You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1575 lines
45KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{av_parse_graph()} function defined in
  17. @file{libavfilter/avfiltergraph}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your Libav build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section anull
  82. Pass the audio source unchanged to the output.
  83. @c man end AUDIO FILTERS
  84. @chapter Audio Sources
  85. @c man begin AUDIO SOURCES
  86. Below is a description of the currently available audio sources.
  87. @section anullsrc
  88. Null audio source, never return audio frames. It is mainly useful as a
  89. template and to be employed in analysis / debugging tools.
  90. It accepts as optional parameter a string of the form
  91. @var{sample_rate}:@var{channel_layout}.
  92. @var{sample_rate} specify the sample rate, and defaults to 44100.
  93. @var{channel_layout} specify the channel layout, and can be either an
  94. integer or a string representing a channel layout. The default value
  95. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  96. Check the channel_layout_map definition in
  97. @file{libavcodec/audioconvert.c} for the mapping between strings and
  98. channel layout values.
  99. Follow some examples:
  100. @example
  101. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  102. anullsrc=48000:4
  103. # same as
  104. anullsrc=48000:mono
  105. @end example
  106. @c man end AUDIO SOURCES
  107. @chapter Audio Sinks
  108. @c man begin AUDIO SINKS
  109. Below is a description of the currently available audio sinks.
  110. @section anullsink
  111. Null audio sink, do absolutely nothing with the input audio. It is
  112. mainly useful as a template and to be employed in analysis / debugging
  113. tools.
  114. @c man end AUDIO SINKS
  115. @chapter Video Filters
  116. @c man begin VIDEO FILTERS
  117. When you configure your Libav build, you can disable any of the
  118. existing filters using --disable-filters.
  119. The configure output will show the video filters included in your
  120. build.
  121. Below is a description of the currently available video filters.
  122. @section blackframe
  123. Detect frames that are (almost) completely black. Can be useful to
  124. detect chapter transitions or commercials. Output lines consist of
  125. the frame number of the detected frame, the percentage of blackness,
  126. the position in the file if known or -1 and the timestamp in seconds.
  127. In order to display the output lines, you need to set the loglevel at
  128. least to the AV_LOG_INFO value.
  129. The filter accepts the syntax:
  130. @example
  131. blackframe[=@var{amount}:[@var{threshold}]]
  132. @end example
  133. @var{amount} is the percentage of the pixels that have to be below the
  134. threshold, and defaults to 98.
  135. @var{threshold} is the threshold below which a pixel value is
  136. considered black, and defaults to 32.
  137. @section copy
  138. Copy the input source unchanged to the output. Mainly useful for
  139. testing purposes.
  140. @section crop
  141. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  142. The parameters are expressions containing the following constants:
  143. @table @option
  144. @item E, PI, PHI
  145. the corresponding mathematical approximated values for e
  146. (euler number), pi (greek PI), PHI (golden ratio)
  147. @item x, y
  148. the computed values for @var{x} and @var{y}. They are evaluated for
  149. each new frame.
  150. @item in_w, in_h
  151. the input width and heigth
  152. @item iw, ih
  153. same as @var{in_w} and @var{in_h}
  154. @item out_w, out_h
  155. the output (cropped) width and heigth
  156. @item ow, oh
  157. same as @var{out_w} and @var{out_h}
  158. @item n
  159. the number of input frame, starting from 0
  160. @item pos
  161. the position in the file of the input frame, NAN if unknown
  162. @item t
  163. timestamp expressed in seconds, NAN if the input timestamp is unknown
  164. @end table
  165. The @var{out_w} and @var{out_h} parameters specify the expressions for
  166. the width and height of the output (cropped) video. They are
  167. evaluated just at the configuration of the filter.
  168. The default value of @var{out_w} is "in_w", and the default value of
  169. @var{out_h} is "in_h".
  170. The expression for @var{out_w} may depend on the value of @var{out_h},
  171. and the expression for @var{out_h} may depend on @var{out_w}, but they
  172. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  173. evaluated after @var{out_w} and @var{out_h}.
  174. The @var{x} and @var{y} parameters specify the expressions for the
  175. position of the top-left corner of the output (non-cropped) area. They
  176. are evaluated for each frame. If the evaluated value is not valid, it
  177. is approximated to the nearest valid value.
  178. The default value of @var{x} is "(in_w-out_w)/2", and the default
  179. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  180. the center of the input image.
  181. The expression for @var{x} may depend on @var{y}, and the expression
  182. for @var{y} may depend on @var{x}.
  183. Follow some examples:
  184. @example
  185. # crop the central input area with size 100x100
  186. crop=100:100
  187. # crop the central input area with size 2/3 of the input video
  188. "crop=2/3*in_w:2/3*in_h"
  189. # crop the input video central square
  190. crop=in_h
  191. # delimit the rectangle with the top-left corner placed at position
  192. # 100:100 and the right-bottom corner corresponding to the right-bottom
  193. # corner of the input image.
