You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1612 lines
59KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <inttypes.h>
  21. #include <string.h>
  22. #include <math.h>
  23. #include <stdio.h>
  24. #include "config.h"
  25. #include <assert.h>
  26. #if HAVE_SYS_MMAN_H
  27. #include <sys/mman.h>
  28. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  29. #define MAP_ANONYMOUS MAP_ANON
  30. #endif
  31. #endif
  32. #if HAVE_VIRTUALALLOC
  33. #define WIN32_LEAN_AND_MEAN
  34. #include <windows.h>
  35. #endif
  36. #include "swscale.h"
  37. #include "swscale_internal.h"
  38. #include "rgb2rgb.h"
  39. #include "libavutil/intreadwrite.h"
  40. #include "libavutil/x86_cpu.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/avutil.h"
  43. #include "libavutil/bswap.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. unsigned swscale_version(void)
  47. {
  48. return LIBSWSCALE_VERSION_INT;
  49. }
  50. const char *swscale_configuration(void)
  51. {
  52. return LIBAV_CONFIGURATION;
  53. }
  54. const char *swscale_license(void)
  55. {
  56. #define LICENSE_PREFIX "libswscale license: "
  57. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  58. }
  59. #define RET 0xC3 //near return opcode for x86
  60. #define isSupportedIn(x) ( \
  61. (x)==PIX_FMT_YUV420P \
  62. || (x)==PIX_FMT_YUVA420P \
  63. || (x)==PIX_FMT_YUYV422 \
  64. || (x)==PIX_FMT_UYVY422 \
  65. || (x)==PIX_FMT_RGB48BE \
  66. || (x)==PIX_FMT_RGB48LE \
  67. || (x)==PIX_FMT_RGB32 \
  68. || (x)==PIX_FMT_RGB32_1 \
  69. || (x)==PIX_FMT_BGR48BE \
  70. || (x)==PIX_FMT_BGR48LE \
  71. || (x)==PIX_FMT_BGR24 \
  72. || (x)==PIX_FMT_BGR565LE \
  73. || (x)==PIX_FMT_BGR565BE \
  74. || (x)==PIX_FMT_BGR555LE \
  75. || (x)==PIX_FMT_BGR555BE \
  76. || (x)==PIX_FMT_BGR32 \
  77. || (x)==PIX_FMT_BGR32_1 \
  78. || (x)==PIX_FMT_RGB24 \
  79. || (x)==PIX_FMT_RGB565LE \
  80. || (x)==PIX_FMT_RGB565BE \
  81. || (x)==PIX_FMT_RGB555LE \
  82. || (x)==PIX_FMT_RGB555BE \
  83. || (x)==PIX_FMT_GRAY8 \
  84. || (x)==PIX_FMT_Y400A \
  85. || (x)==PIX_FMT_YUV410P \
  86. || (x)==PIX_FMT_YUV440P \
  87. || (x)==PIX_FMT_NV12 \
  88. || (x)==PIX_FMT_NV21 \
  89. || (x)==PIX_FMT_GRAY16BE \
  90. || (x)==PIX_FMT_GRAY16LE \
  91. || (x)==PIX_FMT_YUV444P \
  92. || (x)==PIX_FMT_YUV422P \
  93. || (x)==PIX_FMT_YUV411P \
  94. || (x)==PIX_FMT_YUVJ420P \
  95. || (x)==PIX_FMT_YUVJ422P \
  96. || (x)==PIX_FMT_YUVJ440P \
  97. || (x)==PIX_FMT_YUVJ444P \
  98. || (x)==PIX_FMT_PAL8 \
  99. || (x)==PIX_FMT_BGR8 \
  100. || (x)==PIX_FMT_RGB8 \
  101. || (x)==PIX_FMT_BGR4_BYTE \
  102. || (x)==PIX_FMT_RGB4_BYTE \
  103. || (x)==PIX_FMT_YUV440P \
  104. || (x)==PIX_FMT_MONOWHITE \
  105. || (x)==PIX_FMT_MONOBLACK \
  106. || (x)==PIX_FMT_YUV420P9LE \
  107. || (x)==PIX_FMT_YUV444P9LE \
  108. || (x)==PIX_FMT_YUV420P10LE \
  109. || (x)==PIX_FMT_YUV422P10LE \
  110. || (x)==PIX_FMT_YUV444P10LE \
  111. || (x)==PIX_FMT_YUV420P16LE \
  112. || (x)==PIX_FMT_YUV422P16LE \
  113. || (x)==PIX_FMT_YUV444P16LE \
  114. || (x)==PIX_FMT_YUV420P9BE \
  115. || (x)==PIX_FMT_YUV444P9BE \
  116. || (x)==PIX_FMT_YUV420P10BE \
  117. || (x)==PIX_FMT_YUV444P10BE \
  118. || (x)==PIX_FMT_YUV422P10BE \
  119. || (x)==PIX_FMT_YUV420P16BE \
  120. || (x)==PIX_FMT_YUV422P16BE \
  121. || (x)==PIX_FMT_YUV444P16BE \
  122. )
  123. int sws_isSupportedInput(enum PixelFormat pix_fmt)
  124. {
  125. return isSupportedIn(pix_fmt);
  126. }
  127. #define isSupportedOut(x) ( \
  128. (x)==PIX_FMT_YUV420P \
  129. || (x)==PIX_FMT_YUVA420P \
  130. || (x)==PIX_FMT_YUYV422 \
  131. || (x)==PIX_FMT_UYVY422 \
  132. || (x)==PIX_FMT_YUV444P \
  133. || (x)==PIX_FMT_YUV422P \
  134. || (x)==PIX_FMT_YUV411P \
  135. || (x)==PIX_FMT_YUVJ420P \
  136. || (x)==PIX_FMT_YUVJ422P \
  137. || (x)==PIX_FMT_YUVJ440P \
  138. || (x)==PIX_FMT_YUVJ444P \
  139. || isRGBinBytes(x) \
  140. || isBGRinBytes(x) \
  141. || (x)==PIX_FMT_RGB565LE \
  142. || (x)==PIX_FMT_RGB565BE \
  143. || (x)==PIX_FMT_RGB555LE \
  144. || (x)==PIX_FMT_RGB555BE \
  145. || (x)==PIX_FMT_RGB444LE \
  146. || (x)==PIX_FMT_RGB444BE \
  147. || (x)==PIX_FMT_BGR565LE \
  148. || (x)==PIX_FMT_BGR565BE \
  149. || (x)==PIX_FMT_BGR555LE \
  150. || (x)==PIX_FMT_BGR555BE \
  151. || (x)==PIX_FMT_BGR444LE \
  152. || (x)==PIX_FMT_BGR444BE \
  153. || (x)==PIX_FMT_RGB8 \
  154. || (x)==PIX_FMT_BGR8 \
  155. || (x)==PIX_FMT_RGB4_BYTE \
  156. || (x)==PIX_FMT_BGR4_BYTE \
  157. || (x)==PIX_FMT_RGB4 \
  158. || (x)==PIX_FMT_BGR4 \
  159. || (x)==PIX_FMT_MONOBLACK \
  160. || (x)==PIX_FMT_MONOWHITE \
  161. || (x)==PIX_FMT_NV12 \
  162. || (x)==PIX_FMT_NV21 \
  163. || (x)==PIX_FMT_GRAY16BE \
  164. || (x)==PIX_FMT_GRAY16LE \
  165. || (x)==PIX_FMT_GRAY8 \
  166. || (x)==PIX_FMT_YUV410P \
  167. || (x)==PIX_FMT_YUV440P \
  168. || (x)==PIX_FMT_YUV420P9LE \
  169. || (x)==PIX_FMT_YUV420P10LE \
  170. || (x)==PIX_FMT_YUV420P16LE \
  171. || (x)==PIX_FMT_YUV422P16LE \
  172. || (x)==PIX_FMT_YUV444P16LE \
  173. || (x)==PIX_FMT_YUV420P9BE \
  174. || (x)==PIX_FMT_YUV420P10BE \
  175. || (x)==PIX_FMT_YUV420P16BE \
  176. || (x)==PIX_FMT_YUV422P16BE \
  177. || (x)==PIX_FMT_YUV444P16BE \
  178. )
  179. int sws_isSupportedOutput(enum PixelFormat pix_fmt)
  180. {
  181. return isSupportedOut(pix_fmt);
  182. }
  183. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  184. const char *sws_format_name(enum PixelFormat format)
  185. {
  186. if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
  187. return av_pix_fmt_descriptors[format].name;
  188. else
  189. return "Unknown format";
  190. }
  191. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  192. {
