You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

259 lines
7.5KB

  1. /*
  2. * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef AVUTIL_SOFTFLOAT_H
  21. #define AVUTIL_SOFTFLOAT_H
  22. #include <stdint.h>
  23. #include "common.h"
  24. #include "avassert.h"
  25. #include "softfloat_tables.h"
  26. #define MIN_EXP -126
  27. #define MAX_EXP 126
  28. #define ONE_BITS 29
  29. typedef struct SoftFloat{
  30. int32_t mant;
  31. int32_t exp;
  32. }SoftFloat;
  33. static const SoftFloat FLOAT_0 = { 0, MIN_EXP};
  34. static const SoftFloat FLOAT_05 = { 0x20000000, 0};
  35. static const SoftFloat FLOAT_1 = { 0x20000000, 1};
  36. static const SoftFloat FLOAT_EPSILON = { 0x29F16B12, -16};
  37. static const SoftFloat FLOAT_1584893192 = { 0x32B771ED, 1};
  38. static const SoftFloat FLOAT_100000 = { 0x30D40000, 17};
  39. static const SoftFloat FLOAT_0999999 = { 0x3FFFFBCE, 0};
  40. static inline av_const double av_sf2double(SoftFloat v) {
  41. v.exp -= ONE_BITS +1;
  42. if(v.exp > 0) return (double)v.mant * (double)(1 << v.exp);
  43. else return (double)v.mant / (double)(1 << (-v.exp));
  44. }
  45. static av_const SoftFloat av_normalize_sf(SoftFloat a){
  46. if(a.mant){
  47. #if 1
  48. while((a.mant + 0x1FFFFFFFU)<0x3FFFFFFFU){
  49. a.mant += a.mant;
  50. a.exp -= 1;
  51. }
  52. #else
  53. int s=ONE_BITS - av_log2(FFABS(a.mant));
  54. a.exp -= s;
  55. a.mant <<= s;
  56. #endif
  57. if(a.exp < MIN_EXP){
  58. a.exp = MIN_EXP;
  59. a.mant= 0;
  60. }
  61. }else{
  62. a.exp= MIN_EXP;
  63. }
  64. return a;
  65. }
  66. static inline av_const SoftFloat av_normalize1_sf(SoftFloat a){
  67. #if 1
  68. if((int32_t)(a.mant + 0x40000000U) <= 0){
  69. a.exp++;
  70. a.mant>>=1;
  71. }
  72. av_assert2(a.mant < 0x40000000 && a.mant > -0x40000000);
  73. return a;
  74. #elif 1
  75. int t= a.mant + 0x40000000 < 0;
  76. return (SoftFloat){ a.mant>>t, a.exp+t};
  77. #else
  78. int t= (a.mant + 0x3FFFFFFFU)>>31;
  79. return (SoftFloat){a.mant>>t, a.exp+t};
  80. #endif
  81. }
  82. /**
  83. * @return Will not be more denormalized than a*b. So if either input is
  84. * normalized, then the output will not be worse then the other input.
  85. * If both are normalized, then the output will be normalized.
  86. */
  87. static inline av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b){
  88. a.exp += b.exp;
  89. av_assert2((int32_t)((a.mant * (int64_t)b.mant) >> ONE_BITS) == (a.mant * (int64_t)b.mant) >> ONE_BITS);
  90. a.mant = (a.mant * (int64_t)b.mant) >> ONE_BITS;
  91. a = av_normalize1_sf((SoftFloat){a.mant, a.exp - 1});
  92. if (!a.mant || a.exp < MIN_EXP)
  93. return FLOAT_0;
  94. return a;
  95. }
  96. /**
  97. * b has to be normalized and not zero.
  98. * @return Will not be more denormalized than a.