  194. crop=in_w-100:in_h-100:100:100
  195. # crop 10 pixels from the left and right borders, and 20 pixels from
  196. # the top and bottom borders
  197. "crop=in_w-2*10:in_h-2*20"
  198. # keep only the bottom right quarter of the input image
  199. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  200. # crop height for getting Greek harmony
  201. "crop=in_w:1/PHI*in_w"
  202. # trembling effect
  203. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  204. # erratic camera effect depending on timestamp
  205. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  206. # set x depending on the value of y
  207. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  208. @end example
  209. @section cropdetect
  210. Auto-detect crop size.
  211. Calculate necessary cropping parameters and prints the recommended
  212. parameters through the logging system. The detected dimensions
  213. correspond to the non-black area of the input video.
  214. It accepts the syntax:
  215. @example
  216. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  217. @end example
  218. @table @option
  219. @item limit
  220. Threshold, which can be optionally specified from nothing (0) to
  221. everything (255), defaults to 24.
  222. @item round
  223. Value which the width/height should be divisible by, defaults to
  224. 16. The offset is automatically adjusted to center the video. Use 2 to
  225. get only even dimensions (needed for 4:2:2 video). 16 is best when
  226. encoding to most video codecs.
  227. @item reset
  228. Counter that determines after how many frames cropdetect will reset
  229. the previously detected largest video area and start over to detect
  230. the current optimal crop area. Defaults to 0.
  231. This can be useful when channel logos distort the video area. 0
  232. indicates never reset and return the largest area encountered during
  233. playback.
  234. @end table
  235. @section drawbox
  236. Draw a colored box on the input image.
  237. It accepts the syntax:
  238. @example
  239. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  240. @end example
  241. @table @option
  242. @item x, y
  243. Specify the top left corner coordinates of the box. Default to 0.
  244. @item width, height
  245. Specify the width and height of the box, if 0 they are interpreted as
  246. the input width and height. Default to 0.
  247. @item color
  248. Specify the color of the box to write, it can be the name of a color
  249. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  250. @end table
  251. Follow some examples:
  252. @example
  253. # draw a black box around the edge of the input image
  254. drawbox
  255. # draw a box with color red and an opacity of 50%
  256. drawbox=10:20:200:60:red@@0.5"
  257. @end example
  258. @section drawtext
  259. Draw text string or text from specified file on top of video using the
  260. libfreetype library.
  261. To enable compilation of this filter you need to configure FFmpeg with
  262. @code{--enable-libfreetype}.
  263. The filter also recognizes strftime() sequences in the provided text
  264. and expands them accordingly. Check the documentation of strftime().
  265. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  266. separated by ":".
  267. The description of the accepted parameters follows.
  268. @table @option
  269. @item fontfile
  270. The font file to be used for drawing text. Path must be included.
  271. This parameter is mandatory.
  272. @item text
  273. The text string to be drawn. The text must be a sequence of UTF-8
  274. encoded characters.
  275. This parameter is mandatory if no file is specified with the parameter
  276. @var{textfile}.
  277. @item textfile
  278. A text file containing text to be drawn. The text must be a sequence
  279. of UTF-8 encoded characters.
  280. This parameter is mandatory if no text string is specified with the
  281. parameter @var{text}.
  282. If both text and textfile are specified, an error is thrown.
  283. @item x, y
  284. The offsets where text will be drawn within the video frame.
  285. Relative to the top/left border of the output image.
  286. The default value of @var{x} and @var{y} is 0.
  287. @item fontsize
  288. The font size to be used for drawing text.
  289. The default value of @var{fontsize} is 16.
  290. @item fontcolor
  291. The color to be used for drawing fonts.
  292. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  293. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  294. The default value of @var{fontcolor} is "black".
  295. @item boxcolor
  296. The color to be used for drawing box around text.
  297. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  298. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  299. The default value of @var{boxcolor} is "white".
  300. @item box
  301. Used to draw a box around text using background color.
  302. Value should be either 1 (enable) or 0 (disable).
  303. The default value of @var{box} is 0.
  304. @item shadowx, shadowy
  305. The x and y offsets for the text shadow position with respect to the
  306. position of the text. They can be either positive or negative
  307. values. Default value for both is "0".
  308. @item shadowcolor
  309. The color to be used for drawing a shadow behind the drawn text. It
  310. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  311. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  312. The default value of @var{shadowcolor} is "black".
  313. @item ft_load_flags
  314. Flags to be used for loading the fonts.
  315. The flags map the corresponding flags supported by libfreetype, and are
  316. a combination of the following values:
  317. @table @var
  318. @item default
  319. @item no_scale
  320. @item no_hinting
  321. @item render
  322. @item no_bitmap
  323. @item vertical_layout
  324. @item force_autohint
  325. @item crop_bitmap
  326. @item pedantic
  327. @item ignore_global_advance_width
  328. @item no_recurse
  329. @item ignore_transform
  330. @item monochrome
  331. @item linear_design
  332. @item no_autohint
  333. @item end table
  334. @end table
  335. Default value is "render".
  336. For more information consult the documentation for the FT_LOAD_*
  337. libfreetype flags.
