You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3891 lines
142KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #include "vc1.h"
  33. #include "vc1data.h"
  34. #include "vc1acdata.h"
  35. #include "msmpeg4data.h"
  36. #include "unary.h"
  37. #include "simple_idct.h"
  38. #include "mathops.h"
  39. #include "vdpau_internal.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MB_INTRA_VLC_BITS 9
  43. #define DC_VLC_BITS 9
  44. #define AC_VLC_BITS 9
  45. static const uint16_t vlc_offs[] = {
  46. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  47. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
  48. 9262, 10202, 10756, 11310, 12228, 15078
  49. };
  50. /**
  51. * Init VC-1 specific tables and VC1Context members
  52. * @param v The VC1Context to initialize
  53. * @return Status
  54. */
  55. static int vc1_init_common(VC1Context *v)
  56. {
  57. static int done = 0;
  58. int i = 0;
  59. static VLC_TYPE vlc_table[15078][2];
  60. v->hrd_rate = v->hrd_buffer = NULL;
  61. /* VLC tables */
  62. if(!done)
  63. {
  64. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  65. ff_vc1_bfraction_bits, 1, 1,
  66. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  67. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  68. ff_vc1_norm2_bits, 1, 1,
  69. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  70. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  71. ff_vc1_norm6_bits, 1, 1,
  72. ff_vc1_norm6_codes, 2, 2, 556);
  73. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  74. ff_vc1_imode_bits, 1, 1,
  75. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  76. for (i=0; i<3; i++)
  77. {
  78. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
  79. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
  80. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  81. ff_vc1_ttmb_bits[i], 1, 1,
  82. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  83. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
  84. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
  85. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  86. ff_vc1_ttblk_bits[i], 1, 1,
  87. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  88. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
  89. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
  90. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  91. ff_vc1_subblkpat_bits[i], 1, 1,
  92. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  93. }
  94. for(i=0; i<4; i++)
  95. {
  96. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
  97. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
  98. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  99. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  100. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  101. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
  102. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
  103. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  104. ff_vc1_cbpcy_p_bits[i], 1, 1,
  105. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  106. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
  107. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
  108. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  109. ff_vc1_mv_diff_bits[i], 1, 1,
  110. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  111. }
  112. for(i=0; i<8; i++){
  113. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
  114. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
  115. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  116. &vc1_ac_tables[i][0][1], 8, 4,
  117. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  118. }
  119. done = 1;
  120. }
  121. /* Other defaults */
  122. v->pq = -1;
  123. v->mvrange = 0; /* 7.1.1.18, p80 */
  124. return 0;
  125. }
  126. /***********************************************************************/
  127. /**
  128. * @name VC-1 Bitplane decoding
  129. * @see 8.7, p56
  130. * @{
  131. */
  132. /**
  133. * Imode types
  134. * @{
  135. */
  136. enum Imode {
  137. IMODE_RAW,
  138. IMODE_NORM2,
  139. IMODE_DIFF2,
  140. IMODE_NORM6,
  141. IMODE_DIFF6,
  142. IMODE_ROWSKIP,
  143. IMODE_COLSKIP
  144. };
  145. /** @} */ //imode defines
  146. /** @} */ //Bitplane group
  147. static void vc1_put_signed_blocks_clamped(VC1Context *v)
  148. {
  149. MpegEncContext *s = &v->s;
  150. /* The put pixels loop is always one MB row behind the decoding loop,
  151. * because we can only put pixels when overlap filtering is done, and
  152. * for filtering of the bottom edge of a MB, we need the next MB row
  153. * present as well.
  154. * Within the row, the put pixels loop is also one MB col behind the
  155. * decoding loop. The reason for this is again, because for filtering
  156. * of the right MB edge, we need the next MB present. */
  157. if (!s->first_slice_line) {
  158. if (s->mb_x) {
  159. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
  160. s->dest[0] - 16 * s->linesize - 16,
  161. s->linesize);
  162. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
  163. s->dest[0] - 16 * s->linesize - 8,
  164. s->linesize);
  165. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
  166. s->dest[0] - 8 * s->linesize - 16,
  167. s->linesize);
  168. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
  169. s->dest[0] - 8 * s->linesize - 8,
  170. s->linesize);
  171. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
  172. s->dest[1] - 8 * s->uvlinesize - 8,
  173. s->uvlinesize);
  174. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
  175. s->dest[2] - 8 * s->uvlinesize - 8,
  176. s->uvlinesize);
  177. }
  178. if (s->mb_x == s->mb_width - 1) {
  179. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
  180. s->dest[0] - 16 * s->linesize,
  181. s->linesize);
  182. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
  183. s->dest[0] - 16 * s->linesize + 8,
  184. s->linesize);
  185. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
  186. s->dest[0] - 8 * s->linesize,
  187. s->linesize);
  188. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
  189. s->dest[0] - 8 * s->linesize + 8,
  190. s->linesize);
  191. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
  192. s->dest[1] - 8 * s->uvlinesize,
  193. s->uvlinesize);
  194. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
  195. s->dest[2] - 8 * s->uvlinesize,
  196. s->uvlinesize);
  197. }
  198. }
  199. #define inc_blk_idx(idx) do { \
  200. idx++; \
  201. if (idx >= v->n_allocated_blks) \
  202. idx = 0; \
  203. } while (0)
  204. inc_blk_idx(v->topleft_blk_idx);
  205. inc_blk_idx(v->top_blk_idx);
  206. inc_blk_idx(v->left_blk_idx);
  207. inc_blk_idx(v->cur_blk_idx);
  208. }
  209. static void vc1_loop_filter_iblk(VC1Context *v, int pq)
  210. {
  211. MpegEncContext *s = &v->s;
  212. int j;
  213. if (!s->first_slice_line) {
  214. v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  215. if (s->mb_x)
  216. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize, s->linesize, pq);
  217. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize+8, s->linesize, pq);
  218. for(j = 0; j < 2; j++){
  219. v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  220. if (s->mb_x)
  221. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1]-8*s->uvlinesize, s->uvlinesize, pq);
  222. }
  223. }
  224. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  225. if (s->mb_y == s->mb_height-1) {
  226. if (s->mb_x) {
  227. v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
  228. v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
  229. v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
  230. }
  231. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
  232. }
  233. }
  234. static void vc1_loop_filter_iblk_delayed(VC1Context *v, int pq)
  235. {
  236. MpegEncContext *s = &v->s;
  237. int j;
  238. /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
  239. * means it runs two rows/cols behind the decoding loop. */
  240. if (!s->first_slice_line) {
  241. if (s->mb_x) {
  242. if (s->mb_y >= s->start_mb_y + 2) {
  243. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  244. if (s->mb_x >= 2)
  245. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
  246. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
  247. for(j = 0; j < 2; j++) {
  248. v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  249. if (s->mb_x >= 2) {
  250. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
  251. }
  252. }
  253. }
  254. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
  255. }
  256. if (s->mb_x == s->mb_width - 1) {
  257. if (s->mb_y >= s->start_mb_y + 2) {
  258. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  259. if (s->mb_x)
  260. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
  261. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
  262. for(j = 0; j < 2; j++) {
  263. v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  264. if (s->mb_x >= 2) {
  265. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 16 * s->uvlinesize, s->uvlinesize, pq);
  266. }
  267. }
  268. }
  269. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
  270. }
  271. if (s->mb_y == s->mb_height) {
  272. if (s->mb_x) {
  273. if (s->mb_x >= 2)
  274. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  275. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
  276. if (s->mb_x >= 2) {
  277. for(j = 0; j < 2; j++) {
  278. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  279. }
  280. }
  281. }
  282. if (s->mb_x == s->mb_width - 1) {
  283. if (s->mb_x)
  284. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  285. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  286. if (s->mb_x) {
  287. for(j = 0; j < 2; j++) {
  288. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  289. }
  290. }
  291. }
  292. }
  293. }
  294. }
  295. static void vc1_smooth_overlap_filter_iblk(VC1Context *v)
  296. {
  297. MpegEncContext *s = &v->s;
  298. int mb_pos;
  299. if (v->condover == CONDOVER_NONE)
  300. return;
  301. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  302. /* Within a MB, the horizontal overlap always runs before the vertical.
  303. * To accomplish that, we run the H on left and internal borders of the
  304. * currently decoded MB. Then, we wait for the next overlap iteration
  305. * to do H overlap on the right edge of this MB, before moving over and
  306. * running the V overlap. Therefore, the V overlap makes us trail by one
  307. * MB col and the H overlap filter makes us trail by one MB row. This
  308. * is reflected in the time at which we run the put_pixels loop. */
  309. if(v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
  310. if(s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  311. v->over_flags_plane[mb_pos - 1])) {
  312. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][1],
  313. v->block[v->cur_blk_idx][0]);
  314. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][3],
  315. v->block[v->cur_blk_idx][2]);
  316. if(!(s->flags & CODEC_FLAG_GRAY)) {
  317. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][4],
  318. v->block[v->cur_blk_idx][4]);
  319. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][5],
  320. v->block[v->cur_blk_idx][5]);
  321. }
  322. }
  323. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][0],
  324. v->block[v->cur_blk_idx][1]);
  325. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][2],
  326. v->block[v->cur_blk_idx][3]);
  327. if (s->mb_x == s->mb_width - 1) {
  328. if(!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  329. v->over_flags_plane[mb_pos - s->mb_stride])) {
  330. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][2],
  331. v->block[v->cur_blk_idx][0]);
  332. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][3],
  333. v->block[v->cur_blk_idx][1]);
  334. if(!(s->flags & CODEC_FLAG_GRAY)) {
  335. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][4],
  336. v->block[v->cur_blk_idx][4]);
  337. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][5],
  338. v->block[v->cur_blk_idx][5]);
  339. }
  340. }
  341. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][0],
  342. v->block[v->cur_blk_idx][2]);
  343. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][1],
  344. v->block[v->cur_blk_idx][3]);
  345. }
  346. }
  347. if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
  348. if(!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  349. v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
  350. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][2],
  351. v->block[v->left_blk_idx][0]);
  352. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][3],
  353. v->block[v->left_blk_idx][1]);
  354. if(!(s->flags & CODEC_FLAG_GRAY)) {
  355. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][4],
  356. v->block[v->left_blk_idx][4]);
  357. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][5],
  358. v->block[v->left_blk_idx][5]);
  359. }
  360. }
  361. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][0],
  362. v->block[v->left_blk_idx][2]);
  363. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][1],
  364. v->block[v->left_blk_idx][3]);
  365. }
  366. }
  367. /** Do motion compensation over 1 macroblock
  368. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  369. */
  370. static void vc1_mc_1mv(VC1Context *v, int dir)
  371. {
  372. MpegEncContext *s = &v->s;
  373. DSPContext *dsp = &v->s.dsp;
  374. uint8_t *srcY, *srcU, *srcV;
  375. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  376. if(!v->s.last_picture.data[0])return;
  377. mx = s->mv[dir][0][0];
  378. my = s->mv[dir][0][1];
  379. // store motion vectors for further use in B frames
  380. if(s->pict_type == AV_PICTURE_TYPE_P) {
  381. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  382. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  383. }
  384. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  385. uvmy = (my + ((my & 3) == 3)) >> 1;
  386. v->luma_mv[s->mb_x][0] = uvmx;
  387. v->luma_mv[s->mb_x][1] = uvmy;
  388. if(v->fastuvmc) {
  389. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  390. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  391. }
  392. if(!dir) {
  393. srcY = s->last_picture.data[0];
  394. srcU = s->last_picture.data[1];
  395. srcV = s->last_picture.data[2];
  396. } else {
  397. srcY = s->next_picture.data[0];
  398. srcU = s->next_picture.data[1];
  399. srcV = s->next_picture.data[2];
  400. }
  401. src_x = s->mb_x * 16 + (mx >> 2);
  402. src_y = s->mb_y * 16 + (my >> 2);
  403. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  404. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  405. if(v->profile != PROFILE_ADVANCED){
  406. src_x = av_clip( src_x, -16, s->mb_width * 16);
  407. src_y = av_clip( src_y, -16, s->mb_height * 16);
  408. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  409. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  410. }else{
  411. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  412. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  413. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  414. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  415. }
  416. srcY += src_y * s->linesize + src_x;
  417. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  418. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  419. /* for grayscale we should not try to read from unknown area */
  420. if(s->flags & CODEC_FLAG_GRAY) {
  421. srcU = s->edge_emu_buffer + 18 * s->linesize;
  422. srcV = s->edge_emu_buffer + 18 * s->linesize;
  423. }
  424. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  425. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  426. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  427. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  428. srcY -= s->mspel * (1 + s->linesize);
  429. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  430. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  431. srcY = s->edge_emu_buffer;