  193. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  194. else return getSplineCoeff( 0.0,
  195. b+ 2.0*c + 3.0*d,
  196. c + 3.0*d,
  197. -b- 3.0*c - 6.0*d,
  198. dist-1.0);
  199. }
  200. static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  201. int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags,
  202. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  203. {
  204. int i;
  205. int filterSize;
  206. int filter2Size;
  207. int minFilterSize;
  208. int64_t *filter=NULL;
  209. int64_t *filter2=NULL;
  210. const int64_t fone= 1LL<<54;
  211. int ret= -1;
  212. emms_c(); //FIXME this should not be required but it IS (even for non-MMX versions)
  213. // NOTE: the +1 is for the MMX scaler which reads over the end
  214. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
  215. if (FFABS(xInc - 0x10000) <10) { // unscaled
  216. int i;
  217. filterSize= 1;
  218. FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  219. for (i=0; i<dstW; i++) {
  220. filter[i*filterSize]= fone;
  221. (*filterPos)[i]=i;
  222. }
  223. } else if (flags&SWS_POINT) { // lame looking point sampling mode
  224. int i;
  225. int xDstInSrc;
  226. filterSize= 1;
  227. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  228. xDstInSrc= xInc/2 - 0x8000;
  229. for (i=0; i<dstW; i++) {
  230. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  231. (*filterPos)[i]= xx;
  232. filter[i]= fone;
  233. xDstInSrc+= xInc;
  234. }
  235. } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
  236. int i;
  237. int xDstInSrc;
  238. filterSize= 2;
  239. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  240. xDstInSrc= xInc/2 - 0x8000;
  241. for (i=0; i<dstW; i++) {
  242. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  243. int j;
  244. (*filterPos)[i]= xx;
  245. //bilinear upscale / linear interpolate / area averaging
  246. for (j=0; j<filterSize; j++) {
  247. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  248. if (coeff<0) coeff=0;
  249. filter[i*filterSize + j]= coeff;
  250. xx++;
  251. }
  252. xDstInSrc+= xInc;
  253. }
  254. } else {
  255. int xDstInSrc;
  256. int sizeFactor;
  257. if (flags&SWS_BICUBIC) sizeFactor= 4;
  258. else if (flags&SWS_X) sizeFactor= 8;
  259. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  260. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  261. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  262. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  263. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  264. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  265. else {
  266. sizeFactor= 0; //GCC warning killer
  267. assert(0);
  268. }
  269. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  270. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  271. if (filterSize > srcW-2) filterSize=srcW-2;
  272. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  273. xDstInSrc= xInc - 0x10000;
  274. for (i=0; i<dstW; i++) {
  275. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  276. int j;
  277. (*filterPos)[i]= xx;
  278. for (j=0; j<filterSize; j++) {
  279. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  280. double floatd;
  281. int64_t coeff;
  282. if (xInc > 1<<16)
  283. d= d*dstW/srcW;
  284. floatd= d * (1.0/(1<<30));
  285. if (flags & SWS_BICUBIC) {
  286. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  287. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  288. int64_t dd = ( d*d)>>30;
  289. int64_t ddd= (dd*d)>>30;
  290. if (d < 1LL<<30)
  291. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  292. else if (d < 1LL<<31)
  293. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  294. else
  295. coeff=0.0;
  296. coeff *= fone>>(30+24);
  297. }
  298. /* else if (flags & SWS_X) {
  299. double p= param ? param*0.01 : 0.3;
  300. coeff = d ? sin(d*M_PI)/(d*M_PI) : 1.0;
  301. coeff*= pow(2.0, - p*d*d);
  302. }*/
  303. else if (flags & SWS_X) {
  304. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  305. double c;
  306. if (floatd<1.0)
  307. c = cos(floatd*M_PI);
  308. else
  309. c=-1.0;
  310. if (c<0.0) c= -pow(-c, A);
  311. else c= pow( c, A);
  312. coeff= (c*0.5 + 0.5)*fone;
  313. } else if (flags & SWS_AREA) {
  314. int64_t d2= d - (1<<29);
  315. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  316. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  317. else coeff=0.0;
  318. coeff *= fone>>(30+16);
  319. } else if (flags & SWS_GAUSS) {
  320. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  321. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  322. } else if (flags & SWS_SINC) {
  323. coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
  324. } else if (flags & SWS_LANCZOS) {
  325. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  326. coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
  327. if (floatd>p) coeff=0;
  328. } else if (flags & SWS_BILINEAR) {
  329. coeff= (1<<30) - d;
  330. if (coeff<0) coeff=0;
  331. coeff *= fone >> 30;
  332. } else if (flags & SWS_SPLINE) {
  333. double p=-2.196152422706632;
  334. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  335. } else {
  336. coeff= 0.0; //GCC warning killer
  337. assert(0);
  338. }
  339. filter[i*filterSize + j]= coeff;
  340. xx++;
  341. }
  342. xDstInSrc+= 2*xInc;
  343. }
  344. }
  345. /* apply src & dst Filter to filter -> filter2
  346. av_free(filter);
  347. */
  348. assert(filterSize>0);
  349. filter2Size= filterSize;
  350. if (srcFilter) filter2Size+= srcFilter->length - 1;
  351. if (dstFilter) filter2Size+= dstFilter->length - 1;
  352. assert(filter2Size>0);
  353. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
  354. for (i=0; i<dstW; i++) {
