. possible roundings operated when setting key frame times.
  476. @example
  477. ffmpeg -i in.mkv -force_key_frames 1,2,3,5,8,13,21 -vcodec mpeg4 -acodec pcm_s16le -map 0 \
  478. -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 -segment_time_delta 0.05 out%03d.nut
  479. @end example
  480. In order to force key frames on the input file, transcoding is
  481. required.
  482. @item
  483. To convert the @file{in.mkv} to TS segments using the @code{libx264}
  484. and @code{libfaac} encoders:
  485. @example
  486. ffmpeg -i in.mkv -map 0 -codec:v libx264 -codec:a libfaac -f ssegment -segment_list out.list out%03d.ts
  487. @end example
  488. @item
  489. Segment the input file, and create an M3U8 live playlist (can be used
  490. as live HLS source):
  491. @example
  492. ffmpeg -re -i in.mkv -codec copy -map 0 -f segment -segment_list playlist.m3u8 \
  493. -segment_list_flags +live -segment_time 10 out%03d.mkv
  494. @end example
  495. @end itemize
  496. @section mp3
  497. The MP3 muxer writes a raw MP3 stream with an ID3v2 header at the beginning and
  498. optionally an ID3v1 tag at the end. ID3v2.3 and ID3v2.4 are supported, the
  499. @code{id3v2_version} option controls which one is used. The legacy ID3v1 tag is
  500. not written by default, but may be enabled with the @code{write_id3v1} option.
  501. For seekable output the muxer also writes a Xing frame at the beginning, which
  502. contains the number of frames in the file. It is useful for computing duration
  503. of VBR files.
  504. The muxer supports writing ID3v2 attached pictures (APIC frames). The pictures
  505. are supplied to the muxer in form of a video stream with a single packet. There
  506. can be any number of those streams, each will correspond to a single APIC frame.
  507. The stream metadata tags @var{title} and @var{comment} map to APIC
  508. @var{description} and @var{picture type} respectively. See
  509. @url{http://id3.org/id3v2.4.0-frames} for allowed picture types.
  510. Note that the APIC frames must be written at the beginning, so the muxer will
  511. buffer the audio frames until it gets all the pictures. It is therefore advised
  512. to provide the pictures as soon as possible to avoid excessive buffering.
  513. Examples:
  514. Write an mp3 with an ID3v2.3 header and an ID3v1 footer:
  515. @example
  516. ffmpeg -i INPUT -id3v2_version 3 -write_id3v1 1 out.mp3
  517. @end example
  518. Attach a picture to an mp3:
  519. @example
  520. ffmpeg -i input.mp3 -i cover.png -c copy -metadata:s:v title="Album cover"
  521. -metadata:s:v comment="Cover (Front)" out.mp3
  522. @end example
  523. @c man end MUXERS