  432. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  433. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  434. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  435. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  436. srcU = uvbuf;
  437. srcV = uvbuf + 16;
  438. /* if we deal with range reduction we need to scale source blocks */
  439. if(v->rangeredfrm) {
  440. int i, j;
  441. uint8_t *src, *src2;
  442. src = srcY;
  443. for(j = 0; j < 17 + s->mspel*2; j++) {
  444. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  445. src += s->linesize;
  446. }
  447. src = srcU; src2 = srcV;
  448. for(j = 0; j < 9; j++) {
  449. for(i = 0; i < 9; i++) {
  450. src[i] = ((src[i] - 128) >> 1) + 128;
  451. src2[i] = ((src2[i] - 128) >> 1) + 128;
  452. }
  453. src += s->uvlinesize;
  454. src2 += s->uvlinesize;
  455. }
  456. }
  457. /* if we deal with intensity compensation we need to scale source blocks */
  458. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  459. int i, j;
  460. uint8_t *src, *src2;
  461. src = srcY;
  462. for(j = 0; j < 17 + s->mspel*2; j++) {
  463. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  464. src += s->linesize;
  465. }
  466. src = srcU; src2 = srcV;
  467. for(j = 0; j < 9; j++) {
  468. for(i = 0; i < 9; i++) {
  469. src[i] = v->lutuv[src[i]];
  470. src2[i] = v->lutuv[src2[i]];
  471. }
  472. src += s->uvlinesize;
  473. src2 += s->uvlinesize;
  474. }
  475. }
  476. srcY += s->mspel * (1 + s->linesize);
  477. }
  478. if(s->mspel) {
  479. dxy = ((my & 3) << 2) | (mx & 3);
  480. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  481. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  482. srcY += s->linesize * 8;
  483. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  484. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  485. } else { // hpel mc - always used for luma
  486. dxy = (my & 2) | ((mx & 2) >> 1);
  487. if(!v->rnd)
  488. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  489. else
  490. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  491. }
  492. if(s->flags & CODEC_FLAG_GRAY) return;
  493. /* Chroma MC always uses qpel bilinear */
  494. uvmx = (uvmx&3)<<1;
  495. uvmy = (uvmy&3)<<1;
  496. if(!v->rnd){
  497. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  498. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  499. }else{
  500. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  501. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  502. }
  503. }
  504. /** Do motion compensation for 4-MV macroblock - luminance block
  505. */
  506. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  507. {
  508. MpegEncContext *s = &v->s;
  509. DSPContext *dsp = &v->s.dsp;
  510. uint8_t *srcY;
  511. int dxy, mx, my, src_x, src_y;
  512. int off;
  513. if(!v->s.last_picture.data[0])return;
  514. mx = s->mv[0][n][0];
  515. my = s->mv[0][n][1];
  516. srcY = s->last_picture.data[0];
  517. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  518. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  519. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  520. if(v->profile != PROFILE_ADVANCED){
  521. src_x = av_clip( src_x, -16, s->mb_width * 16);
  522. src_y = av_clip( src_y, -16, s->mb_height * 16);
  523. }else{
  524. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  525. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  526. }
  527. srcY += src_y * s->linesize + src_x;
  528. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  529. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  530. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  531. srcY -= s->mspel * (1 + s->linesize);
  532. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  533. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  534. srcY = s->edge_emu_buffer;
  535. /* if we deal with range reduction we need to scale source blocks */
  536. if(v->rangeredfrm) {
  537. int i, j;
  538. uint8_t *src;
  539. src = srcY;
  540. for(j = 0; j < 9 + s->mspel*2; j++) {
  541. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  542. src += s->linesize;
  543. }
  544. }
  545. /* if we deal with intensity compensation we need to scale source blocks */
  546. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  547. int i, j;
  548. uint8_t *src;
  549. src = srcY;
  550. for(j = 0; j < 9 + s->mspel*2; j++) {
  551. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  552. src += s->linesize;
  553. }
  554. }
  555. srcY += s->mspel * (1 + s->linesize);
  556. }
  557. if(s->mspel) {
  558. dxy = ((my & 3) << 2) | (mx & 3);
  559. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  560. } else { // hpel mc - always used for luma
  561. dxy = (my & 2) | ((mx & 2) >> 1);
  562. if(!v->rnd)
  563. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  564. else
  565. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  566. }
  567. }
  568. static inline int median4(int a, int b, int c, int d)
  569. {
  570. if(a < b) {
  571. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  572. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  573. } else {
  574. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  575. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  576. }
  577. }
  578. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  579. */
  580. static void vc1_mc_4mv_chroma(VC1Context *v)
  581. {
  582. MpegEncContext *s = &v->s;
  583. DSPContext *dsp = &v->s.dsp;
  584. uint8_t *srcU, *srcV;
  585. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  586. int i, idx, tx = 0, ty = 0;
  587. int mvx[4], mvy[4], intra[4];
  588. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  589. if(!v->s.last_picture.data[0])return;
  590. if(s->flags & CODEC_FLAG_GRAY) return;
  591. for(i = 0; i < 4; i++) {
  592. mvx[i] = s->mv[0][i][0];
  593. mvy[i] = s->mv[0][i][1];
  594. intra[i] = v->mb_type[0][s->block_index[i]];
  595. }
  596. /* calculate chroma MV vector from four luma MVs */
  597. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  598. if(!idx) { // all blocks are inter
  599. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  600. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  601. } else if(count[idx] == 1) { // 3 inter blocks
  602. switch(idx) {
  603. case 0x1:
  604. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  605. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  606. break;
  607. case 0x2:
  608. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  609. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  610. break;
  611. case 0x4:
  612. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  613. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  614. break;
  615. case 0x8:
  616. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  617. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  618. break;
  619. }
  620. } else if(count[idx] == 2) {
  621. int t1 = 0, t2 = 0;
  622. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  623. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  624. tx = (mvx[t1] + mvx[t2]) / 2;
  625. ty = (mvy[t1] + mvy[t2]) / 2;
  626. } else {
  627. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  628. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  629. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  630. return; //no need to do MC for inter blocks
  631. }
  632. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  633. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  634. uvmx = (tx + ((tx&3) == 3)) >> 1;
  635. uvmy = (ty + ((ty&3) == 3)) >> 1;
  636. v->luma_mv[s->mb_x][0] = uvmx;
  637. v->luma_mv[s->mb_x][1] = uvmy;
  638. if(v->fastuvmc) {
  639. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  640. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  641. }
  642. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  643. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  644. if(v->profile != PROFILE_ADVANCED){
  645. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  646. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  647. }else{
  648. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  649. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  650. }
  651. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  652. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  653. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  654. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  655. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  656. s->dsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  657. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  658. s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  659. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  660. srcU = s->edge_emu_buffer;
  661. srcV = s->edge_emu_buffer + 16;
  662. /* if we deal with range reduction we need to scale source blocks */
  663. if(v->rangeredfrm) {
  664. int i, j;
  665. uint8_t *src, *src2;
  666. src = srcU; src2 = srcV;
  667. for(j = 0; j < 9; j++) {
  668. for(i = 0; i < 9; i++) {
  669. src[i] = ((src[i] - 128) >> 1) + 128;
  670. src2[i] = ((src2[i] - 128) >> 1) + 128;
  671. }
  672. src += s->uvlinesize;
  673. src2 += s->uvlinesize;
  674. }
  675. }
  676. /* if we deal with intensity compensation we need to scale source blocks */
  677. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  678. int i, j;
  679. uint8_t *src, *src2;
  680. src = srcU; src2 = srcV;
  681. for(j = 0; j < 9; j++) {
  682. for(i = 0; i < 9; i++) {
  683. src[i] = v->lutuv[src[i]];
  684. src2[i] = v->lutuv[src2[i]];
  685. }
  686. src += s->uvlinesize;
  687. src2 += s->uvlinesize;
  688. }
  689. }
  690. }
  691. /* Chroma MC always uses qpel bilinear */
  692. uvmx = (uvmx&3)<<1;
  693. uvmy = (uvmy&3)<<1;
  694. if(!v->rnd){
  695. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  696. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  697. }else{
  698. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  699. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  700. }
  701. }
  702. /***********************************************************************/
  703. /**
  704. * @name VC-1 Block-level functions
  705. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  706. * @{
  707. */
  708. /**
  709. * @def GET_MQUANT
  710. * @brief Get macroblock-level quantizer scale
  711. */
  712. #define GET_MQUANT() \
  713. if (v->dquantfrm) \
  714. { \
  715. int edges = 0; \
  716. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  717. { \
  718. if (v->dqbilevel) \
  719. { \
  720. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  721. } \
  722. else \
  723. { \
  724. mqdiff = get_bits(gb, 3); \
  725. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  726. else mquant = get_bits(gb, 5); \
  727. } \
  728. } \
  729. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  730. edges = 1 << v->dqsbedge; \
  731. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  732. edges = (3 << v->dqsbedge) % 15; \
  733. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  734. edges = 15; \
  735. if((edges&1) && !s->mb_x) \
  736. mquant = v->altpq; \
  737. if((edges&2) && s->first_slice_line) \
  738. mquant = v->altpq; \
  739. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  740. mquant = v->altpq; \
  741. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  742. mquant = v->altpq; \
  743. }
  744. /**
  745. * @def GET_MVDATA(_dmv_x, _dmv_y)
  746. * @brief Get MV differentials
  747. * @see MVDATA decoding from 8.3.5.2, p(1)20
  748. * @param _dmv_x Horizontal differential for decoded MV
  749. * @param _dmv_y Vertical differential for decoded MV
  750. */
  751. #define GET_MVDATA(_dmv_x, _dmv_y) \
  752. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  753. VC1_MV_DIFF_VLC_BITS, 2); \
  754. if (index > 36) \
  755. { \
  756. mb_has_coeffs = 1; \
  757. index -= 37; \
  758. } \
  759. else mb_has_coeffs = 0; \
  760. s->mb_intra = 0; \
  761. if (!index) { _dmv_x = _dmv_y = 0; } \
  762. else if (index == 35) \
  763. { \
  764. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  765. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  766. } \
  767. else if (index == 36) \
  768. { \
  769. _dmv_x = 0; \
  770. _dmv_y = 0; \
  771. s->mb_intra = 1; \
  772. } \
  773. else \
  774. { \
  775. index1 = index%6; \
  776. if (!s->quarter_sample && index1 == 5) val = 1; \
  777. else val = 0; \
  778. if(size_table[index1] - val > 0) \
  779. val = get_bits(gb, size_table[index1] - val); \
  780. else val = 0; \
  781. sign = 0 - (val&1); \
  782. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  783. \
  784. index1 = index/6; \
  785. if (!s->quarter_sample && index1 == 5) val = 1; \
  786. else val = 0; \
  787. if(size_table[index1] - val > 0) \
  788. val = get_bits(gb, size_table[index1] - val); \
  789. else val = 0; \
  790. sign = 0 - (val&1); \
  791. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  792. }
  793. /** Predict and set motion vector
  794. */
  795. static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  796. {
  797. MpegEncContext *s = &v->s;
  798. int xy, wrap, off = 0;
  799. int16_t *A, *B, *C;
  800. int px, py;
  801. int sum;
  802. /* scale MV difference to be quad-pel */
  803. dmv_x <<= 1 - s->quarter_sample;
  804. dmv_y <<= 1 - s->quarter_sample;
  805. wrap = s->b8_stride;
  806. xy = s->block_index[n];
  807. if(s->mb_intra){
  808. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  809. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  810. s->current_picture.motion_val[1][xy][0] = 0;
  811. s->current_picture.motion_val[1][xy][1] = 0;
  812. if(mv1) { /* duplicate motion data for 1-MV block */
  813. s->current_picture.motion_val[0][xy + 1][0] = 0;
  814. s->current_picture.motion_val[0][xy + 1][1] = 0;
  815. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  816. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  817. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  818. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  819. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  820. s->current_picture.motion_val[1][xy + 1][0] = 0;
  821. s->current_picture.motion_val[1][xy + 1][1] = 0;
  822. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  823. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  824. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  825. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  826. }
  827. return;
  828. }
  829. C = s->current_picture.motion_val[0][xy - 1];
  830. A = s->current_picture.motion_val[0][xy - wrap];
  831. if(mv1)
  832. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  833. else {
  834. //in 4-MV mode different blocks have different B predictor position
  835. switch(n){
  836. case 0:
  837. off = (s->mb_x > 0) ? -1 : 1;
  838. break;
  839. case 1:
  840. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  841. break;
  842. case 2:
  843. off = 1;
  844. break;
  845. case 3:
  846. off = -1;
  847. }
  848. }
  849. B = s->current_picture.motion_val[0][xy - wrap + off];
  850. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  851. if(s->mb_width == 1) {
  852. px = A[0];
  853. py = A[1];
  854. } else {
  855. px = mid_pred(A[0], B[0], C[0]);
  856. py = mid_pred(A[1], B[1], C[1]);
  857. }
  858. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  859. px = C[0];
  860. py = C[1];
  861. } else {
  862. px = py = 0;
  863. }
  864. /* Pullback MV as specified in 8.3.5.3.4 */
  865. {
  866. int qx, qy, X, Y;
  867. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  868. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  869. X = (s->mb_width << 6) - 4;
  870. Y = (s->mb_height << 6) - 4;
  871. if(mv1) {
  872. if(qx + px < -60) px = -60 - qx;
  873. if(qy + py < -60) py = -60 - qy;
  874. } else {
  875. if(qx + px < -28) px = -28 - qx;
  876. if(qy + py < -28) py = -28 - qy;
  877. }
  878. if(qx + px > X) px = X - qx;
  879. if(qy + py > Y) py = Y - qy;
  880. }
  881. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  882. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  883. if(is_intra[xy - wrap])