  338. @item tabsize
  339. The size in number of spaces to use for rendering the tab.
  340. Default value is 4.
  341. @end table
  342. For example the command:
  343. @example
  344. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  345. @end example
  346. will draw "Test Text" with font FreeSerif, using the default values
  347. for the optional parameters.
  348. The command:
  349. @example
  350. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  351. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  352. @end example
  353. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  354. and y=50 (counting from the top-left corner of the screen), text is
  355. yellow with a red box around it. Both the text and the box have an
  356. opacity of 20%.
  357. Note that the double quotes are not necessary if spaces are not used
  358. within the parameter list.
  359. For more information about libfreetype, check:
  360. @url{http://www.freetype.org/}.
  361. @section fade
  362. Apply fade-in/out effect to input video.
  363. It accepts the parameters:
  364. @var{type}:@var{start_frame}:@var{nb_frames}
  365. @var{type} specifies if the effect type, can be either "in" for
  366. fade-in, or "out" for a fade-out effect.
  367. @var{start_frame} specifies the number of the start frame for starting
  368. to apply the fade effect.
  369. @var{nb_frames} specifies the number of frames for which the fade
  370. effect has to last. At the end of the fade-in effect the output video
  371. will have the same intensity as the input video, at the end of the
  372. fade-out transition the output video will be completely black.
  373. A few usage examples follow, usable too as test scenarios.
  374. @example
  375. # fade in first 30 frames of video
  376. fade=in:0:30
  377. # fade out last 45 frames of a 200-frame video
  378. fade=out:155:45
  379. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  380. fade=in:0:25, fade=out:975:25
  381. # make first 5 frames black, then fade in from frame 5-24
  382. fade=in:5:20
  383. @end example
  384. @section fieldorder
  385. Transform the field order of the input video.
  386. It accepts one parameter which specifies the required field order that
  387. the input interlaced video will be transformed to. The parameter can
  388. assume one of the following values:
  389. @table @option
  390. @item 0 or bff
  391. output bottom field first
  392. @item 1 or tff
  393. output top field first
  394. @end table
  395. Default value is "tff".
  396. Transformation is achieved by shifting the picture content up or down
  397. by one line, and filling the remaining line with appropriate picture content.
  398. This method is consistent with most broadcast field order converters.
  399. If the input video is not flagged as being interlaced, or it is already
  400. flagged as being of the required output field order then this filter does
  401. not alter the incoming video.
  402. This filter is very useful when converting to or from PAL DV material,
  403. which is bottom field first.
  404. For example:
  405. @example
  406. ./ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  407. @end example
  408. @section fifo
  409. Buffer input images and send them when they are requested.
  410. This filter is mainly useful when auto-inserted by the libavfilter
  411. framework.
  412. The filter does not take parameters.
  413. @section format
  414. Convert the input video to one of the specified pixel formats.
  415. Libavfilter will try to pick one that is supported for the input to
  416. the next filter.
  417. The filter accepts a list of pixel format names, separated by ":",
  418. for example "yuv420p:monow:rgb24".
  419. Some examples follow:
  420. @example
  421. # convert the input video to the format "yuv420p"
  422. format=yuv420p
  423. # convert the input video to any of the formats in the list
  424. format=yuv420p:yuv444p:yuv410p
  425. @end example
  426. @anchor{frei0r}
  427. @section frei0r
  428. Apply a frei0r effect to the input video.
  429. To enable compilation of this filter you need to install the frei0r
  430. header and configure Libav with --enable-frei0r.
  431. The filter supports the syntax:
  432. @example
  433. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  434. @end example
  435. @var{filter_name} is the name to the frei0r effect to load. If the
  436. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  437. is searched in each one of the directories specified by the colon
  438. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  439. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  440. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  441. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  442. for the frei0r effect.
  443. A frei0r effect parameter can be a boolean (whose values are specified
  444. with "y" and "n"), a double, a color (specified by the syntax
  445. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  446. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  447. description), a position (specified by the syntax @var{X}/@var{Y},
  448. @var{X} and @var{Y} being float numbers) and a string.
  449. The number and kind of parameters depend on the loaded effect. If an
  450. effect parameter is not specified the default value is set.
  451. Some examples follow:
  452. @example
  453. # apply the distort0r effect, set the first two double parameters
  454. frei0r=distort0r:0.5:0.01
  455. # apply the colordistance effect, takes a color as first parameter
  456. frei0r=colordistance:0.2/0.3/0.4
  457. frei0r=colordistance:violet
  458. frei0r=colordistance:0x112233
  459. # apply the perspective effect, specify the top left and top right
  460. # image positions
  461. frei0r=perspective:0.2/0.2:0.8/0.2
  462. @end example
  463. For more information see:
  464. @url{http://piksel.org/frei0r}
  465. @section gradfun
  466. Fix the banding artifacts that are sometimes introduced into nearly flat
  467. regions by truncation to 8bit colordepth.
  468. Interpolate the gradients that should go where the bands are, and
  469. dither them.
  470. This filter is designed for playback only. Do not use it prior to
  471. lossy compression, because compression tends to lose the dither and
  472. bring back the bands.
