You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

169 lines
5.3KB

  1. /*
  2. * FFT/IFFT transforms
  3. * AltiVec-enabled
  4. * Copyright (c) 2009 Loren Merritt
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "config.h"
  23. #include "libavutil/cpu.h"
  24. #include "libavutil/ppc/cpu.h"
  25. #include "libavutil/ppc/types_altivec.h"
  26. #include "libavutil/ppc/util_altivec.h"
  27. #include "libavcodec/fft.h"
  28. /**
  29. * Do a complex FFT with the parameters defined in ff_fft_init().
  30. * The input data must be permuted before with s->revtab table.
  31. * No 1.0 / sqrt(n) normalization is done.
  32. * AltiVec-enabled:
  33. * This code assumes that the 'z' pointer is 16 bytes-aligned.
  34. * It also assumes all FFTComplex are 8 bytes-aligned pairs of floats.
  35. */
  36. #if HAVE_VSX
  37. #include "fft_vsx.h"
  38. #else
  39. void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
  40. void ff_fft_calc_interleave_altivec(FFTContext *s, FFTComplex *z);
  41. #endif
  42. #if HAVE_GNU_AS && HAVE_ALTIVEC
  43. static void imdct_half_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
  44. {
  45. int j, k;
  46. int n = 1 << s->mdct_bits;
  47. int n4 = n >> 2;
  48. int n8 = n >> 3;
  49. int n32 = n >> 5;
  50. const uint16_t *revtabj = s->revtab;
  51. const uint16_t *revtabk = s->revtab+n4;
  52. const vec_f *tcos = (const vec_f*)(s->tcos+n8);
  53. const vec_f *tsin = (const vec_f*)(s->tsin+n8);
  54. const vec_f *pin = (const vec_f*)(input+n4);
  55. vec_f *pout = (vec_f*)(output+n4);
  56. /* pre rotation */
  57. k = n32-1;
  58. do {
  59. vec_f cos,sin,cos0,sin0,cos1,sin1,re,im,r0,i0,r1,i1,a,b,c,d;
  60. #define CMULA(p,o0,o1,o2,o3)\
  61. a = pin[ k*2+p]; /* { z[k].re, z[k].im, z[k+1].re, z[k+1].im } */\
  62. b = pin[-k*2-p-1]; /* { z[-k-2].re, z[-k-2].im, z[-k-1].re, z[-k-1].im } */\
  63. re = vec_perm(a, b, vcprm(0,2,s0,s2)); /* { z[k].re, z[k+1].re, z[-k-2].re, z[-k-1].re } */\
  64. im = vec_perm(a, b, vcprm(s3,s1,3,1)); /* { z[-k-1].im, z[-k-2].im, z[k+1].im, z[k].im } */\
  65. cos = vec_perm(cos0, cos1, vcprm(o0,o1,s##o2,s##o3)); /* { cos[k], cos[k+1], cos[-k-2], cos[-k-1] } */\
  66. sin = vec_perm(sin0, sin1, vcprm(o0,o1,s##o2,s##o3));\
  67. r##p = im*cos - re*sin;\
  68. i##p = re*cos + im*sin;
  69. #define STORE2(v,dst)\
  70. j = dst;\
  71. vec_ste(v, 0, output+j*2);\
  72. vec_ste(v, 4, output+j*2);
  73. #define STORE8(p)\
  74. a = vec_perm(r##p, i##p, vcprm(0,s0,0,s0));\
  75. b = vec_perm(r##p, i##p, vcprm(1,s1,1,s1));\
  76. c = vec_perm(r##p, i##p, vcprm(2,s2,2,s2));\
  77. d = vec_perm(r##p, i##p, vcprm(3,s3,3,s3));\
  78. STORE2(a, revtabk[ p*2-4]);\
  79. STORE2(b, revtabk[ p*2-3]);\
  80. STORE2(c, revtabj[-p*2+2]);\
  81. STORE2(d, revtabj[-p*2+3]);
  82. cos0 = tcos[k];
  83. sin0 = tsin[k];
  84. cos1 = tcos[-k-1];
  85. sin1 = tsin[-k-1];
  86. CMULA(0, 0,1,2,3);
  87. CMULA(1, 2,3,0,1);
  88. STORE8(0);
  89. STORE8(1);
  90. revtabj += 4;
  91. revtabk -= 4;
  92. k--;
  93. } while(k >= 0);
  94. #if HAVE_VSX
  95. ff_fft_calc_vsx(s, (FFTComplex*)output);
  96. #else
  97. ff_fft_calc_altivec(s, (FFTComplex*)output);
  98. #endif
  99. /* post rotation + reordering */
  100. j = -n32;
  101. k = n32-1;
  102. do {
  103. vec_f cos,sin,re,im,a,b,c,d;
  104. #define CMULB(d0,d1,o)\
  105. re = pout[o*2];\
  106. im = pout[o*2+1];\
  107. cos = tcos[o];\
  108. sin = tsin[o];\
  109. d0 = im*sin - re*cos;\
  110. d1 = re*sin + im*cos;
  111. CMULB(a,b,j);
  112. CMULB(c,d,k);
  113. pout[2*j] = vec_perm(a, d, vcprm(0,s3,1,s2));
  114. pout[2*j+1] = vec_perm(a, d, vcprm(2,s1,3,s0));
  115. pout[2*k] = vec_perm(c, b, vcprm(0,s3,1,s2));
  116. pout[2*k+1] = vec_perm(c, b, vcprm(2,s1,3,s0));
  117. j++;
  118. k--;
  119. } while(k >= 0);
  120. }
  121. static void imdct_calc_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
  122. {
  123. int k;
  124. int n = 1 << s->mdct_bits;
  125. int n4 = n >> 2;
  126. int n16 = n >> 4;
  127. vec_u32 sign = {1U<<31,1U<<31,1U<<31,1U<<31};
  128. vec_u32 *p0 = (vec_u32*)(output+n4);
  129. vec_u32 *p1 = (vec_u32*)(output+n4*3);
  130. imdct_half_altivec(s, output + n4, input);
  131. for (k = 0; k < n16; k++) {
  132. vec_u32 a = p0[k] ^ sign;
  133. vec_u32 b = p1[-k-1];
  134. p0[-k-1] = vec_perm(a, a, vcprm(3,2,1,0));
  135. p1[k] = vec_perm(b, b, vcprm(3,2,1,0));
  136. }
  137. }
  138. #endif /* HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN */
  139. av_cold void ff_fft_init_ppc(FFTContext *s)
  140. {
  141. #if HAVE_GNU_AS && HAVE_ALTIVEC
  142. if (!PPC_ALTIVEC(av_get_cpu_flags()))
  143. return;
  144. #if HAVE_VSX
  145. s->fft_calc = ff_fft_calc_interleave_vsx;
  146. #else
  147. s->fft_calc = ff_fft_calc_interleave_altivec;
  148. #endif
  149. if (s->mdct_bits >= 5) {
  150. s->imdct_calc = imdct_calc_altivec;
  151. s->imdct_half = imdct_half_altivec;
  152. }
  153. #endif /* HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN */
  154. }