  884. sum = FFABS(px) + FFABS(py);
  885. else
  886. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  887. if(sum > 32) {
  888. if(get_bits1(&s->gb)) {
  889. px = A[0];
  890. py = A[1];
  891. } else {
  892. px = C[0];
  893. py = C[1];
  894. }
  895. } else {
  896. if(is_intra[xy - 1])
  897. sum = FFABS(px) + FFABS(py);
  898. else
  899. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  900. if(sum > 32) {
  901. if(get_bits1(&s->gb)) {
  902. px = A[0];
  903. py = A[1];
  904. } else {
  905. px = C[0];
  906. py = C[1];
  907. }
  908. }
  909. }
  910. }
  911. /* store MV using signed modulus of MV range defined in 4.11 */
  912. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  913. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  914. if(mv1) { /* duplicate motion data for 1-MV block */
  915. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  916. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  917. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  918. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  919. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  920. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  921. }
  922. }
  923. /** Motion compensation for direct or interpolated blocks in B-frames
  924. */
  925. static void vc1_interp_mc(VC1Context *v)
  926. {
  927. MpegEncContext *s = &v->s;
  928. DSPContext *dsp = &v->s.dsp;
  929. uint8_t *srcY, *srcU, *srcV;
  930. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  931. if(!v->s.next_picture.data[0])return;
  932. mx = s->mv[1][0][0];
  933. my = s->mv[1][0][1];
  934. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  935. uvmy = (my + ((my & 3) == 3)) >> 1;
  936. if(v->fastuvmc) {
  937. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  938. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  939. }
  940. srcY = s->next_picture.data[0];
  941. srcU = s->next_picture.data[1];
  942. srcV = s->next_picture.data[2];
  943. src_x = s->mb_x * 16 + (mx >> 2);
  944. src_y = s->mb_y * 16 + (my >> 2);
  945. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  946. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  947. if(v->profile != PROFILE_ADVANCED){
  948. src_x = av_clip( src_x, -16, s->mb_width * 16);
  949. src_y = av_clip( src_y, -16, s->mb_height * 16);
  950. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  951. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  952. }else{
  953. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  954. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  955. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  956. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  957. }
  958. srcY += src_y * s->linesize + src_x;
  959. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  960. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  961. /* for grayscale we should not try to read from unknown area */
  962. if(s->flags & CODEC_FLAG_GRAY) {
  963. srcU = s->edge_emu_buffer + 18 * s->linesize;
  964. srcV = s->edge_emu_buffer + 18 * s->linesize;
  965. }
  966. if(v->rangeredfrm
  967. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  968. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  969. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  970. srcY -= s->mspel * (1 + s->linesize);
  971. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  972. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  973. srcY = s->edge_emu_buffer;
  974. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  975. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  976. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  977. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  978. srcU = uvbuf;
  979. srcV = uvbuf + 16;
  980. /* if we deal with range reduction we need to scale source blocks */
  981. if(v->rangeredfrm) {
  982. int i, j;
  983. uint8_t *src, *src2;
  984. src = srcY;
  985. for(j = 0; j < 17 + s->mspel*2; j++) {
  986. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  987. src += s->linesize;
  988. }
  989. src = srcU; src2 = srcV;
  990. for(j = 0; j < 9; j++) {
  991. for(i = 0; i < 9; i++) {
  992. src[i] = ((src[i] - 128) >> 1) + 128;
  993. src2[i] = ((src2[i] - 128) >> 1) + 128;
  994. }
  995. src += s->uvlinesize;
  996. src2 += s->uvlinesize;
  997. }
  998. }
  999. srcY += s->mspel * (1 + s->linesize);
  1000. }
  1001. if(s->mspel) {
  1002. dxy = ((my & 3) << 2) | (mx & 3);
  1003. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  1004. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  1005. srcY += s->linesize * 8;
  1006. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  1007. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  1008. } else { // hpel mc
  1009. dxy = (my & 2) | ((mx & 2) >> 1);
  1010. if(!v->rnd)
  1011. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1012. else
  1013. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1014. }
  1015. if(s->flags & CODEC_FLAG_GRAY) return;
  1016. /* Chroma MC always uses qpel blilinear */
  1017. uvmx = (uvmx&3)<<1;
  1018. uvmy = (uvmy&3)<<1;
  1019. if(!v->rnd){
  1020. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1021. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1022. }else{
  1023. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1024. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1025. }
  1026. }
  1027. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1028. {
  1029. int n = bfrac;
  1030. #if B_FRACTION_DEN==256
  1031. if(inv)
  1032. n -= 256;
  1033. if(!qs)
  1034. return 2 * ((value * n + 255) >> 9);
  1035. return (value * n + 128) >> 8;
  1036. #else
  1037. if(inv)
  1038. n -= B_FRACTION_DEN;
  1039. if(!qs)
  1040. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1041. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1042. #endif
  1043. }
  1044. /** Reconstruct motion vector for B-frame and do motion compensation
  1045. */
  1046. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1047. {
  1048. if(v->use_ic) {
  1049. v->mv_mode2 = v->mv_mode;
  1050. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1051. }
  1052. if(direct) {
  1053. vc1_mc_1mv(v, 0);
  1054. vc1_interp_mc(v);
  1055. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1056. return;
  1057. }
  1058. if(mode == BMV_TYPE_INTERPOLATED) {
  1059. vc1_mc_1mv(v, 0);
  1060. vc1_interp_mc(v);
  1061. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1062. return;
  1063. }
  1064. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1065. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1066. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1067. }
  1068. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1069. {
  1070. MpegEncContext *s = &v->s;
  1071. int xy, wrap, off = 0;
  1072. int16_t *A, *B, *C;
  1073. int px, py;
  1074. int sum;
  1075. int r_x, r_y;
  1076. const uint8_t *is_intra = v->mb_type[0];
  1077. r_x = v->range_x;
  1078. r_y = v->range_y;
  1079. /* scale MV difference to be quad-pel */
  1080. dmv_x[0] <<= 1 - s->quarter_sample;
  1081. dmv_y[0] <<= 1 - s->quarter_sample;
  1082. dmv_x[1] <<= 1 - s->quarter_sample;
  1083. dmv_y[1] <<= 1 - s->quarter_sample;
  1084. wrap = s->b8_stride;
  1085. xy = s->block_index[0];
  1086. if(s->mb_intra) {
  1087. s->current_picture.motion_val[0][xy][0] =
  1088. s->current_picture.motion_val[0][xy][1] =
  1089. s->current_picture.motion_val[1][xy][0] =
  1090. s->current_picture.motion_val[1][xy][1] = 0;
  1091. return;
  1092. }
  1093. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1094. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1095. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1096. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1097. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1098. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1099. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1100. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1101. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1102. if(direct) {
  1103. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1104. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1105. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1106. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1107. return;
  1108. }
  1109. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1110. C = s->current_picture.motion_val[0][xy - 2];
  1111. A = s->current_picture.motion_val[0][xy - wrap*2];
  1112. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1113. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1114. if(!s->mb_x) C[0] = C[1] = 0;
  1115. if(!s->first_slice_line) { // predictor A is not out of bounds
  1116. if(s->mb_width == 1) {
  1117. px = A[0];
  1118. py = A[1];
  1119. } else {
  1120. px = mid_pred(A[0], B[0], C[0]);
  1121. py = mid_pred(A[1], B[1], C[1]);
  1122. }
  1123. } else if(s->mb_x) { // predictor C is not out of bounds
  1124. px = C[0];
  1125. py = C[1];
  1126. } else {
  1127. px = py = 0;
  1128. }
  1129. /* Pullback MV as specified in 8.3.5.3.4 */
  1130. {
  1131. int qx, qy, X, Y;
  1132. if(v->profile < PROFILE_ADVANCED) {
  1133. qx = (s->mb_x << 5);
  1134. qy = (s->mb_y << 5);
  1135. X = (s->mb_width << 5) - 4;
  1136. Y = (s->mb_height << 5) - 4;
  1137. if(qx + px < -28) px = -28 - qx;
  1138. if(qy + py < -28) py = -28 - qy;
  1139. if(qx + px > X) px = X - qx;
  1140. if(qy + py > Y) py = Y - qy;
  1141. } else {
  1142. qx = (s->mb_x << 6);
  1143. qy = (s->mb_y << 6);
  1144. X = (s->mb_width << 6) - 4;
  1145. Y = (s->mb_height << 6) - 4;
  1146. if(qx + px < -60) px = -60 - qx;
  1147. if(qy + py < -60) py = -60 - qy;
  1148. if(qx + px > X) px = X - qx;
  1149. if(qy + py > Y) py = Y - qy;
  1150. }
  1151. }
  1152. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1153. if(0 && !s->first_slice_line && s->mb_x) {
  1154. if(is_intra[xy - wrap])
  1155. sum = FFABS(px) + FFABS(py);
  1156. else
  1157. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1158. if(sum > 32) {
  1159. if(get_bits1(&s->gb)) {
  1160. px = A[0];
  1161. py = A[1];
  1162. } else {
  1163. px = C[0];
  1164. py = C[1];
  1165. }
  1166. } else {
  1167. if(is_intra[xy - 2])
  1168. sum = FFABS(px) + FFABS(py);
  1169. else
  1170. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1171. if(sum > 32) {
  1172. if(get_bits1(&s->gb)) {
  1173. px = A[0];
  1174. py = A[1];
  1175. } else {
  1176. px = C[0];
  1177. py = C[1];
  1178. }
  1179. }
  1180. }
  1181. }
  1182. /* store MV using signed modulus of MV range defined in 4.11 */
  1183. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1184. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1185. }
  1186. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1187. C = s->current_picture.motion_val[1][xy - 2];
  1188. A = s->current_picture.motion_val[1][xy - wrap*2];
  1189. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1190. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1191. if(!s->mb_x) C[0] = C[1] = 0;
  1192. if(!s->first_slice_line) { // predictor A is not out of bounds
  1193. if(s->mb_width == 1) {
  1194. px = A[0];
  1195. py = A[1];
  1196. } else {
  1197. px = mid_pred(A[0], B[0], C[0]);
  1198. py = mid_pred(A[1], B[1], C[1]);
  1199. }
  1200. } else if(s->mb_x) { // predictor C is not out of bounds
  1201. px = C[0];
  1202. py = C[1];
  1203. } else {
  1204. px = py = 0;
  1205. }
  1206. /* Pullback MV as specified in 8.3.5.3.4 */
  1207. {
  1208. int qx, qy, X, Y;
  1209. if(v->profile < PROFILE_ADVANCED) {
  1210. qx = (s->mb_x << 5);
  1211. qy = (s->mb_y << 5);
  1212. X = (s->mb_width << 5) - 4;
  1213. Y = (s->mb_height << 5) - 4;
  1214. if(qx + px < -28) px = -28 - qx;
  1215. if(qy + py < -28) py = -28 - qy;
  1216. if(qx + px > X) px = X - qx;
  1217. if(qy + py > Y) py = Y - qy;
  1218. } else {
  1219. qx = (s->mb_x << 6);
  1220. qy = (s->mb_y << 6);
  1221. X = (s->mb_width << 6) - 4;
  1222. Y = (s->mb_height << 6) - 4;
  1223. if(qx + px < -60) px = -60 - qx;
  1224. if(qy + py < -60) py = -60 - qy;
  1225. if(qx + px > X) px = X - qx;
  1226. if(qy + py > Y) py = Y - qy;
  1227. }
  1228. }
  1229. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1230. if(0 && !s->first_slice_line && s->mb_x) {
  1231. if(is_intra[xy - wrap])
  1232. sum = FFABS(px) + FFABS(py);
  1233. else
  1234. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1235. if(sum > 32) {
  1236. if(get_bits1(&s->gb)) {
  1237. px = A[0];
  1238. py = A[1];
  1239. } else {
  1240. px = C[0];
  1241. py = C[1];
  1242. }
  1243. } else {
  1244. if(is_intra[xy - 2])
  1245. sum = FFABS(px) + FFABS(py);
  1246. else
  1247. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1248. if(sum > 32) {
  1249. if(get_bits1(&s->gb)) {
  1250. px = A[0];
  1251. py = A[1];
  1252. } else {
  1253. px = C[0];
  1254. py = C[1];
  1255. }
  1256. }
  1257. }
  1258. }
  1259. /* store MV using signed modulus of MV range defined in 4.11 */
  1260. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1261. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1262. }
  1263. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1264. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1265. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1266. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1267. }
  1268. /** Get predicted DC value for I-frames only
  1269. * prediction dir: left=0, top=1
  1270. * @param s MpegEncContext
  1271. * @param overlap flag indicating that overlap filtering is used
  1272. * @param pq integer part of picture quantizer
  1273. * @param[in] n block index in the current MB
  1274. * @param dc_val_ptr Pointer to DC predictor
  1275. * @param dir_ptr Prediction direction for use in AC prediction
  1276. */
  1277. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1278. int16_t **dc_val_ptr, int *dir_ptr)
  1279. {
  1280. int a, b, c, wrap, pred, scale;
  1281. int16_t *dc_val;
  1282. static const uint16_t dcpred[32] = {
  1283. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1284. 114, 102, 93, 85, 79, 73, 68, 64,
  1285. 60, 57, 54, 51, 49, 47, 45, 43,
  1286. 41, 39, 38, 37, 35, 34, 33
  1287. };
  1288. /* find prediction - wmv3_dc_scale always used here in fact */
  1289. if (n < 4) scale = s->y_dc_scale;
  1290. else scale = s->c_dc_scale;
  1291. wrap = s->block_wrap[n];
  1292. dc_val= s->dc_val[0] + s->block_index[n];
  1293. /* B A
  1294. * C X
  1295. */
  1296. c = dc_val[ - 1];
  1297. b = dc_val[ - 1 - wrap];
  1298. a = dc_val[ - wrap];
  1299. if (pq < 9 || !overlap)
  1300. {
  1301. /* Set outer values */
  1302. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1303. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1304. }
  1305. else
  1306. {
  1307. /* Set outer values */
  1308. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1309. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1310. }
  1311. if (abs(a - b) <= abs(b - c)) {
  1312. pred = c;
  1313. *dir_ptr = 1;//left
  1314. } else {
  1315. pred = a;
  1316. *dir_ptr = 0;//top
  1317. }
  1318. /* update predictor */
  1319. *dc_val_ptr = &dc_val[0];
  1320. return pred;
  1321. }
  1322. /** Get predicted DC value
  1323. * prediction dir: left=0, top=1
  1324. * @param s MpegEncContext
  1325. * @param overlap flag indicating that overlap filtering is used
  1326. * @param pq integer part of picture quantizer
  1327. * @param[in] n block index in the current MB
  1328. * @param a_avail flag indicating top block availability
  1329. * @param c_avail flag indicating left block availability
  1330. * @param dc_val_ptr Pointer to DC predictor
  1331. * @param dir_ptr Prediction direction for use in AC prediction
  1332. */
  1333. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1334. int a_avail, int c_avail,
  1335. int16_t **dc_val_ptr, int *dir_ptr)
  1336. {
  1337. int a, b, c, wrap, pred;
  1338. int16_t *dc_val;
  1339. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1340. int q1, q2 = 0;
  1341. wrap = s->block_wrap[n];
  1342. dc_val= s->dc_val[0] + s->block_index[n];