  473. The filter takes two optional parameters, separated by ':':
  474. @var{strength}:@var{radius}
  475. @var{strength} is the maximum amount by which the filter will change
  476. any one pixel. Also the threshold for detecting nearly flat
  477. regions. Acceptable values range from .51 to 255, default value is
  478. 1.2, out-of-range values will be clipped to the valid range.
  479. @var{radius} is the neighborhood to fit the gradient to. A larger
  480. radius makes for smoother gradients, but also prevents the filter from
  481. modifying the pixels near detailed regions. Acceptable values are
  482. 8-32, default value is 16, out-of-range values will be clipped to the
  483. valid range.
  484. @example
  485. # default parameters
  486. gradfun=1.2:16
  487. # omitting radius
  488. gradfun=1.2
  489. @end example
  490. @section hflip
  491. Flip the input video horizontally.
  492. For example to horizontally flip the video in input with
  493. @file{ffmpeg}:
  494. @example
  495. ffmpeg -i in.avi -vf "hflip" out.avi
  496. @end example
  497. @section hqdn3d
  498. High precision/quality 3d denoise filter. This filter aims to reduce
  499. image noise producing smooth images and making still images really
  500. still. It should enhance compressibility.
  501. It accepts the following optional parameters:
  502. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  503. @table @option
  504. @item luma_spatial
  505. a non-negative float number which specifies spatial luma strength,
  506. defaults to 4.0
  507. @item chroma_spatial
  508. a non-negative float number which specifies spatial chroma strength,
  509. defaults to 3.0*@var{luma_spatial}/4.0
  510. @item luma_tmp
  511. a float number which specifies luma temporal strength, defaults to
  512. 6.0*@var{luma_spatial}/4.0
  513. @item chroma_tmp
  514. a float number which specifies chroma temporal strength, defaults to
  515. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  516. @end table
  517. @section noformat
  518. Force libavfilter not to use any of the specified pixel formats for the
  519. input to the next filter.
  520. The filter accepts a list of pixel format names, separated by ":",
  521. for example "yuv420p:monow:rgb24".
  522. Some examples follow:
  523. @example
  524. # force libavfilter to use a format different from "yuv420p" for the
  525. # input to the vflip filter
  526. noformat=yuv420p,vflip
  527. # convert the input video to any of the formats not contained in the list
  528. noformat=yuv420p:yuv444p:yuv410p
  529. @end example
  530. @section null
  531. Pass the video source unchanged to the output.
  532. @section ocv
  533. Apply video transform using libopencv.
  534. To enable this filter install libopencv library and headers and
  535. configure Libav with --enable-libopencv.
  536. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  537. @var{filter_name} is the name of the libopencv filter to apply.
  538. @var{filter_params} specifies the parameters to pass to the libopencv
  539. filter. If not specified the default values are assumed.
  540. Refer to the official libopencv documentation for more precise
  541. informations:
  542. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  543. Follows the list of supported libopencv filters.
  544. @anchor{dilate}
  545. @subsection dilate
  546. Dilate an image by using a specific structuring element.
  547. This filter corresponds to the libopencv function @code{cvDilate}.
  548. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  549. @var{struct_el} represents a structuring element, and has the syntax:
  550. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  551. @var{cols} and @var{rows} represent the number of colums and rows of
  552. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  553. point, and @var{shape} the shape for the structuring element, and
  554. can be one of the values "rect", "cross", "ellipse", "custom".
  555. If the value for @var{shape} is "custom", it must be followed by a
  556. string of the form "=@var{filename}". The file with name
  557. @var{filename} is assumed to represent a binary image, with each
  558. printable character corresponding to a bright pixel. When a custom
  559. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  560. or columns and rows of the read file are assumed instead.
  561. The default value for @var{struct_el} is "3x3+0x0/rect".
  562. @var{nb_iterations} specifies the number of times the transform is
  563. applied to the image, and defaults to 1.
  564. Follow some example:
  565. @example
  566. # use the default values
  567. ocv=dilate
  568. # dilate using a structuring element with a 5x5 cross, iterate two times
  569. ocv=dilate=5x5+2x2/cross:2
  570. # read the shape from the file diamond.shape, iterate two times
  571. # the file diamond.shape may contain a pattern of characters like this:
  572. # *
  573. # ***
  574. # *****
  575. # ***
  576. # *
  577. # the specified cols and rows are ignored (but not the anchor point coordinates)
  578. ocv=0x0+2x2/custom=diamond.shape:2
  579. @end example
  580. @subsection erode
  581. Erode an image by using a specific structuring element.
  582. This filter corresponds to the libopencv function @code{cvErode}.
  583. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  584. with the same meaning and use of those of the dilate filter
  585. (@pxref{dilate}).
  586. @subsection smooth
  587. Smooth the input video.
  588. The filter takes the following parameters:
  589. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  590. @var{type} is the type of smooth filter to apply, and can be one of
  591. the following values: "blur", "blur_no_scale", "median", "gaussian",
  592. "bilateral". The default value is "gaussian".
  593. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  594. parameters whose meanings depend on smooth type. @var{param1} and
  595. @var{param2} accept integer positive values or 0, @var{param3} and
  596. @var{param4} accept float values.