  355. int j, k;
  356. if(srcFilter) {
  357. for (k=0; k<srcFilter->length; k++) {
  358. for (j=0; j<filterSize; j++)
  359. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  360. }
  361. } else {
  362. for (j=0; j<filterSize; j++)
  363. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  364. }
  365. //FIXME dstFilter
  366. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  367. }
  368. av_freep(&filter);
  369. /* try to reduce the filter-size (step1 find size and shift left) */
  370. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  371. minFilterSize= 0;
  372. for (i=dstW-1; i>=0; i--) {
  373. int min= filter2Size;
  374. int j;
  375. int64_t cutOff=0.0;
  376. /* get rid of near zero elements on the left by shifting left */
  377. for (j=0; j<filter2Size; j++) {
  378. int k;
  379. cutOff += FFABS(filter2[i*filter2Size]);
  380. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  381. /* preserve monotonicity because the core can't handle the filter otherwise */
  382. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  383. // move filter coefficients left
  384. for (k=1; k<filter2Size; k++)
  385. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  386. filter2[i*filter2Size + k - 1]= 0;
  387. (*filterPos)[i]++;
  388. }
  389. cutOff=0;
  390. /* count near zeros on the right */
  391. for (j=filter2Size-1; j>0; j--) {
  392. cutOff += FFABS(filter2[i*filter2Size + j]);
  393. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  394. min--;
  395. }
  396. if (min>minFilterSize) minFilterSize= min;
  397. }
  398. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  399. // we can handle the special case 4,
  400. // so we don't want to go to the full 8
  401. if (minFilterSize < 5)
  402. filterAlign = 4;
  403. // We really don't want to waste our time
  404. // doing useless computation, so fall back on
  405. // the scalar C code for very small filters.
  406. // Vectorizing is worth it only if you have a
  407. // decent-sized vector.
  408. if (minFilterSize < 3)
  409. filterAlign = 1;
  410. }
  411. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  412. // special case for unscaled vertical filtering
  413. if (minFilterSize == 1 && filterAlign == 2)
  414. filterAlign= 1;
  415. }
  416. assert(minFilterSize > 0);
  417. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  418. assert(filterSize > 0);
  419. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  420. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  421. goto fail;
  422. *outFilterSize= filterSize;
  423. if (flags&SWS_PRINT_INFO)
  424. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  425. /* try to reduce the filter-size (step2 reduce it) */
  426. for (i=0; i<dstW; i++) {
  427. int j;
  428. for (j=0; j<filterSize; j++) {
  429. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  430. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  431. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  432. filter[i*filterSize + j]= 0;
  433. }
  434. }
  435. //FIXME try to align filterPos if possible
  436. //fix borders
  437. for (i=0; i<dstW; i++) {
  438. int j;
  439. if ((*filterPos)[i] < 0) {
  440. // move filter coefficients left to compensate for filterPos
  441. for (j=1; j<filterSize; j++) {
  442. int left= FFMAX(j + (*filterPos)[i], 0);
  443. filter[i*filterSize + left] += filter[i*filterSize + j];
  444. filter[i*filterSize + j]=0;
  445. }
  446. (*filterPos)[i]= 0;
  447. }
  448. if ((*filterPos)[i] + filterSize > srcW) {
  449. int shift= (*filterPos)[i] + filterSize - srcW;
  450. // move filter coefficients right to compensate for filterPos
  451. for (j=filterSize-2; j>=0; j--) {
  452. int right= FFMIN(j + shift, filterSize-1);
  453. filter[i*filterSize +right] += filter[i*filterSize +j];
  454. filter[i*filterSize +j]=0;
  455. }
  456. (*filterPos)[i]= srcW - filterSize;
  457. }
  458. }
  459. // Note the +1 is for the MMX scaler which reads over the end
  460. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  461. FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
  462. /* normalize & store in outFilter */
  463. for (i=0; i<dstW; i++) {
  464. int j;
  465. int64_t error=0;
  466. int64_t sum=0;
  467. for (j=0; j<filterSize; j++) {
  468. sum+= filter[i*filterSize + j];
  469. }
  470. sum= (sum + one/2)/ one;
  471. for (j=0; j<*outFilterSize; j++) {
  472. int64_t v= filter[i*filterSize + j] + error;
  473. int intV= ROUNDED_DIV(v, sum);
  474. (*outFilter)[i*(*outFilterSize) + j]= intV;
  475. error= v - intV*sum;
  476. }
  477. }
  478. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  479. for (i=0; i<*outFilterSize; i++) {
  480. int j= dstW*(*outFilterSize);
  481. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  482. }
  483. ret=0;
  484. fail:
  485. av_free(filter);
  486. av_free(filter2);
  487. return ret;
  488. }
  489. #if HAVE_MMX2
  490. static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
  491. {
  492. uint8_t *fragmentA;
  493. x86_reg imm8OfPShufW1A;
  494. x86_reg imm8OfPShufW2A;
  495. x86_reg fragmentLengthA;
  496. uint8_t *fragmentB;
  497. x86_reg imm8OfPShufW1B;
  498. x86_reg imm8OfPShufW2B;
  499. x86_reg fragmentLengthB;
  500. int fragmentPos;
  501. int xpos, i;
  502. // create an optimized horizontal scaling routine
  503. /* This scaler is made of runtime-generated MMX2 code using specially
  504. * tuned pshufw instructions. For every four output pixels, if four
  505. * input pixels are enough for the fast bilinear scaling, then a chunk
  506. * of fragmentB is used. If five input pixels are needed, then a chunk
  507. * of fragmentA is used.