  1343. /* B A
  1344. * C X
  1345. */
  1346. c = dc_val[ - 1];
  1347. b = dc_val[ - 1 - wrap];
  1348. a = dc_val[ - wrap];
  1349. /* scale predictors if needed */
  1350. q1 = s->current_picture.qscale_table[mb_pos];
  1351. if(c_avail && (n!= 1 && n!=3)) {
  1352. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1353. if(q2 && q2 != q1)
  1354. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1355. }
  1356. if(a_avail && (n!= 2 && n!=3)) {
  1357. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1358. if(q2 && q2 != q1)
  1359. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1360. }
  1361. if(a_avail && c_avail && (n!=3)) {
  1362. int off = mb_pos;
  1363. if(n != 1) off--;
  1364. if(n != 2) off -= s->mb_stride;
  1365. q2 = s->current_picture.qscale_table[off];
  1366. if(q2 && q2 != q1)
  1367. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1368. }
  1369. if(a_avail && c_avail) {
  1370. if(abs(a - b) <= abs(b - c)) {
  1371. pred = c;
  1372. *dir_ptr = 1;//left
  1373. } else {
  1374. pred = a;
  1375. *dir_ptr = 0;//top
  1376. }
  1377. } else if(a_avail) {
  1378. pred = a;
  1379. *dir_ptr = 0;//top
  1380. } else if(c_avail) {
  1381. pred = c;
  1382. *dir_ptr = 1;//left
  1383. } else {
  1384. pred = 0;
  1385. *dir_ptr = 1;//left
  1386. }
  1387. /* update predictor */
  1388. *dc_val_ptr = &dc_val[0];
  1389. return pred;
  1390. }
  1391. /** @} */ // Block group
  1392. /**
  1393. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  1394. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1395. * @{
  1396. */
  1397. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1398. {
  1399. int xy, wrap, pred, a, b, c;
  1400. xy = s->block_index[n];
  1401. wrap = s->b8_stride;
  1402. /* B C
  1403. * A X
  1404. */
  1405. a = s->coded_block[xy - 1 ];
  1406. b = s->coded_block[xy - 1 - wrap];
  1407. c = s->coded_block[xy - wrap];
  1408. if (b == c) {
  1409. pred = a;
  1410. } else {
  1411. pred = c;
  1412. }
  1413. /* store value */
  1414. *coded_block_ptr = &s->coded_block[xy];
  1415. return pred;
  1416. }
  1417. /**
  1418. * Decode one AC coefficient
  1419. * @param v The VC1 context
  1420. * @param last Last coefficient
  1421. * @param skip How much zero coefficients to skip
  1422. * @param value Decoded AC coefficient value
  1423. * @param codingset set of VLC to decode data
  1424. * @see 8.1.3.4
  1425. */
  1426. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1427. {
  1428. GetBitContext *gb = &v->s.gb;
  1429. int index, escape, run = 0, level = 0, lst = 0;
  1430. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1431. if (index != vc1_ac_sizes[codingset] - 1) {
  1432. run = vc1_index_decode_table[codingset][index][0];
  1433. level = vc1_index_decode_table[codingset][index][1];
  1434. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  1435. if(get_bits1(gb))
  1436. level = -level;
  1437. } else {
  1438. escape = decode210(gb);
  1439. if (escape != 2) {
  1440. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1441. run = vc1_index_decode_table[codingset][index][0];
  1442. level = vc1_index_decode_table[codingset][index][1];
  1443. lst = index >= vc1_last_decode_table[codingset];
  1444. if(escape == 0) {
  1445. if(lst)
  1446. level += vc1_last_delta_level_table[codingset][run];
  1447. else
  1448. level += vc1_delta_level_table[codingset][run];
  1449. } else {
  1450. if(lst)
  1451. run += vc1_last_delta_run_table[codingset][level] + 1;
  1452. else
  1453. run += vc1_delta_run_table[codingset][level] + 1;
  1454. }
  1455. if(get_bits1(gb))
  1456. level = -level;
  1457. } else {
  1458. int sign;
  1459. lst = get_bits1(gb);
  1460. if(v->s.esc3_level_length == 0) {
  1461. if(v->pq < 8 || v->dquantfrm) { // table 59
  1462. v->s.esc3_level_length = get_bits(gb, 3);
  1463. if(!v->s.esc3_level_length)
  1464. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1465. } else { //table 60
  1466. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  1467. }
  1468. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1469. }
  1470. run = get_bits(gb, v->s.esc3_run_length);
  1471. sign = get_bits1(gb);
  1472. level = get_bits(gb, v->s.esc3_level_length);
  1473. if(sign)
  1474. level = -level;
  1475. }
  1476. }
  1477. *last = lst;
  1478. *skip = run;
  1479. *value = level;
  1480. }
  1481. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1482. * @param v VC1Context
  1483. * @param block block to decode
  1484. * @param[in] n subblock index
  1485. * @param coded are AC coeffs present or not
  1486. * @param codingset set of VLC to decode data
  1487. */
  1488. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1489. {
  1490. GetBitContext *gb = &v->s.gb;
  1491. MpegEncContext *s = &v->s;
  1492. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1493. int i;
  1494. int16_t *dc_val;
  1495. int16_t *ac_val, *ac_val2;
  1496. int dcdiff;
  1497. /* Get DC differential */
  1498. if (n < 4) {
  1499. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1500. } else {
  1501. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1502. }
  1503. if (dcdiff < 0){
  1504. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1505. return -1;
  1506. }
  1507. if (dcdiff)
  1508. {
  1509. if (dcdiff == 119 /* ESC index value */)
  1510. {
  1511. /* TODO: Optimize */
  1512. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1513. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1514. else dcdiff = get_bits(gb, 8);
  1515. }
  1516. else
  1517. {
  1518. if (v->pq == 1)
  1519. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1520. else if (v->pq == 2)
  1521. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1522. }
  1523. if (get_bits1(gb))
  1524. dcdiff = -dcdiff;
  1525. }
  1526. /* Prediction */
  1527. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1528. *dc_val = dcdiff;
  1529. /* Store the quantized DC coeff, used for prediction */
  1530. if (n < 4) {
  1531. block[0] = dcdiff * s->y_dc_scale;
  1532. } else {
  1533. block[0] = dcdiff * s->c_dc_scale;
  1534. }
  1535. /* Skip ? */
  1536. if (!coded) {
  1537. goto not_coded;
  1538. }
  1539. //AC Decoding
  1540. i = 1;
  1541. {
  1542. int last = 0, skip, value;
  1543. const uint8_t *zz_table;
  1544. int scale;
  1545. int k;
  1546. scale = v->pq * 2 + v->halfpq;
  1547. if(v->s.ac_pred) {
  1548. if(!dc_pred_dir)
  1549. zz_table = v->zz_8x8[2];
  1550. else
  1551. zz_table = v->zz_8x8[3];
  1552. } else
  1553. zz_table = v->zz_8x8[1];
  1554. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1555. ac_val2 = ac_val;
  1556. if(dc_pred_dir) //left
  1557. ac_val -= 16;
  1558. else //top
  1559. ac_val -= 16 * s->block_wrap[n];
  1560. while (!last) {
  1561. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1562. i += skip;
  1563. if(i > 63)
  1564. break;
  1565. block[zz_table[i++]] = value;
  1566. }
  1567. /* apply AC prediction if needed */
  1568. if(s->ac_pred) {
  1569. if(dc_pred_dir) { //left
  1570. for(k = 1; k < 8; k++)
  1571. block[k << v->left_blk_sh] += ac_val[k];
  1572. } else { //top
  1573. for(k = 1; k < 8; k++)
  1574. block[k << v->top_blk_sh] += ac_val[k + 8];
  1575. }
  1576. }
  1577. /* save AC coeffs for further prediction */
  1578. for(k = 1; k < 8; k++) {
  1579. ac_val2[k] = block[k << v->left_blk_sh];
  1580. ac_val2[k + 8] = block[k << v->top_blk_sh];
  1581. }
  1582. /* scale AC coeffs */
  1583. for(k = 1; k < 64; k++)
  1584. if(block[k]) {
  1585. block[k] *= scale;
  1586. if(!v->pquantizer)
  1587. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1588. }
  1589. if(s->ac_pred) i = 63;
  1590. }
  1591. not_coded:
  1592. if(!coded) {
  1593. int k, scale;
  1594. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1595. ac_val2 = ac_val;
  1596. i = 0;
  1597. scale = v->pq * 2 + v->halfpq;
  1598. memset(ac_val2, 0, 16 * 2);
  1599. if(dc_pred_dir) {//left
  1600. ac_val -= 16;
  1601. if(s->ac_pred)
  1602. memcpy(ac_val2, ac_val, 8 * 2);
  1603. } else {//top
  1604. ac_val -= 16 * s->block_wrap[n];
  1605. if(s->ac_pred)
  1606. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1607. }
  1608. /* apply AC prediction if needed */
  1609. if(s->ac_pred) {
  1610. if(dc_pred_dir) { //left
  1611. for(k = 1; k < 8; k++) {
  1612. block[k << v->left_blk_sh] = ac_val[k] * scale;
  1613. if(!v->pquantizer && block[k << v->left_blk_sh])
  1614. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
  1615. }
  1616. } else { //top
  1617. for(k = 1; k < 8; k++) {
  1618. block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
  1619. if(!v->pquantizer && block[k << v->top_blk_sh])
  1620. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
  1621. }
  1622. }
  1623. i = 63;
  1624. }
  1625. }
  1626. s->block_last_index[n] = i;
  1627. return 0;
  1628. }
  1629. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1630. * @param v VC1Context
  1631. * @param block block to decode
  1632. * @param[in] n subblock number
  1633. * @param coded are AC coeffs present or not
  1634. * @param codingset set of VLC to decode data
  1635. * @param mquant quantizer value for this macroblock
  1636. */
  1637. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  1638. {
  1639. GetBitContext *gb = &v->s.gb;
  1640. MpegEncContext *s = &v->s;
  1641. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1642. int i;
  1643. int16_t *dc_val;
  1644. int16_t *ac_val, *ac_val2;
  1645. int dcdiff;
  1646. int a_avail = v->a_avail, c_avail = v->c_avail;
  1647. int use_pred = s->ac_pred;
  1648. int scale;
  1649. int q1, q2 = 0;
  1650. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1651. /* Get DC differential */
  1652. if (n < 4) {
  1653. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1654. } else {
  1655. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1656. }
  1657. if (dcdiff < 0){
  1658. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1659. return -1;
  1660. }
  1661. if (dcdiff)
  1662. {
  1663. if (dcdiff == 119 /* ESC index value */)
  1664. {
  1665. /* TODO: Optimize */
  1666. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1667. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1668. else dcdiff = get_bits(gb, 8);
  1669. }
  1670. else
  1671. {
  1672. if (mquant == 1)
  1673. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1674. else if (mquant == 2)
  1675. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1676. }
  1677. if (get_bits1(gb))
  1678. dcdiff = -dcdiff;
  1679. }
  1680. /* Prediction */
  1681. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  1682. *dc_val = dcdiff;
  1683. /* Store the quantized DC coeff, used for prediction */
  1684. if (n < 4) {
  1685. block[0] = dcdiff * s->y_dc_scale;
  1686. } else {
  1687. block[0] = dcdiff * s->c_dc_scale;
  1688. }
  1689. //AC Decoding
  1690. i = 1;
  1691. /* check if AC is needed at all */
  1692. if(!a_avail && !c_avail) use_pred = 0;
  1693. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1694. ac_val2 = ac_val;
  1695. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  1696. if(dc_pred_dir) //left
  1697. ac_val -= 16;
  1698. else //top
  1699. ac_val -= 16 * s->block_wrap[n];
  1700. q1 = s->current_picture.qscale_table[mb_pos];
  1701. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1702. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1703. if(dc_pred_dir && n==1) q2 = q1;
  1704. if(!dc_pred_dir && n==2) q2 = q1;
  1705. if(n==3) q2 = q1;
  1706. if(coded) {
  1707. int last = 0, skip, value;
  1708. const uint8_t *zz_table;
  1709. int k;
  1710. if(v->s.ac_pred) {
  1711. if(!dc_pred_dir)
  1712. zz_table = v->zz_8x8[2];
  1713. else
  1714. zz_table = v->zz_8x8[3];
  1715. } else
  1716. zz_table = v->zz_8x8[1];
  1717. while (!last) {
  1718. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1719. i += skip;
  1720. if(i > 63)
  1721. break;
  1722. block[zz_table[i++]] = value;
  1723. }
  1724. /* apply AC prediction if needed */
  1725. if(use_pred) {
  1726. /* scale predictors if needed*/
  1727. if(q2 && q1!=q2) {
  1728. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1729. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1730. if(dc_pred_dir) { //left
  1731. for(k = 1; k < 8; k++)
  1732. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1733. } else { //top
  1734. for(k = 1; k < 8; k++)
  1735. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1736. }
  1737. } else {
  1738. if(dc_pred_dir) { //left
  1739. for(k = 1; k < 8; k++)
  1740. block[k << v->left_blk_sh] += ac_val[k];
  1741. } else { //top
  1742. for(k = 1; k < 8; k++)
  1743. block[k << v->top_blk_sh] += ac_val[k + 8];
  1744. }
  1745. }
  1746. }
  1747. /* save AC coeffs for further prediction */
  1748. for(k = 1; k < 8; k++) {
  1749. ac_val2[k ] = block[k << v->left_blk_sh];
  1750. ac_val2[k + 8] = block[k << v->top_blk_sh];
  1751. }
  1752. /* scale AC coeffs */
  1753. for(k = 1; k < 64; k++)
  1754. if(block[k]) {
  1755. block[k] *= scale;
  1756. if(!v->pquantizer)
  1757. block[k] += (block[k] < 0) ? -mquant : mquant;
  1758. }
  1759. if(use_pred) i = 63;
  1760. } else { // no AC coeffs
  1761. int k;
  1762. memset(ac_val2, 0, 16 * 2);
  1763. if(dc_pred_dir) {//left
  1764. if(use_pred) {
  1765. memcpy(ac_val2, ac_val, 8 * 2);
  1766. if(q2 && q1!=q2) {
  1767. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1768. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1769. for(k = 1; k < 8; k++)
  1770. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1771. }
  1772. }
  1773. } else {//top
  1774. if(use_pred) {
  1775. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1776. if(q2 && q1!=q2) {
  1777. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1778. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1779. for(k = 1; k < 8; k++)
  1780. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1781. }
  1782. }
  1783. }
  1784. /* apply AC prediction if needed */
  1785. if(use_pred) {
  1786. if(dc_pred_dir) { //left
  1787. for(k = 1; k < 8; k++) {
  1788. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  1789. if(!v->pquantizer && block[k << v->left_blk_sh])
  1790. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  1791. }
  1792. } else { //top
  1793. for(k = 1; k < 8; k++) {
  1794. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  1795. if(!v->pquantizer && block[k << v->top_blk_sh])
  1796. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  1797. }
  1798. }
  1799. i = 63;
  1800. }
  1801. }
  1802. s->block_last_index[n] = i;
  1803. return 0;
  1804. }
  1805. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1806. * @param v VC1Context
  1807. * @param block block to decode
  1808. * @param[in] n subblock index
  1809. * @param coded are AC coeffs present or not
  1810. * @param mquant block quantizer
  1811. * @param codingset set of VLC to decode data
  1812. */
  1813. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1814. {
  1815. GetBitContext *gb = &v->s.gb;
  1816. MpegEncContext *s = &v->s;
  1817. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1818. int i;
  1819. int16_t *dc_val;
  1820. int16_t *ac_val, *ac_val2;
  1821. int dcdiff;
  1822. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1823. int a_avail = v->a_avail, c_avail = v->c_avail;
  1824. int use_pred = s->ac_pred;
  1825. int scale;
  1826. int q1, q2 = 0;
  1827. s->dsp.clear_block(block);
  1828. /* XXX: Guard against dumb values of mquant */
  1829. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1830. /* Set DC scale - y and c use the same */
  1831. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1832. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1833. /* Get DC differential */
  1834. if (n < 4) {
  1835. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1836. } else {
  1837. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1838. }
  1839. if (dcdiff < 0){
  1840. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1841. return -1;
  1842. }
  1843. if (dcdiff)
  1844. {
  1845. if (dcdiff == 119 /* ESC index value */)
  1846. {