  99. */
  100. static inline av_const SoftFloat av_div_sf(SoftFloat a, SoftFloat b){
  101. a.exp -= b.exp;
  102. a.mant = ((int64_t)a.mant<<(ONE_BITS+1)) / b.mant;
  103. a = av_normalize1_sf(a);
  104. if (!a.mant || a.exp < MIN_EXP)
  105. return FLOAT_0;
  106. return a;
  107. }
  108. static inline av_const int av_cmp_sf(SoftFloat a, SoftFloat b){
  109. int t= a.exp - b.exp;
  110. if (t <-31) return - b.mant ;
  111. else if (t < 0) return (a.mant >> (-t)) - b.mant ;
  112. else if (t < 32) return a.mant - (b.mant >> t);
  113. else return a.mant ;
  114. }
  115. static inline av_const int av_gt_sf(SoftFloat a, SoftFloat b)
  116. {
  117. int t= a.exp - b.exp;
  118. if (t <-31) return 0 > b.mant ;
  119. else if (t < 0) return (a.mant >> (-t)) > b.mant ;
  120. else if (t < 32) return a.mant > (b.mant >> t);
  121. else return a.mant > 0 ;
  122. }
  123. static inline av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b){
  124. int t= a.exp - b.exp;
  125. if (t <-31) return b;
  126. else if (t < 0) return av_normalize_sf(av_normalize1_sf((SoftFloat){ b.mant + (a.mant >> (-t)), b.exp}));
  127. else if (t < 32) return av_normalize_sf(av_normalize1_sf((SoftFloat){ a.mant + (b.mant >> t ), a.exp}));
  128. else return a;
  129. }
  130. static inline av_const SoftFloat av_sub_sf(SoftFloat a, SoftFloat b){
  131. return av_add_sf(a, (SoftFloat){ -b.mant, b.exp});
  132. }
  133. //FIXME log, exp, pow
  134. /**
  135. * Converts a mantisse and exponent to a SoftFloat
  136. * @returns a SoftFloat with value v * 2^frac_bits
  137. */
  138. static inline av_const SoftFloat av_int2sf(int v, int frac_bits){
  139. int exp_offset = 0;
  140. if(v == INT_MIN){
  141. exp_offset = 1;
  142. v>>=1;
  143. }
  144. return av_normalize_sf(av_normalize1_sf((SoftFloat){v, ONE_BITS + 1 - frac_bits + exp_offset}));
  145. }
  146. /**
  147. * Rounding is to -inf.
  148. */
  149. static inline av_const int av_sf2int(SoftFloat v, int frac_bits){
  150. v.exp += frac_bits - (ONE_BITS + 1);
  151. if(v.exp >= 0) return v.mant << v.exp ;
  152. else return v.mant >>(-v.exp);
  153. }
  154. /**
  155. * Rounding-to-nearest used.
  156. */
  157. static av_always_inline SoftFloat av_sqrt_sf(SoftFloat val)
  158. {
  159. int tabIndex, rem;
  160. if (val.mant == 0)
  161. val.exp = MIN_EXP;
  162. else if (val.mant < 0)
  163. abort();
  164. else
  165. {
  166. tabIndex = (val.mant - 0x20000000) >> 20;
  167. rem = val.mant & 0xFFFFF;
  168. val.mant = (int)(((int64_t)av_sqrttbl_sf[tabIndex] * (0x100000 - rem) +
  169. (int64_t)av_sqrttbl_sf[tabIndex + 1] * rem +
  170. 0x80000) >> 20);
  171. val.mant = (int)(((int64_t)av_sqr_exp_multbl_sf[val.exp & 1] * val.mant +
  172. 0x10000000) >> 29);
  173. if (val.mant < 0x40000000)
  174. val.exp -= 2;
  175. else
  176. val.mant >>= 1;
  177. val.exp = (val.exp >> 1) + 1;
  178. }
  179. return val;
  180. }
  181. /**
  182. * Rounding-to-nearest used.
  183. */
  184. static av_unused void av_sincos_sf(int a, int *s, int *c)
  185. {
  186. int idx, sign;
  187. int sv, cv;
  188. int st, ct;
  189. idx = a >> 26;
  190. sign = (idx << 27) >> 31;
  191. cv = av_costbl_1_sf[idx & 0xf];
  192. cv = (cv ^ sign) - sign;
  193. idx -= 8;
  194. sign = (idx << 27) >> 31;
  195. sv = av_costbl_1_sf[idx & 0xf];
  196. sv = (sv ^ sign) - sign;
  197. idx = a >> 21;
  198. ct = av_costbl_2_sf[idx & 0x1f];
  199. st = av_sintbl_2_sf[idx & 0x1f];
  200. idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
  201. sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
  202. cv = idx;
  203. idx = a >> 16;
  204. ct = av_costbl_3_sf[idx & 0x1f];
  205. st = av_sintbl_3_sf[idx & 0x1f];
  206. idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
  207. sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
  208. cv = idx;
  209. idx = a >> 11;
  210. ct = (int)(((int64_t)av_costbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
  211. (int64_t)av_costbl_4_sf[(idx & 0x1f)+1]*(a & 0x7ff) +
  212. 0x400) >> 11);
  213. st = (int)(((int64_t)av_sintbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
  214. (int64_t)av_sintbl_4_sf[(idx & 0x1f) + 1] * (a & 0x7ff) +
  215. 0x400) >> 11);
  216. *c = (int)(((int64_t)cv * ct + (int64_t)sv * st + 0x20000000) >> 30);
  217. *s = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
  218. }
  219. #endif /* AVUTIL_SOFTFLOAT_H */