  508. */
  509. //code fragment
  510. __asm__ volatile(
  511. "jmp 9f \n\t"
  512. // Begin
  513. "0: \n\t"
  514. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  515. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  516. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  517. "punpcklbw %%mm7, %%mm1 \n\t"
  518. "punpcklbw %%mm7, %%mm0 \n\t"
  519. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  520. "1: \n\t"
  521. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  522. "2: \n\t"
  523. "psubw %%mm1, %%mm0 \n\t"
  524. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  525. "pmullw %%mm3, %%mm0 \n\t"
  526. "psllw $7, %%mm1 \n\t"
  527. "paddw %%mm1, %%mm0 \n\t"
  528. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  529. "add $8, %%"REG_a" \n\t"
  530. // End
  531. "9: \n\t"
  532. // "int $3 \n\t"
  533. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  534. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  535. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  536. "dec %1 \n\t"
  537. "dec %2 \n\t"
  538. "sub %0, %1 \n\t"
  539. "sub %0, %2 \n\t"
  540. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  541. "sub %0, %3 \n\t"
  542. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  543. "=r" (fragmentLengthA)
  544. );
  545. __asm__ volatile(
  546. "jmp 9f \n\t"
  547. // Begin
  548. "0: \n\t"
  549. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  550. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  551. "punpcklbw %%mm7, %%mm0 \n\t"
  552. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  553. "1: \n\t"
  554. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  555. "2: \n\t"
  556. "psubw %%mm1, %%mm0 \n\t"
  557. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  558. "pmullw %%mm3, %%mm0 \n\t"
  559. "psllw $7, %%mm1 \n\t"
  560. "paddw %%mm1, %%mm0 \n\t"
  561. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  562. "add $8, %%"REG_a" \n\t"
  563. // End
  564. "9: \n\t"
  565. // "int $3 \n\t"
  566. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  567. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  568. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  569. "dec %1 \n\t"
  570. "dec %2 \n\t"
  571. "sub %0, %1 \n\t"
  572. "sub %0, %2 \n\t"
  573. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  574. "sub %0, %3 \n\t"
  575. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  576. "=r" (fragmentLengthB)
  577. );
  578. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  579. fragmentPos=0;
  580. for (i=0; i<dstW/numSplits; i++) {
  581. int xx=xpos>>16;
  582. if ((i&3) == 0) {
  583. int a=0;
  584. int b=((xpos+xInc)>>16) - xx;
  585. int c=((xpos+xInc*2)>>16) - xx;
  586. int d=((xpos+xInc*3)>>16) - xx;
  587. int inc = (d+1<4);
  588. uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
  589. x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  590. x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  591. x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
  592. int maxShift= 3-(d+inc);
  593. int shift=0;
  594. if (filterCode) {
  595. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  596. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  597. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  598. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  599. filterPos[i/2]= xx;
  600. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  601. filterCode[fragmentPos + imm8OfPShufW1]=
  602. (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
  603. filterCode[fragmentPos + imm8OfPShufW2]=
  604. a | (b<<2) | (c<<4) | (d<<6);
  605. if (i+4-inc>=dstW) shift=maxShift; //avoid overread
  606. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  607. if (shift && i>=shift) {
  608. filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
  609. filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
  610. filterPos[i/2]-=shift;
  611. }
  612. }
  613. fragmentPos+= fragmentLength;
  614. if (filterCode)
  615. filterCode[fragmentPos]= RET;
  616. }
  617. xpos+=xInc;
  618. }
  619. if (filterCode)
  620. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  621. return fragmentPos + 1;
  622. }
  623. #endif /* HAVE_MMX2 */
  624. static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
  625. {
  626. *h = av_pix_fmt_descriptors[format].log2_chroma_w;
  627. *v = av_pix_fmt_descriptors[format].log2_chroma_h;
  628. }
  629. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
  630. {
  631. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  632. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  633. c->brightness= brightness;
  634. c->contrast = contrast;
  635. c->saturation= saturation;
  636. c->srcRange = srcRange;
  637. c->dstRange = dstRange;
  638. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  639. c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->dstFormat]);
  640. c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->srcFormat]);
  641. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  642. //FIXME factorize
  643. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  644. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  645. return 0;
  646. }
  647. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
  648. {
  649. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  650. *inv_table = c->srcColorspaceTable;
  651. *table = c->dstColorspaceTable;
  652. *srcRange = c->srcRange;
  653. *dstRange = c->dstRange;
  654. *brightness= c->brightness;
  655. *contrast = c->contrast;
  656. *saturation= c->saturation;
  657. return 0;
  658. }
  659. static int handle_jpeg(enum PixelFormat *format)
  660. {
  661. switch (*format) {
  662. case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1;
  663. case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1;
  664. case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1;
  665. case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1;
  666. default: return 0;
  667. }
  668. }
  669. SwsContext *sws_alloc_context(void)
  670. {
  671. SwsContext *c= av_mallocz(sizeof(SwsContext));
  672. c->av_class = &sws_context_class;
  673. av_opt_set_defaults(c);
  674. return c;