  1847. /* TODO: Optimize */
  1848. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1849. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1850. else dcdiff = get_bits(gb, 8);
  1851. }
  1852. else
  1853. {
  1854. if (mquant == 1)
  1855. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1856. else if (mquant == 2)
  1857. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1858. }
  1859. if (get_bits1(gb))
  1860. dcdiff = -dcdiff;
  1861. }
  1862. /* Prediction */
  1863. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1864. *dc_val = dcdiff;
  1865. /* Store the quantized DC coeff, used for prediction */
  1866. if (n < 4) {
  1867. block[0] = dcdiff * s->y_dc_scale;
  1868. } else {
  1869. block[0] = dcdiff * s->c_dc_scale;
  1870. }
  1871. //AC Decoding
  1872. i = 1;
  1873. /* check if AC is needed at all and adjust direction if needed */
  1874. if(!a_avail) dc_pred_dir = 1;
  1875. if(!c_avail) dc_pred_dir = 0;
  1876. if(!a_avail && !c_avail) use_pred = 0;
  1877. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1878. ac_val2 = ac_val;
  1879. scale = mquant * 2 + v->halfpq;
  1880. if(dc_pred_dir) //left
  1881. ac_val -= 16;
  1882. else //top
  1883. ac_val -= 16 * s->block_wrap[n];
  1884. q1 = s->current_picture.qscale_table[mb_pos];
  1885. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1886. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1887. if(dc_pred_dir && n==1) q2 = q1;
  1888. if(!dc_pred_dir && n==2) q2 = q1;
  1889. if(n==3) q2 = q1;
  1890. if(coded) {
  1891. int last = 0, skip, value;
  1892. int k;
  1893. while (!last) {
  1894. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1895. i += skip;
  1896. if(i > 63)
  1897. break;
  1898. block[v->zz_8x8[0][i++]] = value;
  1899. }
  1900. /* apply AC prediction if needed */
  1901. if(use_pred) {
  1902. /* scale predictors if needed*/
  1903. if(q2 && q1!=q2) {
  1904. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1905. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1906. if(dc_pred_dir) { //left
  1907. for(k = 1; k < 8; k++)
  1908. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1909. } else { //top
  1910. for(k = 1; k < 8; k++)
  1911. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1912. }
  1913. } else {
  1914. if(dc_pred_dir) { //left
  1915. for(k = 1; k < 8; k++)
  1916. block[k << v->left_blk_sh] += ac_val[k];
  1917. } else { //top
  1918. for(k = 1; k < 8; k++)
  1919. block[k << v->top_blk_sh] += ac_val[k + 8];
  1920. }
  1921. }
  1922. }
  1923. /* save AC coeffs for further prediction */
  1924. for(k = 1; k < 8; k++) {
  1925. ac_val2[k ] = block[k << v->left_blk_sh];
  1926. ac_val2[k + 8] = block[k << v->top_blk_sh];
  1927. }
  1928. /* scale AC coeffs */
  1929. for(k = 1; k < 64; k++)
  1930. if(block[k]) {
  1931. block[k] *= scale;
  1932. if(!v->pquantizer)
  1933. block[k] += (block[k] < 0) ? -mquant : mquant;
  1934. }
  1935. if(use_pred) i = 63;
  1936. } else { // no AC coeffs
  1937. int k;
  1938. memset(ac_val2, 0, 16 * 2);
  1939. if(dc_pred_dir) {//left
  1940. if(use_pred) {
  1941. memcpy(ac_val2, ac_val, 8 * 2);
  1942. if(q2 && q1!=q2) {
  1943. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1944. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1945. for(k = 1; k < 8; k++)
  1946. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1947. }
  1948. }
  1949. } else {//top
  1950. if(use_pred) {
  1951. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1952. if(q2 && q1!=q2) {
  1953. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1954. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1955. for(k = 1; k < 8; k++)
  1956. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1957. }
  1958. }
  1959. }
  1960. /* apply AC prediction if needed */
  1961. if(use_pred) {
  1962. if(dc_pred_dir) { //left
  1963. for(k = 1; k < 8; k++) {
  1964. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  1965. if(!v->pquantizer && block[k << v->left_blk_sh])
  1966. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  1967. }
  1968. } else { //top
  1969. for(k = 1; k < 8; k++) {
  1970. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  1971. if(!v->pquantizer && block[k << v->top_blk_sh])
  1972. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  1973. }
  1974. }
  1975. i = 63;
  1976. }
  1977. }
  1978. s->block_last_index[n] = i;
  1979. return 0;
  1980. }
  1981. /** Decode P block
  1982. */
  1983. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  1984. uint8_t *dst, int linesize, int skip_block, int *ttmb_out)
  1985. {
  1986. MpegEncContext *s = &v->s;
  1987. GetBitContext *gb = &s->gb;
  1988. int i, j;
  1989. int subblkpat = 0;
  1990. int scale, off, idx, last, skip, value;
  1991. int ttblk = ttmb & 7;
  1992. int pat = 0;
  1993. s->dsp.clear_block(block);
  1994. if(ttmb == -1) {
  1995. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1996. }
  1997. if(ttblk == TT_4X4) {
  1998. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1999. }
  2000. if((ttblk != TT_8X8 && ttblk != TT_4X4)
  2001. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  2002. || (!v->res_rtm_flag && !first_block))) {
  2003. subblkpat = decode012(gb);
  2004. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2005. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2006. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2007. }
  2008. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2009. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2010. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2011. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2012. ttblk = TT_8X4;
  2013. }
  2014. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2015. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2016. ttblk = TT_4X8;
  2017. }
  2018. switch(ttblk) {
  2019. case TT_8X8:
  2020. pat = 0xF;
  2021. i = 0;
  2022. last = 0;
  2023. while (!last) {
  2024. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2025. i += skip;
  2026. if(i > 63)
  2027. break;
  2028. idx = v->zz_8x8[0][i++];
  2029. block[idx] = value * scale;
  2030. if(!v->pquantizer)
  2031. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2032. }
  2033. if(!skip_block){
  2034. if(i==1)
  2035. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  2036. else{
  2037. v->vc1dsp.vc1_inv_trans_8x8(block);
  2038. s->dsp.add_pixels_clamped(block, dst, linesize);
  2039. }
  2040. }
  2041. break;
  2042. case TT_4X4:
  2043. pat = ~subblkpat & 0xF;
  2044. for(j = 0; j < 4; j++) {
  2045. last = subblkpat & (1 << (3 - j));
  2046. i = 0;
  2047. off = (j & 1) * 4 + (j & 2) * 16;
  2048. while (!last) {
  2049. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2050. i += skip;
  2051. if(i > 15)
  2052. break;
  2053. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2054. block[idx + off] = value * scale;
  2055. if(!v->pquantizer)
  2056. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2057. }
  2058. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2059. if(i==1)
  2060. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2061. else
  2062. v->vc1dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2063. }
  2064. }
  2065. break;
  2066. case TT_8X4:
  2067. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2068. for(j = 0; j < 2; j++) {
  2069. last = subblkpat & (1 << (1 - j));
  2070. i = 0;
  2071. off = j * 32;
  2072. while (!last) {
  2073. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2074. i += skip;
  2075. if(i > 31)
  2076. break;
  2077. idx = v->zz_8x4[i++]+off;
  2078. block[idx] = value * scale;
  2079. if(!v->pquantizer)
  2080. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2081. }
  2082. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2083. if(i==1)
  2084. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off);
  2085. else
  2086. v->vc1dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2087. }
  2088. }
  2089. break;
  2090. case TT_4X8:
  2091. pat = ~(subblkpat*5) & 0xF;
  2092. for(j = 0; j < 2; j++) {
  2093. last = subblkpat & (1 << (1 - j));
  2094. i = 0;
  2095. off = j * 4;
  2096. while (!last) {
  2097. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2098. i += skip;
  2099. if(i > 31)
  2100. break;
  2101. idx = v->zz_4x8[i++]+off;
  2102. block[idx] = value * scale;
  2103. if(!v->pquantizer)
  2104. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2105. }
  2106. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2107. if(i==1)
  2108. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off);
  2109. else
  2110. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2111. }
  2112. }
  2113. break;
  2114. }
  2115. if (ttmb_out)
  2116. *ttmb_out |= ttblk << (n * 4);
  2117. return pat;
  2118. }
  2119. /** @} */ // Macroblock group
  2120. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  2121. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2122. static av_always_inline void vc1_apply_p_v_loop_filter(VC1Context *v, int block_num)
  2123. {
  2124. MpegEncContext *s = &v->s;
  2125. int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
  2126. block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
  2127. mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
  2128. block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
  2129. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  2130. uint8_t *dst;
  2131. if(block_num > 3) {
  2132. dst = s->dest[block_num - 3];
  2133. } else {
  2134. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
  2135. }
  2136. if (s->mb_y != s->mb_height || block_num < 2) {
  2137. int16_t (*mv)[2];
  2138. int mv_stride;
  2139. if(block_num > 3) {
  2140. bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
  2141. bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
  2142. mv = &v->luma_mv[s->mb_x - s->mb_stride];
  2143. mv_stride = s->mb_stride;
  2144. } else {
  2145. bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4)) :
  2146. (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
  2147. bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4)) :
  2148. (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
  2149. mv_stride = s->b8_stride;
  2150. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
  2151. }
  2152. if (bottom_is_intra & 1 || block_is_intra & 1 ||
  2153. mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
  2154. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  2155. } else {
  2156. idx = ((bottom_cbp >> 2) | block_cbp) & 3;
  2157. if(idx == 3) {
  2158. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  2159. } else if (idx) {
  2160. if (idx == 1)
  2161. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  2162. else
  2163. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  2164. }
  2165. }
  2166. }
  2167. dst -= 4 * linesize;
  2168. ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xf;
  2169. if (ttblk == TT_4X4 || ttblk == TT_8X4) {
  2170. idx = (block_cbp | (block_cbp >> 2)) & 3;
  2171. if (idx == 3) {
  2172. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  2173. } else if (idx) {
  2174. if (idx == 1)
  2175. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  2176. else
  2177. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  2178. }
  2179. }
  2180. }
  2181. static av_always_inline void vc1_apply_p_h_loop_filter(VC1Context *v, int block_num)
  2182. {
  2183. MpegEncContext *s = &v->s;
  2184. int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
  2185. block_cbp = mb_cbp >> (block_num * 4), right_cbp,
  2186. mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
  2187. block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
  2188. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  2189. uint8_t *dst;
  2190. if (block_num > 3) {
  2191. dst = s->dest[block_num - 3] - 8 * linesize;
  2192. } else {
  2193. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
  2194. }
  2195. if (s->mb_x != s->mb_width || !(block_num & 5)) {
  2196. int16_t (*mv)[2];
  2197. if(block_num > 3) {
  2198. right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
  2199. right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
  2200. mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
  2201. }else{
  2202. right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4)) :
  2203. (mb_cbp >> ((block_num + 1) * 4));
  2204. right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4)) :
  2205. (mb_is_intra >> ((block_num + 1) * 4));
  2206. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
  2207. }
  2208. if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
  2209. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2210. } else {
  2211. idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
  2212. if (idx == 5) {
  2213. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2214. } else if (idx) {
  2215. if (idx == 1)
  2216. v->vc1dsp.vc1_h_loop_filter4(dst+4*linesize, linesize, v->pq);
  2217. else
  2218. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  2219. }
  2220. }
  2221. }
  2222. dst -= 4;
  2223. ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
  2224. if (ttblk == TT_4X4 || ttblk == TT_4X8) {
  2225. idx = (block_cbp | (block_cbp >> 1)) & 5;
  2226. if (idx == 5) {
  2227. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2228. } else if (idx) {
  2229. if (idx == 1)
  2230. v->vc1dsp.vc1_h_loop_filter4(dst + linesize*4, linesize, v->pq);
  2231. else
  2232. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  2233. }
  2234. }
  2235. }
  2236. static void vc1_apply_p_loop_filter(VC1Context *v)
  2237. {
  2238. MpegEncContext *s = &v->s;
  2239. int i;
  2240. for (i = 0; i < 6; i++) {
  2241. vc1_apply_p_v_loop_filter(v, i);
  2242. }
  2243. /* V always preceedes H, therefore we run H one MB before V;
  2244. * at the end of a row, we catch up to complete the row */
  2245. if (s->mb_x) {
  2246. for (i = 0; i < 6; i++) {
  2247. vc1_apply_p_h_loop_filter(v, i);
  2248. }
  2249. if (s->mb_x == s->mb_width - 1) {
  2250. s->mb_x++;
  2251. ff_update_block_index(s);
  2252. for (i = 0; i < 6; i++) {
  2253. vc1_apply_p_h_loop_filter(v, i);
  2254. }
  2255. }
  2256. }
  2257. }
  2258. /** Decode one P-frame MB (in Simple/Main profile)
  2259. */
  2260. static int vc1_decode_p_mb(VC1Context *v)
  2261. {
  2262. MpegEncContext *s = &v->s;
  2263. GetBitContext *gb = &s->gb;
  2264. int i, j;
  2265. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2266. int cbp; /* cbp decoding stuff */
  2267. int mqdiff, mquant; /* MB quantization */
  2268. int ttmb = v->ttfrm; /* MB Transform type */
  2269. int mb_has_coeffs = 1; /* last_flag */
  2270. int dmv_x, dmv_y; /* Differential MV components */
  2271. int index, index1; /* LUT indexes */
  2272. int val, sign; /* temp values */
  2273. int first_block = 1;
  2274. int dst_idx, off;
  2275. int skipped, fourmv;
  2276. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  2277. mquant = v->pq; /* Loosy initialization */
  2278. if (v->mv_type_is_raw)
  2279. fourmv = get_bits1(gb);
  2280. else
  2281. fourmv = v->mv_type_mb_plane[mb_pos];
  2282. if (v->skip_is_raw)
  2283. skipped = get_bits1(gb);
  2284. else
  2285. skipped = v->s.mbskip_table[mb_pos];
  2286. if (!fourmv) /* 1MV mode */
  2287. {
  2288. if (!skipped)
  2289. {
  2290. GET_MVDATA(dmv_x, dmv_y);
  2291. if (s->mb_intra) {
  2292. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2293. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2294. }
  2295. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2296. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2297. /* FIXME Set DC val for inter block ? */
  2298. if (s->mb_intra && !mb_has_coeffs)
  2299. {
  2300. GET_MQUANT();
  2301. s->ac_pred = get_bits1(gb);
  2302. cbp = 0;
  2303. }
  2304. else if (mb_has_coeffs)
  2305. {
  2306. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2307. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2308. GET_MQUANT();
  2309. }
  2310. else
  2311. {
  2312. mquant = v->pq;
  2313. cbp = 0;
  2314. }
  2315. s->current_picture.qscale_table[mb_pos] = mquant;