  597. The default value for @var{param1} is 3, the default value for the
  598. other parameters is 0.
  599. These parameters correspond to the parameters assigned to the
  600. libopencv function @code{cvSmooth}.
  601. @section overlay
  602. Overlay one video on top of another.
  603. It takes two inputs and one output, the first input is the "main"
  604. video on which the second input is overlayed.
  605. It accepts the parameters: @var{x}:@var{y}.
  606. @var{x} is the x coordinate of the overlayed video on the main video,
  607. @var{y} is the y coordinate. The parameters are expressions containing
  608. the following parameters:
  609. @table @option
  610. @item main_w, main_h
  611. main input width and height
  612. @item W, H
  613. same as @var{main_w} and @var{main_h}
  614. @item overlay_w, overlay_h
  615. overlay input width and height
  616. @item w, h
  617. same as @var{overlay_w} and @var{overlay_h}
  618. @end table
  619. Be aware that frames are taken from each input video in timestamp
  620. order, hence, if their initial timestamps differ, it is a a good idea
  621. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  622. have them begin in the same zero timestamp, as it does the example for
  623. the @var{movie} filter.
  624. Follow some examples:
  625. @example
  626. # draw the overlay at 10 pixels from the bottom right
  627. # corner of the main video.
  628. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  629. # insert a transparent PNG logo in the bottom left corner of the input
  630. movie=logo.png [logo];
  631. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  632. # insert 2 different transparent PNG logos (second logo on bottom
  633. # right corner):
  634. movie=logo1.png [logo1];
  635. movie=logo2.png [logo2];
  636. [in][logo1] overlay=10:H-h-10 [in+logo1];
  637. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  638. # add a transparent color layer on top of the main video,
  639. # WxH specifies the size of the main input to the overlay filter
  640. color=red@.3:WxH [over]; [in][over] overlay [out]
  641. @end example
  642. You can chain togheter more overlays but the efficiency of such
  643. approach is yet to be tested.
  644. @section pad
  645. Add paddings to the input image, and places the original input at the
  646. given coordinates @var{x}, @var{y}.
  647. It accepts the following parameters:
  648. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  649. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  650. expressions containing the following constants:
  651. @table @option
  652. @item E, PI, PHI
  653. the corresponding mathematical approximated values for e
  654. (euler number), pi (greek PI), phi (golden ratio)
  655. @item in_w, in_h
  656. the input video width and heigth
  657. @item iw, ih
  658. same as @var{in_w} and @var{in_h}
  659. @item out_w, out_h
  660. the output width and heigth, that is the size of the padded area as
  661. specified by the @var{width} and @var{height} expressions
  662. @item ow, oh
  663. same as @var{out_w} and @var{out_h}
  664. @item x, y
  665. x and y offsets as specified by the @var{x} and @var{y}
  666. expressions, or NAN if not yet specified
  667. @item a
  668. input display aspect ratio, same as @var{iw} / @var{ih}
  669. @item hsub, vsub
  670. horizontal and vertical chroma subsample values. For example for the
  671. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  672. @end table
  673. Follows the description of the accepted parameters.
  674. @table @option
  675. @item width, height
  676. Specify the size of the output image with the paddings added. If the
  677. value for @var{width} or @var{height} is 0, the corresponding input size
  678. is used for the output.
  679. The @var{width} expression can reference the value set by the
  680. @var{height} expression, and viceversa.
  681. The default value of @var{width} and @var{height} is 0.
  682. @item x, y
  683. Specify the offsets where to place the input image in the padded area
  684. with respect to the top/left border of the output image.
  685. The @var{x} expression can reference the value set by the @var{y}
  686. expression, and viceversa.
  687. The default value of @var{x} and @var{y} is 0.
  688. @item color
  689. Specify the color of the padded area, it can be the name of a color
  690. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  691. The default value of @var{color} is "black".
  692. @end table
  693. Some examples follow:
  694. @example
  695. # Add paddings with color "violet" to the input video. Output video
  696. # size is 640x480, the top-left corner of the input video is placed at
  697. # column 0, row 40.
  698. pad=640:480:0:40:violet
  699. # pad the input to get an output with dimensions increased bt 3/2,
  700. # and put the input video at the center of the padded area
  701. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  702. # pad the input to get a squared output with size equal to the maximum
  703. # value between the input width and height, and put the input video at
  704. # the center of the padded area
  705. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  706. # pad the input to get a final w/h ratio of 16:9
  707. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  708. # double output size and put the input video in the bottom-right
  709. # corner of the output padded area
  710. pad="2*iw:2*ih:ow-iw:oh-ih"
  711. @end example
  712. @section pixdesctest
  713. Pixel format descriptor test filter, mainly useful for internal
  714. testing. The output video should be equal to the input video.
  715. For example:
  716. @example
  717. format=monow, pixdesctest
  718. @end example
  719. can be used to test the monowhite pixel format descriptor definition.
