| 
							- /* fdctref.c, forward discrete cosine transform, double precision           */
 - 
 - /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
 - 
 - /*
 -  * Disclaimer of Warranty
 -  *
 -  * These software programs are available to the user without any license fee or
 -  * royalty on an "as is" basis.  The MPEG Software Simulation Group disclaims
 -  * any and all warranties, whether express, implied, or statuary, including any
 -  * implied warranties or merchantability or of fitness for a particular
 -  * purpose.  In no event shall the copyright-holder be liable for any
 -  * incidental, punitive, or consequential damages of any kind whatsoever
 -  * arising from the use of these programs.
 -  *
 -  * This disclaimer of warranty extends to the user of these programs and user's
 -  * customers, employees, agents, transferees, successors, and assigns.
 -  *
 -  * The MPEG Software Simulation Group does not represent or warrant that the
 -  * programs furnished hereunder are free of infringement of any third-party
 -  * patents.
 -  *
 -  * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
 -  * are subject to royalty fees to patent holders.  Many of these patents are
 -  * general enough such that they are unavoidable regardless of implementation
 -  * design.
 -  *
 -  */
 - 
 - #include <math.h>
 - 
 - #ifndef PI
 - # ifdef M_PI
 - #  define PI M_PI
 - # else
 - #  define PI 3.14159265358979323846
 - # endif
 - #endif
 - 
 - /* global declarations */
 - void init_fdct (void);
 - void fdct (short *block);
 - 
 - /* private data */
 - static double c[8][8]; /* transform coefficients */
 - 
 - void init_fdct()
 - {
 -   int i, j;
 -   double s;
 - 
 -   for (i=0; i<8; i++)
 -   {
 -     s = (i==0) ? sqrt(0.125) : 0.5;
 - 
 -     for (j=0; j<8; j++)
 -       c[i][j] = s * cos((PI/8.0)*i*(j+0.5));
 -   }
 - }
 - 
 - void fdct(block)
 - short *block;
 - {
 - 	register int i, j;
 - 	double s;
 - 	double tmp[64];
 - 
 - 	for(i = 0; i < 8; i++)
 -     	for(j = 0; j < 8; j++)
 -     	{
 -     		s = 0.0;
 - 
 - /*
 -  *     		for(k = 0; k < 8; k++)
 -  *         		s += c[j][k] * block[8 * i + k];
 -  */
 -         	s += c[j][0] * block[8 * i + 0];
 -         	s += c[j][1] * block[8 * i + 1];
 -         	s += c[j][2] * block[8 * i + 2];
 -         	s += c[j][3] * block[8 * i + 3];
 -         	s += c[j][4] * block[8 * i + 4];
 -         	s += c[j][5] * block[8 * i + 5];
 -         	s += c[j][6] * block[8 * i + 6];
 -         	s += c[j][7] * block[8 * i + 7];
 - 
 -     		tmp[8 * i + j] = s;
 -     	}
 - 
 - 	for(j = 0; j < 8; j++)
 -     	for(i = 0; i < 8; i++)
 -     	{
 -     		s = 0.0;
 - 
 - /*
 -  *     	  	for(k = 0; k < 8; k++)
 -  *        	    s += c[i][k] * tmp[8 * k + j];
 -  */
 -         	s += c[i][0] * tmp[8 * 0 + j];
 -         	s += c[i][1] * tmp[8 * 1 + j];
 -         	s += c[i][2] * tmp[8 * 2 + j];
 -         	s += c[i][3] * tmp[8 * 3 + j];
 -         	s += c[i][4] * tmp[8 * 4 + j];
 -         	s += c[i][5] * tmp[8 * 5 + j];
 -         	s += c[i][6] * tmp[8 * 6 + j];
 -         	s += c[i][7] * tmp[8 * 7 + j];
 - 
 -     		block[8 * i + j] = (short)floor(s + 0.499999);
 - /*
 -  * reason for adding 0.499999 instead of 0.5:
 -  * s is quite often x.5 (at least for i and/or j = 0 or 4)
 -  * and setting the rounding threshold exactly to 0.5 leads to an
 -  * extremely high arithmetic implementation dependency of the result;
 -  * s being between x.5 and x.500001 (which is now incorrectly rounded
 -  * downwards instead of upwards) is assumed to occur less often
 -  * (if at all)
 -  */
 -       }
 - }
 - 
 - /* perform IDCT matrix multiply for 8x8 coefficient block */
 - 
 - void idct(block)
 - short *block;
 - {
 -   int i, j, k, v;
 -   double partial_product;
 -   double tmp[64];
 - 
 -   for (i=0; i<8; i++)
 -     for (j=0; j<8; j++)
 -     {
 -       partial_product = 0.0;
 - 
 -       for (k=0; k<8; k++)
 -         partial_product+= c[k][j]*block[8*i+k];
 - 
 -       tmp[8*i+j] = partial_product;
 -     }
 - 
 -   /* Transpose operation is integrated into address mapping by switching 
 -      loop order of i and j */
 - 
 -   for (j=0; j<8; j++)
 -     for (i=0; i<8; i++)
 -     {
 -       partial_product = 0.0;
 - 
 -       for (k=0; k<8; k++)
 -         partial_product+= c[k][i]*tmp[8*k+j];
 - 
 -       v = (int) floor(partial_product+0.5);
 -       block[8*i+j] = v;
 -     }
 - }
 
 
  |