  2316. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2317. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2318. VC1_TTMB_VLC_BITS, 2);
  2319. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2320. dst_idx = 0;
  2321. for (i=0; i<6; i++)
  2322. {
  2323. s->dc_val[0][s->block_index[i]] = 0;
  2324. dst_idx += i >> 2;
  2325. val = ((cbp >> (5 - i)) & 1);
  2326. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2327. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2328. if(s->mb_intra) {
  2329. /* check if prediction blocks A and C are available */
  2330. v->a_avail = v->c_avail = 0;
  2331. if(i == 2 || i == 3 || !s->first_slice_line)
  2332. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2333. if(i == 1 || i == 3 || s->mb_x)
  2334. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2335. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2336. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2337. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2338. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2339. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2340. if(v->pq >= 9 && v->overlap) {
  2341. if(v->c_avail)
  2342. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2343. if(v->a_avail)
  2344. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2345. }
  2346. block_cbp |= 0xF << (i << 2);
  2347. block_intra |= 1 << i;
  2348. } else if(val) {
  2349. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  2350. block_cbp |= pat << (i << 2);
  2351. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2352. first_block = 0;
  2353. }
  2354. }
  2355. }
  2356. else //Skipped
  2357. {
  2358. s->mb_intra = 0;
  2359. for(i = 0; i < 6; i++) {
  2360. v->mb_type[0][s->block_index[i]] = 0;
  2361. s->dc_val[0][s->block_index[i]] = 0;
  2362. }
  2363. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2364. s->current_picture.qscale_table[mb_pos] = 0;
  2365. vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2366. vc1_mc_1mv(v, 0);
  2367. }
  2368. } //1MV mode
  2369. else //4MV mode
  2370. {
  2371. if (!skipped /* unskipped MB */)
  2372. {
  2373. int intra_count = 0, coded_inter = 0;
  2374. int is_intra[6], is_coded[6];
  2375. /* Get CBPCY */
  2376. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2377. for (i=0; i<6; i++)
  2378. {
  2379. val = ((cbp >> (5 - i)) & 1);
  2380. s->dc_val[0][s->block_index[i]] = 0;
  2381. s->mb_intra = 0;
  2382. if(i < 4) {
  2383. dmv_x = dmv_y = 0;
  2384. s->mb_intra = 0;
  2385. mb_has_coeffs = 0;
  2386. if(val) {
  2387. GET_MVDATA(dmv_x, dmv_y);
  2388. }
  2389. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2390. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2391. intra_count += s->mb_intra;
  2392. is_intra[i] = s->mb_intra;
  2393. is_coded[i] = mb_has_coeffs;
  2394. }
  2395. if(i&4){
  2396. is_intra[i] = (intra_count >= 3);
  2397. is_coded[i] = val;
  2398. }
  2399. if(i == 4) vc1_mc_4mv_chroma(v);
  2400. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2401. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2402. }
  2403. // if there are no coded blocks then don't do anything more
  2404. dst_idx = 0;
  2405. if(!intra_count && !coded_inter)
  2406. goto end;
  2407. GET_MQUANT();
  2408. s->current_picture.qscale_table[mb_pos] = mquant;
  2409. /* test if block is intra and has pred */
  2410. {
  2411. int intrapred = 0;
  2412. for(i=0; i<6; i++)
  2413. if(is_intra[i]) {
  2414. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2415. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2416. intrapred = 1;
  2417. break;
  2418. }
  2419. }
  2420. if(intrapred)s->ac_pred = get_bits1(gb);
  2421. else s->ac_pred = 0;
  2422. }
  2423. if (!v->ttmbf && coded_inter)
  2424. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2425. for (i=0; i<6; i++)
  2426. {
  2427. dst_idx += i >> 2;
  2428. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2429. s->mb_intra = is_intra[i];
  2430. if (is_intra[i]) {
  2431. /* check if prediction blocks A and C are available */
  2432. v->a_avail = v->c_avail = 0;
  2433. if(i == 2 || i == 3 || !s->first_slice_line)
  2434. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2435. if(i == 1 || i == 3 || s->mb_x)
  2436. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2437. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2438. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2439. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2440. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2441. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2442. if(v->pq >= 9 && v->overlap) {
  2443. if(v->c_avail)
  2444. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2445. if(v->a_avail)
  2446. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2447. }
  2448. block_cbp |= 0xF << (i << 2);
  2449. block_intra |= 1 << i;
  2450. } else if(is_coded[i]) {
  2451. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  2452. block_cbp |= pat << (i << 2);
  2453. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2454. first_block = 0;
  2455. }
  2456. }
  2457. }
  2458. else //Skipped MB
  2459. {
  2460. s->mb_intra = 0;
  2461. s->current_picture.qscale_table[mb_pos] = 0;
  2462. for (i=0; i<6; i++) {
  2463. v->mb_type[0][s->block_index[i]] = 0;
  2464. s->dc_val[0][s->block_index[i]] = 0;
  2465. }
  2466. for (i=0; i<4; i++)
  2467. {
  2468. vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2469. vc1_mc_4mv_luma(v, i);
  2470. }
  2471. vc1_mc_4mv_chroma(v);
  2472. s->current_picture.qscale_table[mb_pos] = 0;
  2473. }
  2474. }
  2475. end:
  2476. v->cbp[s->mb_x] = block_cbp;
  2477. v->ttblk[s->mb_x] = block_tt;
  2478. v->is_intra[s->mb_x] = block_intra;
  2479. return 0;
  2480. }
  2481. /** Decode one B-frame MB (in Main profile)
  2482. */
  2483. static void vc1_decode_b_mb(VC1Context *v)
  2484. {
  2485. MpegEncContext *s = &v->s;
  2486. GetBitContext *gb = &s->gb;
  2487. int i, j;
  2488. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2489. int cbp = 0; /* cbp decoding stuff */
  2490. int mqdiff, mquant; /* MB quantization */
  2491. int ttmb = v->ttfrm; /* MB Transform type */
  2492. int mb_has_coeffs = 0; /* last_flag */
  2493. int index, index1; /* LUT indexes */
  2494. int val, sign; /* temp values */
  2495. int first_block = 1;
  2496. int dst_idx, off;
  2497. int skipped, direct;
  2498. int dmv_x[2], dmv_y[2];
  2499. int bmvtype = BMV_TYPE_BACKWARD;
  2500. mquant = v->pq; /* Loosy initialization */
  2501. s->mb_intra = 0;
  2502. if (v->dmb_is_raw)
  2503. direct = get_bits1(gb);
  2504. else
  2505. direct = v->direct_mb_plane[mb_pos];
  2506. if (v->skip_is_raw)
  2507. skipped = get_bits1(gb);
  2508. else
  2509. skipped = v->s.mbskip_table[mb_pos];
  2510. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2511. for(i = 0; i < 6; i++) {
  2512. v->mb_type[0][s->block_index[i]] = 0;
  2513. s->dc_val[0][s->block_index[i]] = 0;
  2514. }
  2515. s->current_picture.qscale_table[mb_pos] = 0;
  2516. if (!direct) {
  2517. if (!skipped) {
  2518. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2519. dmv_x[1] = dmv_x[0];
  2520. dmv_y[1] = dmv_y[0];
  2521. }
  2522. if(skipped || !s->mb_intra) {
  2523. bmvtype = decode012(gb);
  2524. switch(bmvtype) {
  2525. case 0:
  2526. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2527. break;
  2528. case 1:
  2529. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2530. break;
  2531. case 2:
  2532. bmvtype = BMV_TYPE_INTERPOLATED;
  2533. dmv_x[0] = dmv_y[0] = 0;
  2534. }
  2535. }
  2536. }
  2537. for(i = 0; i < 6; i++)
  2538. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2539. if (skipped) {
  2540. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  2541. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2542. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2543. return;
  2544. }
  2545. if (direct) {
  2546. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2547. GET_MQUANT();
  2548. s->mb_intra = 0;
  2549. s->current_picture.qscale_table[mb_pos] = mquant;
  2550. if(!v->ttmbf)
  2551. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2552. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  2553. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2554. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2555. } else {
  2556. if(!mb_has_coeffs && !s->mb_intra) {
  2557. /* no coded blocks - effectively skipped */
  2558. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2559. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2560. return;
  2561. }
  2562. if(s->mb_intra && !mb_has_coeffs) {
  2563. GET_MQUANT();
  2564. s->current_picture.qscale_table[mb_pos] = mquant;
  2565. s->ac_pred = get_bits1(gb);
  2566. cbp = 0;
  2567. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2568. } else {
  2569. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2570. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2571. if(!mb_has_coeffs) {
  2572. /* interpolated skipped block */
  2573. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2574. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2575. return;
  2576. }
  2577. }
  2578. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2579. if(!s->mb_intra) {
  2580. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2581. }
  2582. if(s->mb_intra)
  2583. s->ac_pred = get_bits1(gb);
  2584. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2585. GET_MQUANT();
  2586. s->current_picture.qscale_table[mb_pos] = mquant;
  2587. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2588. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2589. }
  2590. }
  2591. dst_idx = 0;
  2592. for (i=0; i<6; i++)
  2593. {
  2594. s->dc_val[0][s->block_index[i]] = 0;
  2595. dst_idx += i >> 2;
  2596. val = ((cbp >> (5 - i)) & 1);
  2597. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2598. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2599. if(s->mb_intra) {
  2600. /* check if prediction blocks A and C are available */
  2601. v->a_avail = v->c_avail = 0;
  2602. if(i == 2 || i == 3 || !s->first_slice_line)
  2603. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2604. if(i == 1 || i == 3 || s->mb_x)
  2605. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2606. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2607. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2608. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2609. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2610. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2611. } else if(val) {
  2612. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  2613. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2614. first_block = 0;
  2615. }
  2616. }
  2617. }
  2618. /** Decode blocks of I-frame
  2619. */
  2620. static void vc1_decode_i_blocks(VC1Context *v)
  2621. {
  2622. int k, j;
  2623. MpegEncContext *s = &v->s;
  2624. int cbp, val;
  2625. uint8_t *coded_val;
  2626. int mb_pos;
  2627. /* select codingmode used for VLC tables selection */
  2628. switch(v->y_ac_table_index){
  2629. case 0:
  2630. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2631. break;
  2632. case 1:
  2633. v->codingset = CS_HIGH_MOT_INTRA;
  2634. break;
  2635. case 2:
  2636. v->codingset = CS_MID_RATE_INTRA;
  2637. break;
  2638. }
  2639. switch(v->c_ac_table_index){
  2640. case 0:
  2641. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2642. break;
  2643. case 1:
  2644. v->codingset2 = CS_HIGH_MOT_INTER;
  2645. break;
  2646. case 2:
  2647. v->codingset2 = CS_MID_RATE_INTER;
  2648. break;
  2649. }
  2650. /* Set DC scale - y and c use the same */
  2651. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2652. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2653. //do frame decode
  2654. s->mb_x = s->mb_y = 0;
  2655. s->mb_intra = 1;
  2656. s->first_slice_line = 1;
  2657. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2658. s->mb_x = 0;
  2659. ff_init_block_index(s);
  2660. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2661. uint8_t *dst[6];
  2662. ff_update_block_index(s);
  2663. dst[0] = s->dest[0];
  2664. dst[1] = dst[0] + 8;
  2665. dst[2] = s->dest[0] + s->linesize * 8;
  2666. dst[3] = dst[2] + 8;
  2667. dst[4] = s->dest[1];
  2668. dst[5] = s->dest[2];
  2669. s->dsp.clear_blocks(s->block[0]);
  2670. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2671. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2672. s->current_picture.qscale_table[mb_pos] = v->pq;
  2673. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2674. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2675. // do actual MB decoding and displaying
  2676. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2677. v->s.ac_pred = get_bits1(&v->s.gb);
  2678. for(k = 0; k < 6; k++) {
  2679. val = ((cbp >> (5 - k)) & 1);
  2680. if (k < 4) {
  2681. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2682. val = val ^ pred;
  2683. *coded_val = val;
  2684. }
  2685. cbp |= val << (5 - k);
  2686. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2687. if (k > 3 && (s->flags & CODEC_FLAG_GRAY)) continue;
  2688. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  2689. if(v->pq >= 9 && v->overlap) {
  2690. if (v->rangeredfrm) for(j = 0; j < 64; j++) s->block[k][j] <<= 1;
  2691. s->dsp.put_signed_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  2692. } else {
  2693. if (v->rangeredfrm) for(j = 0; j < 64; j++) s->block[k][j] = (s->block[k][j] - 64) << 1;
  2694. s->dsp.put_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  2695. }
  2696. }
  2697. if(v->pq >= 9 && v->overlap) {
  2698. if(s->mb_x) {
  2699. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2700. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2701. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2702. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2703. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2704. }
  2705. }
  2706. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2707. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2708. if(!s->first_slice_line) {
  2709. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2710. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2711. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2712. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2713. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2714. }
  2715. }
  2716. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2717. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2718. }
  2719. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2720. if(get_bits_count(&s->gb) > v->bits) {
  2721. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2722. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2723. return;
  2724. }
  2725. }
  2726. if (!v->s.loop_filter)
  2727. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2728. else if (s->mb_y)
  2729. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2730. s->first_slice_line = 0;
  2731. }
  2732. if (v->s.loop_filter)
  2733. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2734. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2735. }
  2736. /** Decode blocks of I-frame for advanced profile
  2737. */
  2738. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2739. {
  2740. int k;
  2741. MpegEncContext *s = &v->s;
  2742. int cbp, val;
  2743. uint8_t *coded_val;
  2744. int mb_pos;
  2745. int mquant = v->pq;
  2746. int mqdiff;
  2747. GetBitContext *gb = &s->gb;
  2748. /* select codingmode used for VLC tables selection */
  2749. switch(v->y_ac_table_index){
  2750. case 0:
  2751. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2752. break;
  2753. case 1:
  2754. v->codingset = CS_HIGH_MOT_INTRA;
  2755. break;
  2756. case 2:
  2757. v->codingset = CS_MID_RATE_INTRA;
  2758. break;
  2759. }
  2760. switch(v->c_ac_table_index){
  2761. case 0:
  2762. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2763. break;
  2764. case 1:
  2765. v->codingset2 = CS_HIGH_MOT_INTER;
  2766. break;
  2767. case 2:
  2768. v->codingset2 = CS_MID_RATE_INTER;
  2769. break;
  2770. }
  2771. //do frame decode
  2772. s->mb_x = s->mb_y = 0;
  2773. s->mb_intra = 1;
  2774. s->first_slice_line = 1;
  2775. s->mb_y = s->start_mb_y;
  2776. if (s->start_mb_y) {
  2777. s->mb_x = 0;
  2778. ff_init_block_index(s);
  2779. memset(&s->coded_block[s->block_index[0]-s->b8_stride], 0,
  2780. s->b8_stride * sizeof(*s->coded_block));
  2781. }
  2782. for(; s->mb_y < s->end_mb_y; s->mb_y++) {
  2783. s->mb_x = 0;
  2784. ff_init_block_index(s);
  2785. for(;s->mb_x < s->mb_width; s->mb_x++) {
  2786. DCTELEM (*block)[64] = v->block[v->cur_blk_idx];
  2787. ff_update_block_index(s);
  2788. s->dsp.clear_blocks(block[0]);
  2789. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2790. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2791. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2792. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2793. // do actual MB decoding and displaying
  2794. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2795. if(v->acpred_is_raw)
  2796. v->s.ac_pred = get_bits1(&v->s.gb);
  2797. else
  2798. v->s.ac_pred = v->acpred_plane[mb_pos];
  2799. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  2800. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  2801. GET_MQUANT();
  2802. s->current_picture.qscale_table[mb_pos] = mquant;
  2803. /* Set DC scale - y and c use the same */
  2804. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2805. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2806. for(k = 0; k < 6; k++) {
  2807. val = ((cbp >> (5 - k)) & 1);
  2808. if (k < 4) {
  2809. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2810. val = val ^ pred;
  2811. *coded_val = val;
  2812. }
  2813. cbp |= val << (5 - k);
  2814. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  2815. v->c_avail = !!s->mb_x || (k==1 || k==3);
  2816. vc1_decode_i_block_adv(v, block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  2817. if (k > 3 && (s->flags & CODEC_FLAG_GRAY)) continue;
  2818. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  2819. }
  2820. vc1_smooth_overlap_filter_iblk(v);
  2821. vc1_put_signed_blocks_clamped(v);
  2822. if(v->s.loop_filter) vc1_loop_filter_iblk_delayed(v, v->pq);
  2823. if(get_bits_count(&s->gb) > v->bits) {
  2824. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2825. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2826. return;
  2827. }
  2828. }
  2829. if (!v->s.loop_filter)
  2830. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2831. else if (s->mb_y)
  2832. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2833. s->first_slice_line = 0;
  2834. }
  2835. /* raw bottom MB row */
  2836. s->mb_x = 0;
  2837. ff_init_block_index(s);
  2838. for(;s->mb_x < s->mb_width; s->mb_x++) {
  2839. ff_update_block_index(s);
  2840. vc1_put_signed_blocks_clamped(v);
  2841. if(v->s.loop_filter) vc1_loop_filter_iblk_delayed(v, v->pq);
  2842. }
  2843. if (v->s.loop_filter)
  2844. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2845. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, (AC_END|DC_END|MV_END));
  2846. }
  2847. static void vc1_decode_p_blocks(VC1Context *v)
  2848. {
  2849. MpegEncContext *s = &v->s;
  2850. int apply_loop_filter;
  2851. /* select codingmode used for VLC tables selection */
  2852. switch(v->c_ac_table_index){
  2853. case 0:
  2854. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2855. break;
  2856. case 1:
  2857. v->codingset = CS_HIGH_MOT_INTRA;
  2858. break;
  2859. case 2:
  2860. v->codingset = CS_MID_RATE_INTRA;
  2861. break;
  2862. }
  2863. switch(v->c_ac_table_index){
  2864. case 0:
  2865. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2866. break;
  2867. case 1:
  2868. v->codingset2 = CS_HIGH_MOT_INTER;
  2869. break;
  2870. case 2:
  2871. v->codingset2 = CS_MID_RATE_INTER;
  2872. break;
  2873. }
  2874. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2875. s->first_slice_line = 1;
  2876. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2877. for(s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2878. s->mb_x = 0;
  2879. ff_init_block_index(s);
  2880. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2881. ff_update_block_index(s);
  2882. vc1_decode_p_mb(v);
  2883. if (s->mb_y != s->start_mb_y && apply_loop_filter)
  2884. vc1_apply_p_loop_filter(v);
  2885. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2886. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2887. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2888. return;
  2889. }
  2890. }
  2891. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  2892. memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0])*s->mb_stride);
  2893. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
  2894. memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0])*s->mb_stride);
  2895. if (s->mb_y != s->start_mb_y) ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2896. s->first_slice_line = 0;
  2897. }
  2898. if (apply_loop_filter) {
  2899. s->mb_x = 0;
  2900. ff_init_block_index(s);
  2901. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2902. ff_update_block_index(s);
  2903. vc1_apply_p_loop_filter(v);
  2904. }
  2905. }
  2906. if (s->end_mb_y >= s->start_mb_y)
  2907. ff_draw_horiz_band(s, (s->end_mb_y-1) * 16, 16);
  2908. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, (AC_END|DC_END|MV_END));
  2909. }
  2910. static void vc1_decode_b_blocks(VC1Context *v)
  2911. {
  2912. MpegEncContext *s = &v->s;
  2913. /* select codingmode used for VLC tables selection */
  2914. switch(v->c_ac_table_index){
  2915. case 0:
  2916. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2917. break;
  2918. case 1:
  2919. v->codingset = CS_HIGH_MOT_INTRA;
  2920. break;
  2921. case 2:
  2922. v->codingset = CS_MID_RATE_INTRA;
  2923. break;
  2924. }
  2925. switch(v->c_ac_table_index){
  2926. case 0:
  2927. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2928. break;
  2929. case 1:
  2930. v->codingset2 = CS_HIGH_MOT_INTER;
  2931. break;
  2932. case 2:
  2933. v->codingset2 = CS_MID_RATE_INTER;
  2934. break;
  2935. }
  2936. s->first_slice_line = 1;
  2937. for(s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2938. s->mb_x = 0;
  2939. ff_init_block_index(s);
  2940. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2941. ff_update_block_index(s);
  2942. vc1_decode_b_mb(v);
  2943. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2944. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2945. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2946. return;
  2947. }
  2948. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2949. }
  2950. if (!v->s.loop_filter)
  2951. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2952. else if (s->mb_y)
  2953. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2954. s->first_slice_line = 0;
  2955. }
  2956. if (v->s.loop_filter)
  2957. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2958. ff_er_add_slice(s, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, (AC_END|DC_END|MV_END));
  2959. }
  2960. static void vc1_decode_skip_blocks(VC1Context *v)
  2961. {
  2962. MpegEncContext *s = &v->s;
  2963. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2964. s->first_slice_line = 1;
  2965. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2966. s->mb_x = 0;
  2967. ff_init_block_index(s);
  2968. ff_update_block_index(s);
  2969. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2970. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2971. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2972. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2973. s->first_slice_line = 0;
  2974. }
  2975. s->pict_type = AV_PICTURE_TYPE_P;
  2976. }
  2977. static void vc1_decode_blocks(VC1Context *v)
  2978. {
  2979. v->s.esc3_level_length = 0;
  2980. if(v->x8_type){
  2981. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  2982. }else{
  2983. v->cur_blk_idx = 0;
  2984. v->left_blk_idx = -1;
  2985. v->topleft_blk_idx = 1;
  2986. v->top_blk_idx = 2;
  2987. switch(v->s.pict_type) {
  2988. case AV_PICTURE_TYPE_I:
  2989. if(v->profile == PROFILE_ADVANCED)
  2990. vc1_decode_i_blocks_adv(v);
  2991. else
  2992. vc1_decode_i_blocks(v);
  2993. break;
  2994. case AV_PICTURE_TYPE_P:
  2995. if(v->p_frame_skipped)
  2996. vc1_decode_skip_blocks(v);
  2997. else
  2998. vc1_decode_p_blocks(v);
  2999. break;
  3000. case AV_PICTURE_TYPE_B:
  3001. if(v->bi_type){
  3002. if(v->profile == PROFILE_ADVANCED)
  3003. vc1_decode_i_blocks_adv(v);
  3004. else
  3005. vc1_decode_i_blocks(v);
  3006. }else
  3007. vc1_decode_b_blocks(v);
  3008. break;
  3009. }
  3010. }
  3011. }
  3012. static inline float get_float_val(GetBitContext* gb)
  3013. {
  3014. return (float)get_bits_long(gb, 30) / (1<<15) - (1<<14);
  3015. }
  3016. static void vc1_sprite_parse_transform(VC1Context *v, GetBitContext* gb, float c[7])
  3017. {
  3018. c[1] = c[3] = 0.0f;
  3019. switch (get_bits(gb, 2)) {
  3020. case 0:
  3021. c[0] = 1.0f;
  3022. c[2] = get_float_val(gb);
  3023. c[4] = 1.0f;
  3024. break;
  3025. case 1:
  3026. c[0] = c[4] = get_float_val(gb);
  3027. c[2] = get_float_val(gb);
  3028. break;
  3029. case 2:
  3030. c[0] = get_float_val(gb);
  3031. c[2] = get_float_val(gb);
  3032. c[4] = get_float_val(gb);
  3033. break;
  3034. case 3:
  3035. av_log_ask_for_sample(v->s.avctx, NULL);
  3036. c[0] = get_float_val(gb);
  3037. c[1] = get_float_val(gb);
  3038. c[2] = get_float_val(gb);
  3039. c[3] = get_float_val(gb);
  3040. c[4] = get_float_val(gb);
  3041. break;
  3042. }
  3043. c[5] = get_float_val(gb);
  3044. if (get_bits1(gb))
  3045. c[6] = get_float_val(gb);
  3046. else
  3047. c[6] = 1.0f;
  3048. }
  3049. static void vc1_parse_sprites(VC1Context *v, GetBitContext* gb)
  3050. {
  3051. int effect_type, effect_flag, effect_pcount1, effect_pcount2, i;
  3052. float effect_params1[14], effect_params2[10];
  3053. float coefs[2][7];
  3054. vc1_sprite_parse_transform(v, gb, coefs[0]);
  3055. av_log(v->s.avctx, AV_LOG_DEBUG, "S1:");
  3056. for (i = 0; i < 7; i++)
  3057. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", coefs[0][i]);
  3058. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  3059. if (v->two_sprites) {
  3060. vc1_sprite_parse_transform(v, gb, coefs[1]);
  3061. av_log(v->s.avctx, AV_LOG_DEBUG, "S2:");
  3062. for (i = 0; i < 7; i++)
  3063. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", coefs[1][i]);
  3064. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  3065. }
  3066. skip_bits(gb, 2);
  3067. if (effect_type = get_bits_long(gb, 30)){
  3068. switch (effect_pcount1 = get_bits(gb, 4)) {
  3069. case 2:
  3070. effect_params1[0] = get_float_val(gb);
  3071. effect_params1[1] = get_float_val(gb);
  3072. break;
  3073. case 7:
  3074. vc1_sprite_parse_transform(v, gb, effect_params1);
  3075. break;
  3076. case 14:
  3077. vc1_sprite_parse_transform(v, gb, effect_params1);
  3078. vc1_sprite_parse_transform(v, gb, &effect_params1[7]);
  3079. break;
  3080. default:
  3081. av_log_ask_for_sample(v->s.avctx, NULL);
  3082. return;
  3083. }
  3084. if (effect_type != 13 || effect_params1[0] != coefs[0][6]) {
  3085. // effect 13 is simple alpha blending and matches the opacity above
  3086. av_log(v->s.avctx, AV_LOG_DEBUG, "Effect: %d; params: ", effect_type);
  3087. for (i = 0; i < effect_pcount1; i++)
  3088. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", effect_params1[i]);
  3089. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  3090. }
  3091. effect_pcount2 = get_bits(gb, 16);
  3092. if (effect_pcount2 > 10) {
  3093. av_log(v->s.avctx, AV_LOG_ERROR, "Too many effect parameters\n");
  3094. return;
  3095. } else if (effect_pcount2) {
  3096. i = 0;
  3097. av_log(v->s.avctx, AV_LOG_DEBUG, "Effect params 2: ");
  3098. while (i < effect_pcount2){
  3099. effect_params2[i] = get_float_val(gb);
  3100. av_log(v->s.avctx, AV_LOG_DEBUG, " %.3f", effect_params2[i]);
  3101. i++;
  3102. }
  3103. av_log(v->s.avctx, AV_LOG_DEBUG, "\n");
  3104. }
  3105. }
  3106. if (effect_flag = get_bits1(gb))
  3107. av_log(v->s.avctx, AV_LOG_DEBUG, "Effect flag set\n");
  3108. if (get_bits_count(gb) >= gb->size_in_bits +
  3109. (v->s.avctx->codec_id == CODEC_ID_WMV3 ? 64 : 0))
  3110. av_log(v->s.avctx, AV_LOG_ERROR, "Buffer overrun\n");
  3111. if (get_bits_count(gb) < gb->size_in_bits - 8)
  3112. av_log(v->s.avctx, AV_LOG_WARNING, "Buffer not fully read\n");
  3113. }
  3114. /** Initialize a VC1/WMV3 decoder
  3115. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3116. * @todo TODO: Decypher remaining bits in extra_data
  3117. */
  3118. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3119. {
  3120. VC1Context *v = avctx->priv_data;
  3121. MpegEncContext *s = &v->s;
  3122. GetBitContext gb;
  3123. int i, cur_width, cur_height;
  3124. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3125. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3126. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  3127. else
  3128. avctx->pix_fmt = PIX_FMT_GRAY8;
  3129. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  3130. v->s.avctx = avctx;
  3131. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3132. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3133. if(avctx->idct_algo==FF_IDCT_AUTO){
  3134. avctx->idct_algo=FF_IDCT_WMV2;
  3135. }
  3136. if(ff_msmpeg4_decode_init(avctx) < 0)
  3137. return -1;
  3138. if (vc1_init_common(v) < 0) return -1;
  3139. ff_vc1dsp_init(&v->vc1dsp);
  3140. cur_width = avctx->coded_width = avctx->width;
  3141. cur_height = avctx->coded_height = avctx->height;
  3142. if (avctx->codec_id == CODEC_ID_WMV3)
  3143. {
  3144. int count = 0;
  3145. // looks like WMV3 has a sequence header stored in the extradata
  3146. // advanced sequence header may be before the first frame
  3147. // the last byte of the extradata is a version number, 1 for the
  3148. // samples we can decode
  3149. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3150. if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
  3151. return -1;
  3152. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3153. if (count>0)
  3154. {
  3155. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3156. count, get_bits(&gb, count));
  3157. }
  3158. else if (count < 0)
  3159. {
  3160. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3161. }
  3162. } else { // VC1/WVC1/WVP2
  3163. const uint8_t *start = avctx->extradata;
  3164. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3165. const uint8_t *next;
  3166. int size, buf2_size;
  3167. uint8_t *buf2 = NULL;
  3168. int seq_initialized = 0, ep_initialized = 0;
  3169. if(avctx->extradata_size < 16) {
  3170. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3171. return -1;
  3172. }
  3173. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3174. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  3175. next = start;
  3176. for(; next < end; start = next){
  3177. next = find_next_marker(start + 4, end);
  3178. size = next - start - 4;
  3179. if(size <= 0) continue;
  3180. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3181. init_get_bits(&gb, buf2, buf2_size * 8);
  3182. switch(AV_RB32(start)){
  3183. case VC1_CODE_SEQHDR:
  3184. if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
  3185. av_free(buf2);
  3186. return -1;
  3187. }
  3188. seq_initialized = 1;
  3189. break;
  3190. case VC1_CODE_ENTRYPOINT:
  3191. if(vc1_decode_entry_point(avctx, v, &gb) < 0){
  3192. av_free(buf2);
  3193. return -1;
  3194. }
  3195. ep_initialized = 1;
  3196. break;
  3197. }
  3198. }
  3199. av_free(buf2);
  3200. if(!seq_initialized || !ep_initialized){
  3201. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3202. return -1;
  3203. }
  3204. v->res_sprite = (avctx->codec_tag == MKTAG('W','V','P','2'));
  3205. }
  3206. // Sequence header information may not have been parsed
  3207. // yet when ff_msmpeg4_decode_init was called the fist time
  3208. // above. If sequence information changes, we need to call
  3209. // it again.