  675. }
  676. int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
  677. {
  678. int i;
  679. int usesVFilter, usesHFilter;
  680. int unscaled;
  681. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  682. int srcW= c->srcW;
  683. int srcH= c->srcH;
  684. int dstW= c->dstW;
  685. int dstH= c->dstH;
  686. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16), dst_stride_px = dst_stride >> 1;
  687. int flags, cpu_flags;
  688. enum PixelFormat srcFormat= c->srcFormat;
  689. enum PixelFormat dstFormat= c->dstFormat;
  690. cpu_flags = av_get_cpu_flags();
  691. flags = c->flags;
  692. emms_c();
  693. if (!rgb15to16) sws_rgb2rgb_init();
  694. unscaled = (srcW == dstW && srcH == dstH);
  695. if (!isSupportedIn(srcFormat)) {
  696. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n", sws_format_name(srcFormat));
  697. return AVERROR(EINVAL);
  698. }
  699. if (!isSupportedOut(dstFormat)) {
  700. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n", sws_format_name(dstFormat));
  701. return AVERROR(EINVAL);
  702. }
  703. i= flags & ( SWS_POINT
  704. |SWS_AREA
  705. |SWS_BILINEAR
  706. |SWS_FAST_BILINEAR
  707. |SWS_BICUBIC
  708. |SWS_X
  709. |SWS_GAUSS
  710. |SWS_LANCZOS
  711. |SWS_SINC
  712. |SWS_SPLINE
  713. |SWS_BICUBLIN);
  714. if(!i || (i & (i-1))) {
  715. av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen\n");
  716. return AVERROR(EINVAL);
  717. }
  718. /* sanity check */
  719. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  720. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  721. srcW, srcH, dstW, dstH);
  722. return AVERROR(EINVAL);
  723. }
  724. if (!dstFilter) dstFilter= &dummyFilter;
  725. if (!srcFilter) srcFilter= &dummyFilter;
  726. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  727. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  728. c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
  729. c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
  730. c->vRounder= 4* 0x0001000100010001ULL;
  731. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
  732. (srcFilter->chrV && srcFilter->chrV->length>1) ||
  733. (dstFilter->lumV && dstFilter->lumV->length>1) ||
  734. (dstFilter->chrV && dstFilter->chrV->length>1);
  735. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
  736. (srcFilter->chrH && srcFilter->chrH->length>1) ||
  737. (dstFilter->lumH && dstFilter->lumH->length>1) ||
  738. (dstFilter->chrH && dstFilter->chrH->length>1);
  739. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  740. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  741. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  742. if (flags & SWS_FULL_CHR_H_INT &&
  743. dstFormat != PIX_FMT_RGBA &&
  744. dstFormat != PIX_FMT_ARGB &&
  745. dstFormat != PIX_FMT_BGRA &&
  746. dstFormat != PIX_FMT_ABGR &&
  747. dstFormat != PIX_FMT_RGB24 &&
  748. dstFormat != PIX_FMT_BGR24) {
  749. av_log(c, AV_LOG_ERROR,
  750. "full chroma interpolation for destination format '%s' not yet implemented\n",
  751. sws_format_name(dstFormat));
  752. flags &= ~SWS_FULL_CHR_H_INT;
  753. c->flags = flags;
  754. }
  755. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  756. // drop some chroma lines if the user wants it
  757. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  758. c->chrSrcVSubSample+= c->vChrDrop;
  759. // drop every other pixel for chroma calculation unless user wants full chroma
  760. if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
  761. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  762. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  763. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  764. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&SWS_FAST_BILINEAR)))
  765. c->chrSrcHSubSample=1;
  766. // Note the -((-x)>>y) is so that we always round toward +inf.
  767. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  768. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  769. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  770. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  771. /* unscaled special cases */
  772. if (unscaled && !usesHFilter && !usesVFilter && (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  773. ff_get_unscaled_swscale(c);
  774. if (c->swScale) {
  775. if (flags&SWS_PRINT_INFO)
  776. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  777. sws_format_name(srcFormat), sws_format_name(dstFormat));
  778. return 0;
  779. }
  780. }
  781. c->scalingBpp = FFMAX(av_pix_fmt_descriptors[srcFormat].comp[0].depth_minus1,
  782. av_pix_fmt_descriptors[dstFormat].comp[0].depth_minus1) >= 8 ? 16 : 8;
  783. if (c->scalingBpp == 16)
  784. dst_stride <<= 1;
  785. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW, 16) * 2 * c->scalingBpp >> 3, fail);
  786. if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2 && c->scalingBpp == 8) {
  787. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  788. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
  789. if (flags&SWS_PRINT_INFO)
  790. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  791. }
  792. if (usesHFilter) c->canMMX2BeUsed=0;
  793. }
  794. else
  795. c->canMMX2BeUsed=0;
  796. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  797. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  798. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  799. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  800. // n-2 is the last chrominance sample available
  801. // this is not perfect, but no one should notice the difference, the more correct variant
  802. // would be like the vertical one, but that would require some special code for the
  803. // first and last pixel
  804. if (flags&SWS_FAST_BILINEAR) {
  805. if (c->canMMX2BeUsed) {
  806. c->lumXInc+= 20;
  807. c->chrXInc+= 20;
  808. }
  809. //we don't use the x86 asm scaler if MMX is available
  810. else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  811. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  812. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  813. }
  814. }
  815. /* precalculate horizontal scaler filter coefficients */
  816. {
  817. #if HAVE_MMX2
  818. // can't downscale !!!