  720. @section scale
  721. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  722. The parameters @var{width} and @var{height} are expressions containing
  723. the following constants:
  724. @table @option
  725. @item E, PI, PHI
  726. the corresponding mathematical approximated values for e
  727. (euler number), pi (greek PI), phi (golden ratio)
  728. @item in_w, in_h
  729. the input width and heigth
  730. @item iw, ih
  731. same as @var{in_w} and @var{in_h}
  732. @item out_w, out_h
  733. the output (cropped) width and heigth
  734. @item ow, oh
  735. same as @var{out_w} and @var{out_h}
  736. @item a
  737. input display aspect ratio, same as @var{iw} / @var{ih}
  738. @item hsub, vsub
  739. horizontal and vertical chroma subsample values. For example for the
  740. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  741. @end table
  742. If the input image format is different from the format requested by
  743. the next filter, the scale filter will convert the input to the
  744. requested format.
  745. If the value for @var{width} or @var{height} is 0, the respective input
  746. size is used for the output.
  747. If the value for @var{width} or @var{height} is -1, the scale filter will
  748. use, for the respective output size, a value that maintains the aspect
  749. ratio of the input image.
  750. The default value of @var{width} and @var{height} is 0.
  751. Some examples follow:
  752. @example
  753. # scale the input video to a size of 200x100.
  754. scale=200:100
  755. # scale the input to 2x
  756. scale=2*iw:2*ih
  757. # the above is the same as
  758. scale=2*in_w:2*in_h
  759. # scale the input to half size
  760. scale=iw/2:ih/2
  761. # increase the width, and set the height to the same size
  762. scale=3/2*iw:ow
  763. # seek for Greek harmony
  764. scale=iw:1/PHI*iw
  765. scale=ih*PHI:ih
  766. # increase the height, and set the width to 3/2 of the height
  767. scale=3/2*oh:3/5*ih
  768. # increase the size, but make the size a multiple of the chroma
  769. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  770. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  771. scale='min(500\, iw*3/2):-1'
  772. @end example
  773. @anchor{setdar}
  774. @section setdar
  775. Set the Display Aspect Ratio for the filter output video.
  776. This is done by changing the specified Sample (aka Pixel) Aspect
  777. Ratio, according to the following equation:
  778. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  779. Keep in mind that this filter does not modify the pixel dimensions of
  780. the video frame. Also the display aspect ratio set by this filter may
  781. be changed by later filters in the filterchain, e.g. in case of
  782. scaling or if another "setdar" or a "setsar" filter is applied.
  783. The filter accepts a parameter string which represents the wanted
  784. display aspect ratio.
  785. The parameter can be a floating point number string, or an expression
  786. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  787. numerator and denominator of the aspect ratio.
  788. If the parameter is not specified, it is assumed the value "0:1".
  789. For example to change the display aspect ratio to 16:9, specify:
  790. @example
  791. setdar=16:9
  792. # the above is equivalent to
  793. setdar=1.77777
  794. @end example
  795. See also the "setsar" filter documentation (@pxref{setsar}).
  796. @section setpts
  797. Change the PTS (presentation timestamp) of the input video frames.
  798. Accept in input an expression evaluated through the eval API, which
  799. can contain the following constants:
  800. @table @option
  801. @item PTS
  802. the presentation timestamp in input
  803. @item PI
  804. Greek PI
  805. @item PHI
  806. golden ratio
  807. @item E
  808. Euler number
  809. @item N
  810. the count of the input frame, starting from 0.
  811. @item STARTPTS
  812. the PTS of the first video frame
  813. @item INTERLACED
  814. tell if the current frame is interlaced
  815. @item POS
  816. original position in the file of the frame, or undefined if undefined
  817. for the current frame
  818. @item PREV_INPTS
  819. previous input PTS
  820. @item PREV_OUTPTS
  821. previous output PTS
  822. @end table
  823. Some examples follow:
  824. @example
  825. # start counting PTS from zero
  826. setpts=PTS-STARTPTS
  827. # fast motion
  828. setpts=0.5*PTS
  829. # slow motion
  830. setpts=2.0*PTS
  831. # fixed rate 25 fps
  832. setpts=N/(25*TB)
  833. # fixed rate 25 fps with some jitter
  834. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  835. @end example
  836. @anchor{setsar}
  837. @section setsar
  838. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  839. Note that as a consequence of the application of this filter, the
  840. output display aspect ratio will change according to the following
  841. equation:
  842. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  843. Keep in mind that the sample aspect ratio set by this filter may be
  844. changed by later filters in the filterchain, e.g. if another "setsar"
  845. or a "setdar" filter is applied.
  846. The filter accepts a parameter string which represents the wanted
  847. sample aspect ratio.
  848. The parameter can be a floating point number string, or an expression
  849. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  850. numerator and denominator of the aspect ratio.
  851. If the parameter is not specified, it is assumed the value "0:1".
  852. For example to change the sample aspect ratio to 10:11, specify:
  853. @example
  854. setsar=10:11
  855. @end example
  856. @section settb
  857. Set the timebase to use for the output frames timestamps.
  858. It is mainly useful for testing timebase configuration.
  859. It accepts in input an arithmetic expression representing a rational.
  860. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  861. default timebase), and "intb" (the input timebase).