  3210. if (cur_width != avctx->width ||
  3211. cur_height != avctx->height) {
  3212. MPV_common_end(s);
  3213. if(ff_msmpeg4_decode_init(avctx) < 0)
  3214. return -1;
  3215. avctx->coded_width = avctx->width;
  3216. avctx->coded_height = avctx->height;
  3217. }
  3218. avctx->profile = v->profile;
  3219. if (v->profile == PROFILE_ADVANCED)
  3220. avctx->level = v->level;
  3221. avctx->has_b_frames= !!(avctx->max_b_frames);
  3222. s->low_delay = !avctx->has_b_frames;
  3223. s->mb_width = (avctx->coded_width+15)>>4;
  3224. s->mb_height = (avctx->coded_height+15)>>4;
  3225. if (v->profile == PROFILE_ADVANCED || v->res_fasttx) {
  3226. for (i = 0; i < 64; i++) {
  3227. #define transpose(x) ((x>>3) | ((x&7)<<3))
  3228. v->zz_8x8[0][i] = transpose(wmv1_scantable[0][i]);
  3229. v->zz_8x8[1][i] = transpose(wmv1_scantable[1][i]);
  3230. v->zz_8x8[2][i] = transpose(wmv1_scantable[2][i]);
  3231. v->zz_8x8[3][i] = transpose(wmv1_scantable[3][i]);
  3232. }
  3233. v->left_blk_sh = 0;
  3234. v->top_blk_sh = 3;
  3235. } else {
  3236. memcpy(v->zz_8x8, wmv1_scantable, 4*64);
  3237. v->left_blk_sh = 3;
  3238. v->top_blk_sh = 0;
  3239. }
  3240. /* Allocate mb bitplanes */
  3241. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3242. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3243. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3244. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3245. v->n_allocated_blks = s->mb_width + 2;
  3246. v->block = av_malloc(sizeof(*v->block) * v->n_allocated_blks);
  3247. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3248. v->cbp = v->cbp_base + s->mb_stride;
  3249. v->ttblk_base = av_malloc(sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  3250. v->ttblk = v->ttblk_base + s->mb_stride;
  3251. v->is_intra_base = av_malloc(sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  3252. v->is_intra = v->is_intra_base + s->mb_stride;
  3253. v->luma_mv_base = av_malloc(sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
  3254. v->luma_mv = v->luma_mv_base + s->mb_stride;
  3255. /* allocate block type info in that way so it could be used with s->block_index[] */
  3256. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3257. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3258. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3259. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3260. /* Init coded blocks info */
  3261. if (v->profile == PROFILE_ADVANCED)
  3262. {
  3263. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3264. // return -1;
  3265. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3266. // return -1;
  3267. }
  3268. ff_intrax8_common_init(&v->x8,s);
  3269. return 0;
  3270. }
  3271. /** Decode a VC1/WMV3 frame
  3272. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3273. */
  3274. static int vc1_decode_frame(AVCodecContext *avctx,
  3275. void *data, int *data_size,
  3276. AVPacket *avpkt)
  3277. {
  3278. const uint8_t *buf = avpkt->data;
  3279. int buf_size = avpkt->size, n_slices = 0, i;
  3280. VC1Context *v = avctx->priv_data;
  3281. MpegEncContext *s = &v->s;
  3282. AVFrame *pict = data;
  3283. uint8_t *buf2 = NULL;
  3284. const uint8_t *buf_start = buf;
  3285. struct {
  3286. uint8_t *buf;
  3287. GetBitContext gb;
  3288. int mby_start;
  3289. } *slices = NULL;
  3290. /* no supplementary picture */
  3291. if (buf_size == 0 || (buf_size == 4 && AV_RB32(buf) == VC1_CODE_ENDOFSEQ)) {
  3292. /* special case for last picture */
  3293. if (s->low_delay==0 && s->next_picture_ptr) {
  3294. *pict= *(AVFrame*)s->next_picture_ptr;
  3295. s->next_picture_ptr= NULL;
  3296. *data_size = sizeof(AVFrame);
  3297. }
  3298. return 0;
  3299. }
  3300. /* We need to set current_picture_ptr before reading the header,
  3301. * otherwise we cannot store anything in there. */
  3302. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3303. int i= ff_find_unused_picture(s, 0);
  3304. s->current_picture_ptr= &s->picture[i];
  3305. }
  3306. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3307. if (v->profile < PROFILE_ADVANCED)
  3308. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  3309. else
  3310. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  3311. }
  3312. //for advanced profile we may need to parse and unescape data
  3313. if (avctx->codec_id == CODEC_ID_VC1) {
  3314. int buf_size2 = 0;
  3315. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3316. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3317. const uint8_t *start, *end, *next;
  3318. int size;
  3319. next = buf;
  3320. for(start = buf, end = buf + buf_size; next < end; start = next){
  3321. next = find_next_marker(start + 4, end);
  3322. size = next - start - 4;
  3323. if(size <= 0) continue;
  3324. switch(AV_RB32(start)){
  3325. case VC1_CODE_FRAME:
  3326. if (avctx->hwaccel ||
  3327. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3328. buf_start = start;
  3329. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3330. break;
  3331. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3332. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3333. init_get_bits(&s->gb, buf2, buf_size2*8);
  3334. vc1_decode_entry_point(avctx, v, &s->gb);
  3335. break;
  3336. case VC1_CODE_SLICE: {
  3337. int buf_size3;
  3338. slices = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  3339. if (!slices) goto err;
  3340. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3341. if (!slices[n_slices].buf) goto err;
  3342. buf_size3 = vc1_unescape_buffer(start + 4, size,
  3343. slices[n_slices].buf);
  3344. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  3345. buf_size3 << 3);
  3346. slices[n_slices].mby_start = get_bits(&slices[n_slices].gb, 9);
  3347. n_slices++;
  3348. break;
  3349. }
  3350. }
  3351. }
  3352. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3353. const uint8_t *divider;
  3354. divider = find_next_marker(buf, buf + buf_size);
  3355. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3356. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3357. goto err;
  3358. }
  3359. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3360. // TODO
  3361. if(!v->warn_interlaced++)
  3362. av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced WVC1 support is not implemented\n");
  3363. goto err;
  3364. }else{
  3365. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3366. }
  3367. init_get_bits(&s->gb, buf2, buf_size2*8);
  3368. } else
  3369. init_get_bits(&s->gb, buf, buf_size*8);
  3370. if (v->res_sprite) {
  3371. v->new_sprite = !get_bits1(&s->gb);
  3372. v->two_sprites = get_bits1(&s->gb);
  3373. if (!v->new_sprite)
  3374. goto end;
  3375. }
  3376. // do parse frame header
  3377. if(v->profile < PROFILE_ADVANCED) {
  3378. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3379. goto err;
  3380. }
  3381. } else {
  3382. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3383. goto err;
  3384. }
  3385. }
  3386. if (v->res_sprite && s->pict_type!=AV_PICTURE_TYPE_I) {
  3387. av_log(v->s.avctx, AV_LOG_WARNING, "Sprite decoder: expected I-frame\n");
  3388. }
  3389. // for skipping the frame
  3390. s->current_picture.pict_type= s->pict_type;
  3391. s->current_picture.key_frame= s->pict_type == AV_PICTURE_TYPE_I;
  3392. /* skip B-frames if we don't have reference frames */
  3393. if(s->last_picture_ptr==NULL && (s->pict_type==AV_PICTURE_TYPE_B || s->dropable)){
  3394. goto err;
  3395. }
  3396. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==AV_PICTURE_TYPE_B)
  3397. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=AV_PICTURE_TYPE_I)
  3398. || avctx->skip_frame >= AVDISCARD_ALL) {
  3399. goto end;
  3400. }
  3401. if(s->next_p_frame_damaged){
  3402. if(s->pict_type==AV_PICTURE_TYPE_B)
  3403. goto end;
  3404. else
  3405. s->next_p_frame_damaged=0;
  3406. }
  3407. if(MPV_frame_start(s, avctx) < 0) {
  3408. goto err;
  3409. }
  3410. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3411. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3412. if ((CONFIG_VC1_VDPAU_DECODER)
  3413. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3414. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3415. else if (avctx->hwaccel) {
  3416. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  3417. goto err;
  3418. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  3419. goto err;
  3420. if (avctx->hwaccel->end_frame(avctx) < 0)
  3421. goto err;
  3422. } else {
  3423. ff_er_frame_start(s);
  3424. v->bits = buf_size * 8;
  3425. for (i = 0; i <= n_slices; i++) {
  3426. if (i && get_bits1(&s->gb))
  3427. vc1_parse_frame_header_adv(v, &s->gb);
  3428. s->start_mb_y = (i == 0) ? 0 : FFMAX(0, slices[i-1].mby_start);
  3429. s->end_mb_y = (i == n_slices) ? s->mb_height : FFMIN(s->mb_height, slices[i].mby_start);
  3430. vc1_decode_blocks(v);
  3431. if (i != n_slices) s->gb = slices[i].gb;
  3432. }
  3433. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  3434. // if(get_bits_count(&s->gb) > buf_size * 8)
  3435. // return -1;
  3436. ff_er_frame_end(s);
  3437. }
  3438. MPV_frame_end(s);
  3439. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3440. assert(s->current_picture.pict_type == s->pict_type);
  3441. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  3442. *pict= *(AVFrame*)s->current_picture_ptr;
  3443. } else if (s->last_picture_ptr != NULL) {
  3444. *pict= *(AVFrame*)s->last_picture_ptr;
  3445. }
  3446. if(s->last_picture_ptr || s->low_delay){
  3447. *data_size = sizeof(AVFrame);
  3448. ff_print_debug_info(s, pict);
  3449. }
  3450. end:
  3451. if (v->res_sprite)
  3452. vc1_parse_sprites(v, &s->gb);
  3453. av_free(buf2);
  3454. for (i = 0; i < n_slices; i++)
  3455. av_free(slices[i].buf);
  3456. av_free(slices);
  3457. return buf_size;
  3458. err:
  3459. av_free(buf2);
  3460. for (i = 0; i < n_slices; i++)
  3461. av_free(slices[i].buf);
  3462. av_free(slices);
  3463. return -1;
  3464. }
  3465. /** Close a VC1/WMV3 decoder
  3466. * @warning Initial try at using MpegEncContext stuff
  3467. */
  3468. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3469. {
  3470. VC1Context *v = avctx->priv_data;
  3471. av_freep(&v->hrd_rate);
  3472. av_freep(&v->hrd_buffer);
  3473. MPV_common_end(&v->s);
  3474. av_freep(&v->mv_type_mb_plane);
  3475. av_freep(&v->direct_mb_plane);
  3476. av_freep(&v->acpred_plane);
  3477. av_freep(&v->over_flags_plane);
  3478. av_freep(&v->mb_type_base);
  3479. av_freep(&v->block);
  3480. av_freep(&v->cbp_base);
  3481. av_freep(&v->ttblk_base);
  3482. av_freep(&v->is_intra_base); // FIXME use v->mb_type[]
  3483. av_freep(&v->luma_mv_base);
  3484. ff_intrax8_common_end(&v->x8);
  3485. return 0;
  3486. }
  3487. static const AVProfile profiles[] = {
  3488. { FF_PROFILE_VC1_SIMPLE, "Simple" },
  3489. { FF_PROFILE_VC1_MAIN, "Main" },
  3490. { FF_PROFILE_VC1_COMPLEX, "Complex" },
  3491. { FF_PROFILE_VC1_ADVANCED, "Advanced" },
  3492. { FF_PROFILE_UNKNOWN },
  3493. };
  3494. AVCodec ff_vc1_decoder = {
  3495. "vc1",
  3496. AVMEDIA_TYPE_VIDEO,
  3497. CODEC_ID_VC1,
  3498. sizeof(VC1Context),
  3499. vc1_decode_init,
  3500. NULL,
  3501. vc1_decode_end,
  3502. vc1_decode_frame,
  3503. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3504. NULL,
  3505. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3506. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  3507. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3508. };
  3509. #if CONFIG_WMV3_DECODER
  3510. AVCodec ff_wmv3_decoder = {
  3511. "wmv3",
  3512. AVMEDIA_TYPE_VIDEO,
  3513. CODEC_ID_WMV3,
  3514. sizeof(VC1Context),
  3515. vc1_decode_init,
  3516. NULL,
  3517. vc1_decode_end,
  3518. vc1_decode_frame,
  3519. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3520. NULL,
  3521. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3522. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  3523. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3524. };
  3525. #endif
  3526. #if CONFIG_WMV3_VDPAU_DECODER
  3527. AVCodec ff_wmv3_vdpau_decoder = {
  3528. "wmv3_vdpau",
  3529. AVMEDIA_TYPE_VIDEO,
  3530. CODEC_ID_WMV3,
  3531. sizeof(VC1Context),
  3532. vc1_decode_init,
  3533. NULL,
  3534. vc1_decode_end,
  3535. vc1_decode_frame,
  3536. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3537. NULL,
  3538. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3539. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE},
  3540. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3541. };
  3542. #endif
  3543. #if CONFIG_VC1_VDPAU_DECODER
  3544. AVCodec ff_vc1_vdpau_decoder = {
  3545. "vc1_vdpau",
  3546. AVMEDIA_TYPE_VIDEO,
  3547. CODEC_ID_VC1,
  3548. sizeof(VC1Context),
  3549. vc1_decode_init,
  3550. NULL,
  3551. vc1_decode_end,
  3552. vc1_decode_frame,
  3553. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3554. NULL,
  3555. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3556. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE},
  3557. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3558. };
  3559. #endif