  819. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
  820. c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
  821. c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
  822. #ifdef MAP_ANONYMOUS
  823. c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  824. c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  825. #elif HAVE_VIRTUALALLOC
  826. c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  827. c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  828. #else
  829. c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
  830. c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
  831. #endif
  832. if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
  833. return AVERROR(ENOMEM);
  834. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
  835. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
  836. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
  837. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
  838. initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
  839. initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
  840. #ifdef MAP_ANONYMOUS
  841. mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  842. mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  843. #endif
  844. } else
  845. #endif /* HAVE_MMX2 */
  846. {
  847. const int filterAlign=
  848. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  849. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  850. 1;
  851. if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  852. srcW , dstW, filterAlign, 1<<14,
  853. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags,
  854. srcFilter->lumH, dstFilter->lumH, c->param) < 0)
  855. goto fail;
  856. if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  857. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  858. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
  859. srcFilter->chrH, dstFilter->chrH, c->param) < 0)
  860. goto fail;
  861. }
  862. } // initialize horizontal stuff
  863. /* precalculate vertical scaler filter coefficients */
  864. {
  865. const int filterAlign=
  866. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  867. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  868. 1;
  869. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  870. srcH , dstH, filterAlign, (1<<12),
  871. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags,
  872. srcFilter->lumV, dstFilter->lumV, c->param) < 0)
  873. goto fail;
  874. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  875. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  876. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
  877. srcFilter->chrV, dstFilter->chrV, c->param) < 0)
  878. goto fail;
  879. #if HAVE_ALTIVEC
  880. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
  881. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
  882. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  883. int j;
  884. short *p = (short *)&c->vYCoeffsBank[i];
  885. for (j=0;j<8;j++)
  886. p[j] = c->vLumFilter[i];
  887. }
  888. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  889. int j;
  890. short *p = (short *)&c->vCCoeffsBank[i];
  891. for (j=0;j<8;j++)
  892. p[j] = c->vChrFilter[i];
  893. }
  894. #endif
  895. }
  896. // calculate buffer sizes so that they won't run out while handling these damn slices
  897. c->vLumBufSize= c->vLumFilterSize;
  898. c->vChrBufSize= c->vChrFilterSize;
  899. for (i=0; i<dstH; i++) {
  900. int chrI= i*c->chrDstH / dstH;
  901. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  902. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  903. nextSlice>>= c->chrSrcVSubSample;
  904. nextSlice<<= c->chrSrcVSubSample;
  905. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  906. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  907. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  908. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  909. }
  910. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  911. // allocate several megabytes to handle all possible cases)
  912. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
  913. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
  914. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
  915. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  916. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
  917. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  918. /* align at 16 bytes for AltiVec */
  919. for (i=0; i<c->vLumBufSize; i++) {
  920. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], dst_stride+1, fail);
  921. c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
  922. }
  923. c->uv_off = dst_stride_px;
  924. c->uv_offx2 = dst_stride;
  925. for (i=0; i<c->vChrBufSize; i++) {
  926. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i+c->vChrBufSize], dst_stride*2+1, fail);
  927. c->chrUPixBuf[i] = c->chrUPixBuf[i+c->vChrBufSize];
  928. c->chrVPixBuf[i] = c->chrVPixBuf[i+c->vChrBufSize] = c->chrUPixBuf[i] + dst_stride_px;
  929. }
  930. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  931. for (i=0; i<c->vLumBufSize; i++) {
  932. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], dst_stride+1, fail);
  933. c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
  934. }
  935. //try to avoid drawing green stuff between the right end and the stride end
  936. for (i=0; i<c->vChrBufSize; i++)
  937. memset(c->chrUPixBuf[i], 64, dst_stride*2+1);
  938. assert(c->chrDstH <= dstH);
  939. if (flags&SWS_PRINT_INFO) {
  940. if (flags&SWS_FAST_BILINEAR) av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  941. else if (flags&SWS_BILINEAR) av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  942. else if (flags&SWS_BICUBIC) av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  943. else if (flags&SWS_X) av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  944. else if (flags&SWS_POINT) av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  945. else if (flags&SWS_AREA) av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  946. else if (flags&SWS_BICUBLIN) av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  947. else if (flags&SWS_GAUSS) av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  948. else if (flags&SWS_SINC) av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  949. else if (flags&SWS_LANCZOS) av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  950. else if (flags&SWS_SPLINE) av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  951. else av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  952. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  953. sws_format_name(srcFormat),
  954. #ifdef DITHER1XBPP
  955. dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ||
  956. dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
  957. dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "",
  958. #else
  959. "",
  960. #endif
  961. sws_format_name(dstFormat));
  962. if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) av_log(c, AV_LOG_INFO, "using MMX2\n");
  963. else if (HAVE_AMD3DNOW && cpu_flags & AV_CPU_FLAG_3DNOW) av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  964. else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) av_log(c, AV_LOG_INFO, "using MMX\n");
  965. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) av_log(c, AV_LOG_INFO, "using AltiVec\n");
  966. else av_log(c, AV_LOG_INFO, "using C\n");