  862. The default value for the input is "intb".
  863. Follow some examples.
  864. @example
  865. # set the timebase to 1/25
  866. settb=1/25
  867. # set the timebase to 1/10
  868. settb=0.1
  869. #set the timebase to 1001/1000
  870. settb=1+0.001
  871. #set the timebase to 2*intb
  872. settb=2*intb
  873. #set the default timebase value
  874. settb=AVTB
  875. @end example
  876. @section slicify
  877. Pass the images of input video on to next video filter as multiple
  878. slices.
  879. @example
  880. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  881. @end example
  882. The filter accepts the slice height as parameter. If the parameter is
  883. not specified it will use the default value of 16.
  884. Adding this in the beginning of filter chains should make filtering
  885. faster due to better use of the memory cache.
  886. @section transpose
  887. Transpose rows with columns in the input video and optionally flip it.
  888. It accepts a parameter representing an integer, which can assume the
  889. values:
  890. @table @samp
  891. @item 0
  892. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  893. @example
  894. L.R L.l
  895. . . -> . .
  896. l.r R.r
  897. @end example
  898. @item 1
  899. Rotate by 90 degrees clockwise, that is:
  900. @example
  901. L.R l.L
  902. . . -> . .
  903. l.r r.R
  904. @end example
  905. @item 2
  906. Rotate by 90 degrees counterclockwise, that is:
  907. @example
  908. L.R R.r
  909. . . -> . .
  910. l.r L.l
  911. @end example
  912. @item 3
  913. Rotate by 90 degrees clockwise and vertically flip, that is:
  914. @example
  915. L.R r.R
  916. . . -> . .
  917. l.r l.L
  918. @end example
  919. @end table
  920. @section unsharp
  921. Sharpen or blur the input video.
  922. It accepts the following parameters:
  923. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  924. Negative values for the amount will blur the input video, while positive
  925. values will sharpen. All parameters are optional and default to the
  926. equivalent of the string '5:5:1.0:0:0:0.0'.
  927. @table @option
  928. @item luma_msize_x
  929. Set the luma matrix horizontal size. It can be an integer between 3
  930. and 13, default value is 5.
  931. @item luma_msize_y
  932. Set the luma matrix vertical size. It can be an integer between 3
  933. and 13, default value is 5.
  934. @item luma_amount
  935. Set the luma effect strength. It can be a float number between -2.0
  936. and 5.0, default value is 1.0.
  937. @item chroma_msize_x
  938. Set the chroma matrix horizontal size. It can be an integer between 3
  939. and 13, default value is 0.
  940. @item chroma_msize_y
  941. Set the chroma matrix vertical size. It can be an integer between 3
  942. and 13, default value is 0.
  943. @item luma_amount
  944. Set the chroma effect strength. It can be a float number between -2.0
  945. and 5.0, default value is 0.0.
  946. @end table
  947. @example
  948. # Strong luma sharpen effect parameters
  949. unsharp=7:7:2.5
  950. # Strong blur of both luma and chroma parameters
  951. unsharp=7:7:-2:7:7:-2
  952. # Use the default values with @command{ffmpeg}
  953. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  954. @end example
  955. @section vflip
  956. Flip the input video vertically.
  957. @example
  958. ./ffmpeg -i in.avi -vf "vflip" out.avi
  959. @end example
  960. @section yadif
  961. Deinterlace the input video ("yadif" means "yet another deinterlacing
  962. filter").
  963. It accepts the optional parameters: @var{mode}:@var{parity}.
  964. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  965. following values:
  966. @table @option
  967. @item 0
  968. output 1 frame for each frame
  969. @item 1
  970. output 1 frame for each field
  971. @item 2
  972. like 0 but skips spatial interlacing check
  973. @item 3
  974. like 1 but skips spatial interlacing check
  975. @end table
  976. Default value is 0.
  977. @var{parity} specifies the picture field parity assumed for the input
  978. interlaced video, accepts one of the following values:
  979. @table @option
  980. @item 0
  981. assume bottom field first
  982. @item 1
  983. assume top field first
  984. @item -1
  985. enable automatic detection
  986. @end table
  987. Default value is -1.
  988. If interlacing is unknown or decoder does not export this information,
  989. top field first will be assumed.
  990. @c man end VIDEO FILTERS
  991. @chapter Video Sources
  992. @c man begin VIDEO SOURCES
  993. Below is a description of the currently available video sources.
  994. @section buffer
  995. Buffer video frames, and make them available to the filter chain.
  996. This source is mainly intended for a programmatic use, in particular
  997. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  998. It accepts the following parameters:
  999. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}
  1000. All the parameters need to be explicitely defined.
  1001. Follows the list of the accepted parameters.
  1002. @table @option
  1003. @item width, height
  1004. Specify the width and height of the buffered video frames.
  1005. @item pix_fmt_string
  1006. A string representing the pixel format of the buffered video frames.
  1007. It may be a number corresponding to a pixel format, or a pixel format
  1008. name.
  1009. @item timebase_num, timebase_den
  1010. Specify numerator and denomitor of the timebase assumed by the
  1011. timestamps of the buffered frames.