  967. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  968. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  969. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  970. else {
  971. if (c->hLumFilterSize==4)
  972. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  973. else if (c->hLumFilterSize==8)
  974. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  975. else
  976. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  977. if (c->hChrFilterSize==4)
  978. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  979. else if (c->hChrFilterSize==8)
  980. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  981. else
  982. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  983. }
  984. } else {
  985. #if HAVE_MMX
  986. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  987. #else
  988. if (flags & SWS_FAST_BILINEAR)
  989. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  990. else
  991. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  992. #endif
  993. }
  994. if (isPlanarYUV(dstFormat)) {
  995. if (c->vLumFilterSize==1)
  996. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n",
  997. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  998. else
  999. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n",
  1000. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1001. } else {
  1002. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  1003. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  1004. " 2-tap scaler for vertical chrominance scaling (BGR)\n",
  1005. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1006. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  1007. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n",
  1008. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1009. else
  1010. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n",
  1011. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1012. }
  1013. if (dstFormat==PIX_FMT_BGR24)
  1014. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  1015. (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) ? "MMX2" :
  1016. ((HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C"));
  1017. else if (dstFormat==PIX_FMT_RGB32)
  1018. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n",
  1019. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1020. else if (dstFormat==PIX_FMT_BGR565)
  1021. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n",
  1022. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1023. else if (dstFormat==PIX_FMT_BGR555)
  1024. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n",
  1025. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1026. else if (dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
  1027. dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE)
  1028. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR12 converter\n",
  1029. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1030. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1031. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1032. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1033. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1034. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  1035. }
  1036. c->swScale= ff_getSwsFunc(c);
  1037. return 0;
  1038. fail: //FIXME replace things by appropriate error codes
  1039. return -1;
  1040. }
  1041. #if FF_API_SWS_GETCONTEXT
  1042. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
  1043. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  1044. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  1045. {
  1046. SwsContext *c;
  1047. if(!(c=sws_alloc_context()))
  1048. return NULL;
  1049. c->flags= flags;
  1050. c->srcW= srcW;
  1051. c->srcH= srcH;
  1052. c->dstW= dstW;
  1053. c->dstH= dstH;
  1054. c->srcRange = handle_jpeg(&srcFormat);
  1055. c->dstRange = handle_jpeg(&dstFormat);
  1056. c->srcFormat= srcFormat;
  1057. c->dstFormat= dstFormat;
  1058. if (param) {
  1059. c->param[0] = param[0];
  1060. c->param[1] = param[1];
  1061. }
  1062. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, c->dstRange, 0, 1<<16, 1<<16);
  1063. if(sws_init_context(c, srcFilter, dstFilter) < 0){
  1064. sws_freeContext(c);
  1065. return NULL;
  1066. }
  1067. return c;
  1068. }
  1069. #endif
  1070. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1071. float lumaSharpen, float chromaSharpen,
  1072. float chromaHShift, float chromaVShift,
  1073. int verbose)
  1074. {
  1075. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  1076. if (!filter)
  1077. return NULL;
  1078. if (lumaGBlur!=0.0) {
  1079. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  1080. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  1081. } else {
  1082. filter->lumH= sws_getIdentityVec();
  1083. filter->lumV= sws_getIdentityVec();
  1084. }
  1085. if (chromaGBlur!=0.0) {
  1086. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  1087. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  1088. } else {
  1089. filter->chrH= sws_getIdentityVec();
  1090. filter->chrV= sws_getIdentityVec();
  1091. }
  1092. if (chromaSharpen!=0.0) {
  1093. SwsVector *id= sws_getIdentityVec();
  1094. sws_scaleVec(filter->chrH, -chromaSharpen);
  1095. sws_scaleVec(filter->chrV, -chromaSharpen);
  1096. sws_addVec(filter->chrH, id);
  1097. sws_addVec(filter->chrV, id);
  1098. sws_freeVec(id);
  1099. }
  1100. if (lumaSharpen!=0.0) {
  1101. SwsVector *id= sws_getIdentityVec();
  1102. sws_scaleVec(filter->lumH, -lumaSharpen);
  1103. sws_scaleVec(filter->lumV, -lumaSharpen);
  1104. sws_addVec(filter->lumH, id);
  1105. sws_addVec(filter->lumV, id);
  1106. sws_freeVec(id);
  1107. }
  1108. if (chromaHShift != 0.0)
  1109. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  1110. if (chromaVShift != 0.0)
  1111. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  1112. sws_normalizeVec(filter->chrH, 1.0);
  1113. sws_normalizeVec(filter->chrV, 1.0);
  1114. sws_normalizeVec(filter->lumH, 1.0);
  1115. sws_normalizeVec(filter->lumV, 1.0);
  1116. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1117. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1118. return filter;
  1119. }
  1120. SwsVector *sws_allocVec(int length)
  1121. {
  1122. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1123. if (!vec)
  1124. return NULL;
  1125. vec->length = length;
  1126. vec->coeff = av_malloc(sizeof(double) * length);
  1127. if (!vec->coeff)
  1128. av_freep(&vec);
  1129. return vec;
  1130. }
  1131. SwsVector *sws_getGaussianVec(double variance, double quality)
  1132. {
  1133. const int length= (int)(variance*quality + 0.5) | 1;
  1134. int i;
  1135. double middle= (length-1)*0.5;
  1136. SwsVector *vec= sws_allocVec(length);
  1137. if (!vec)
  1138. return NULL;
  1139. for (i=0; i<length; i++) {
  1140. double dist= i-middle;
  1141. vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
  1142. }
  1143. sws_normalizeVec(vec, 1.0);
  1144. return vec;
  1145. }
  1146. SwsVector *sws_getConstVec(double c, int length)
  1147. {
  1148. int i;
  1149. SwsVector *vec= sws_allocVec(length);
  1150. if (!vec)
  1151. return NULL;
  1152. for (i=0; i<length; i++)
  1153. vec->coeff[i]= c;
  1154. return vec;
  1155. }
  1156. SwsVector *sws_getIdentityVec(void)
  1157. {
  1158. return sws_getConstVec(1.0, 1);
  1159. }
  1160. static double sws_dcVec(SwsVector *a)
  1161. {
  1162. int i;
  1163. double sum=0;
  1164. for (i=0; i<a->length; i++)
  1165. sum+= a->coeff[i];
  1166. return sum;
  1167. }
  1168. void sws_scaleVec(SwsVector *a, double scalar)
  1169. {
  1170. int i;
  1171. for (i=0; i<a->length; i++)
  1172. a->coeff[i]*= scalar;
  1173. }
  1174. void sws_normalizeVec(SwsVector *a, double height)
  1175. {
  1176. sws_scaleVec(a, height/sws_dcVec(a));
  1177. }
  1178. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1179. {
  1180. int length= a->length + b->length - 1;
  1181. int i, j;
  1182. SwsVector *vec= sws_getConstVec(0.0, length);
  1183. if (!vec)
  1184. return NULL;
  1185. for (i=0; i<a->length; i++) {
  1186. for (j=0; j<b->length; j++) {
  1187. vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
  1188. }
  1189. }
  1190. return vec;
  1191. }
  1192. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1193. {
  1194. int length= FFMAX(a->length, b->length);
  1195. int i;
  1196. SwsVector *vec= sws_getConstVec(0.0, length);
  1197. if (!vec)
  1198. return NULL;
  1199. for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  1200. for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  1201. return vec;
  1202. }
  1203. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1204. {
  1205. int length= FFMAX(a->length, b->length);
  1206. int i;
  1207. SwsVector *vec= sws_getConstVec(0.0, length);
  1208. if (!vec)
  1209. return NULL;
  1210. for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  1211. for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  1212. return vec;
  1213. }
  1214. /* shift left / or right if "shift" is negative */
  1215. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1216. {
  1217. int length= a->length + FFABS(shift)*2;
  1218. int i;
  1219. SwsVector *vec= sws_getConstVec(0.0, length);
  1220. if (!vec)
  1221. return NULL;
  1222. for (i=0; i<a->length; i++) {
  1223. vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  1224. }
  1225. return vec;
  1226. }
  1227. void sws_shiftVec(SwsVector *a, int shift)
  1228. {
  1229. SwsVector *shifted= sws_getShiftedVec(a, shift);
  1230. av_free(a->coeff);
  1231. a->coeff= shifted->coeff;
  1232. a->length= shifted->length;
  1233. av_free(shifted);
  1234. }
  1235. void sws_addVec(SwsVector *a, SwsVector *b)
  1236. {
  1237. SwsVector *sum= sws_sumVec(a, b);
  1238. av_free(a->coeff);
  1239. a->coeff= sum->coeff;
  1240. a->length= sum->length;
  1241. av_free(sum);
  1242. }
  1243. void sws_subVec(SwsVector *a, SwsVector *b)
  1244. {
  1245. SwsVector *diff= sws_diffVec(a, b);
  1246. av_free(a->coeff);
  1247. a->coeff= diff->coeff;
  1248. a->length= diff->length;
  1249. av_free(diff);
  1250. }
  1251. void sws_convVec(SwsVector *a, SwsVector *b)
  1252. {
  1253. SwsVector *conv= sws_getConvVec(a, b);
  1254. av_free(a->coeff);
  1255. a->coeff= conv->coeff;
  1256. a->length= conv->length;
  1257. av_free(conv);
  1258. }
  1259. SwsVector *sws_cloneVec(SwsVector *a)
  1260. {
  1261. int i;
  1262. SwsVector *vec= sws_allocVec(a->length);
  1263. if (!vec)
  1264. return NULL;
  1265. for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
  1266. return vec;
  1267. }
  1268. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1269. {
  1270. int i;
  1271. double max=0;
  1272. double min=0;
  1273. double range;
  1274. for (i=0; i<a->length; i++)
  1275. if (a->coeff[i]>max) max= a->coeff[i];
  1276. for (i=0; i<a->length; i++)
  1277. if (a->coeff[i]<min) min= a->coeff[i];
  1278. range= max - min;
  1279. for (i=0; i<a->length; i++) {
  1280. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  1281. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1282. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  1283. av_log(log_ctx, log_level, "|\n");
  1284. }
  1285. }
  1286. void sws_freeVec(SwsVector *a)
  1287. {
  1288. if (!a) return;
  1289. av_freep(&a->coeff);
  1290. a->length=0;
  1291. av_free(a);
  1292. }
  1293. void sws_freeFilter(SwsFilter *filter)
  1294. {
  1295. if (!filter) return;
  1296. if (filter->lumH) sws_freeVec(filter->lumH);
  1297. if (filter->lumV) sws_freeVec(filter->lumV);
  1298. if (filter->chrH) sws_freeVec(filter->chrH);
  1299. if (filter->chrV) sws_freeVec(filter->chrV);
  1300. av_free(filter);
  1301. }
  1302. void sws_freeContext(SwsContext *c)
  1303. {
  1304. int i;
  1305. if (!c) return;
  1306. if (c->lumPixBuf) {
  1307. for (i=0; i<c->vLumBufSize; i++)
  1308. av_freep(&c->lumPixBuf[i]);
  1309. av_freep(&c->lumPixBuf);
  1310. }
  1311. if (c->chrUPixBuf) {
  1312. for (i=0; i<c->vChrBufSize; i++)
  1313. av_freep(&c->chrUPixBuf[i]);
  1314. av_freep(&c->chrUPixBuf);
  1315. av_freep(&c->chrVPixBuf);
  1316. }
  1317. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1318. for (i=0; i<c->vLumBufSize; i++)
  1319. av_freep(&c->alpPixBuf[i]);
  1320. av_freep(&c->alpPixBuf);
  1321. }
  1322. av_freep(&c->vLumFilter);
  1323. av_freep(&c->vChrFilter);
  1324. av_freep(&c->hLumFilter);
  1325. av_freep(&c->hChrFilter);
  1326. #if HAVE_ALTIVEC
  1327. av_freep(&c->vYCoeffsBank);
  1328. av_freep(&c->vCCoeffsBank);
  1329. #endif
  1330. av_freep(&c->vLumFilterPos);
  1331. av_freep(&c->vChrFilterPos);
  1332. av_freep(&c->hLumFilterPos);
  1333. av_freep(&c->hChrFilterPos);
  1334. #if HAVE_MMX
  1335. #ifdef MAP_ANONYMOUS
  1336. if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
  1337. if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
  1338. #elif HAVE_VIRTUALALLOC
  1339. if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
  1340. if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
  1341. #else
  1342. av_free(c->lumMmx2FilterCode);
  1343. av_free(c->chrMmx2FilterCode);
  1344. #endif
  1345. c->lumMmx2FilterCode=NULL;
  1346. c->chrMmx2FilterCode=NULL;
  1347. #endif /* HAVE_MMX */
  1348. av_freep(&c->yuvTable);
  1349. av_free(c->formatConvBuffer);
  1350. av_free(c);
  1351. }
  1352. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  1353. int srcW, int srcH, enum PixelFormat srcFormat,
  1354. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  1355. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  1356. {
  1357. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  1358. if (!param)
  1359. param = default_param;
  1360. if (context &&
  1361. (context->srcW != srcW ||
  1362. context->srcH != srcH ||
  1363. context->srcFormat != srcFormat ||
  1364. context->dstW != dstW ||
  1365. context->dstH != dstH ||
  1366. context->dstFormat != dstFormat ||
  1367. context->flags != flags ||
  1368. context->param[0] != param[0] ||
  1369. context->param[1] != param[1])) {
  1370. sws_freeContext(context);
  1371. context = NULL;
  1372. }
  1373. if (!context) {
  1374. if (!(context = sws_alloc_context()))
  1375. return NULL;
  1376. context->srcW = srcW;
  1377. context->srcH = srcH;
  1378. context->srcRange = handle_jpeg(&srcFormat);
  1379. context->srcFormat = srcFormat;
  1380. context->dstW = dstW;
  1381. context->dstH = dstH;
  1382. context->dstRange = handle_jpeg(&dstFormat);
  1383. context->dstFormat = dstFormat;
  1384. context->flags = flags;
  1385. context->param[0] = param[0];
  1386. context->param[1] = param[1];
  1387. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], context->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, context->dstRange, 0, 1<<16, 1<<16);
  1388. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1389. sws_freeContext(context);
  1390. return NULL;
  1391. }
  1392. }
  1393. return context;
  1394. }