  1012. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1013. Specify numerator and denominator of the sample aspect ratio assumed
  1014. by the video frames.
  1015. @end table
  1016. For example:
  1017. @example
  1018. buffer=320:240:yuv410p:1:24:1:1
  1019. @end example
  1020. will instruct the source to accept video frames with size 320x240 and
  1021. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1022. square pixels (1:1 sample aspect ratio).
  1023. Since the pixel format with name "yuv410p" corresponds to the number 6
  1024. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1025. this example corresponds to:
  1026. @example
  1027. buffer=320:240:6:1:24
  1028. @end example
  1029. @section color
  1030. Provide an uniformly colored input.
  1031. It accepts the following parameters:
  1032. @var{color}:@var{frame_size}:@var{frame_rate}
  1033. Follows the description of the accepted parameters.
  1034. @table @option
  1035. @item color
  1036. Specify the color of the source. It can be the name of a color (case
  1037. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1038. alpha specifier. The default value is "black".
  1039. @item frame_size
  1040. Specify the size of the sourced video, it may be a string of the form
  1041. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  1042. default value is "320x240".
  1043. @item frame_rate
  1044. Specify the frame rate of the sourced video, as the number of frames
  1045. generated per second. It has to be a string in the format
  1046. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1047. number or a valid video frame rate abbreviation. The default value is
  1048. "25".
  1049. @end table
  1050. For example the following graph description will generate a red source
  1051. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1052. frames per second, which will be overlayed over the source connected
  1053. to the pad with identifier "in".
  1054. @example
  1055. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1056. @end example
  1057. @section movie
  1058. Read a video stream from a movie container.
  1059. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1060. @var{movie_name} is the name of the resource to read (not necessarily
  1061. a file but also a device or a stream accessed through some protocol),
  1062. and @var{options} is an optional sequence of @var{key}=@var{value}
  1063. pairs, separated by ":".
  1064. The description of the accepted options follows.
  1065. @table @option
  1066. @item format_name, f
  1067. Specifies the format assumed for the movie to read, and can be either
  1068. the name of a container or an input device. If not specified the
  1069. format is guessed from @var{movie_name} or by probing.
  1070. @item seek_point, sp
  1071. Specifies the seek point in seconds, the frames will be output
  1072. starting from this seek point, the parameter is evaluated with
  1073. @code{av_strtod} so the numerical value may be suffixed by an IS
  1074. postfix. Default value is "0".
  1075. @item stream_index, si
  1076. Specifies the index of the video stream to read. If the value is -1,
  1077. the best suited video stream will be automatically selected. Default
  1078. value is "-1".
  1079. @end table
  1080. This filter allows to overlay a second video on top of main input of
  1081. a filtergraph as shown in this graph:
  1082. @example
  1083. input -----------> deltapts0 --> overlay --> output
  1084. ^
  1085. |
  1086. movie --> scale--> deltapts1 -------+
  1087. @end example
  1088. Some examples follow:
  1089. @example
  1090. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1091. # on top of the input labelled as "in".
  1092. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1093. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1094. # read from a video4linux2 device, and overlay it on top of the input
  1095. # labelled as "in"
  1096. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1097. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1098. @end example
  1099. @section nullsrc
  1100. Null video source, never return images. It is mainly useful as a
  1101. template and to be employed in analysis / debugging tools.
  1102. It accepts as optional parameter a string of the form
  1103. @var{width}:@var{height}:@var{timebase}.
  1104. @var{width} and @var{height} specify the size of the configured
  1105. source. The default values of @var{width} and @var{height} are
  1106. respectively 352 and 288 (corresponding to the CIF size format).
  1107. @var{timebase} specifies an arithmetic expression representing a
  1108. timebase. The expression can contain the constants "PI", "E", "PHI",
  1109. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1110. @section frei0r_src
  1111. Provide a frei0r source.
  1112. To enable compilation of this filter you need to install the frei0r
  1113. header and configure Libav with --enable-frei0r.
  1114. The source supports the syntax:
  1115. @example
  1116. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1117. @end example
  1118. @var{size} is the size of the video to generate, may be a string of the
  1119. form @var{width}x@var{height} or a frame size abbreviation.
  1120. @var{rate} is the rate of the video to generate, may be a string of
  1121. the form @var{num}/@var{den} or a frame rate abbreviation.
  1122. @var{src_name} is the name to the frei0r source to load. For more
  1123. information regarding frei0r and how to set the parameters read the
  1124. section "frei0r" (@pxref{frei0r}) in the description of the video
  1125. filters.
  1126. Some examples follow:
  1127. @example
  1128. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1129. # which is overlayed on the overlay filter main input
  1130. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1131. @end example
  1132. @c man end VIDEO SOURCES
  1133. @chapter Video Sinks
  1134. @c man begin VIDEO SINKS
  1135. Below is a description of the currently available video sinks.
  1136. @section nullsink
  1137. Null video sink, do absolutely nothing with the input video. It is
  1138. mainly useful as a template and to be employed in analysis / debugging
  1139. tools.
  1140. @c man end VIDEO SINKS