You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

294 lines
8.6KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. * Note: Rounding-to-nearest used unless otherwise stated
  23. *
  24. */
  25. #define USE_FIXED 1
  26. #include "aac.h"
  27. #include "config.h"
  28. #include "libavutil/attributes.h"
  29. #include "libavutil/intfloat.h"
  30. #include "sbrdsp.h"
  31. static SoftFloat sbr_sum_square_c(int (*x)[2], int n)
  32. {
  33. SoftFloat ret;
  34. uint64_t accu = 0, round;
  35. int i, nz;
  36. unsigned u;
  37. for (i = 0; i < n; i += 2) {
  38. // Larger values are inavlid and could cause overflows of accu.
  39. av_assert2(FFABS(x[i + 0][0]) >> 29 == 0);
  40. accu += (int64_t)x[i + 0][0] * x[i + 0][0];
  41. av_assert2(FFABS(x[i + 0][1]) >> 29 == 0);
  42. accu += (int64_t)x[i + 0][1] * x[i + 0][1];
  43. av_assert2(FFABS(x[i + 1][0]) >> 29 == 0);
  44. accu += (int64_t)x[i + 1][0] * x[i + 1][0];
  45. av_assert2(FFABS(x[i + 1][1]) >> 29 == 0);
  46. accu += (int64_t)x[i + 1][1] * x[i + 1][1];
  47. }
  48. u = accu >> 32;
  49. if (u == 0) {
  50. nz = 1;
  51. } else {
  52. nz = -1;
  53. while (u < 0x80000000U) {
  54. u <<= 1;
  55. nz++;
  56. }
  57. nz = 32 - nz;
  58. }
  59. round = 1ULL << (nz-1);
  60. u = ((accu + round) >> nz);
  61. u >>= 1;
  62. ret = av_int2sf(u, 15 - nz);
  63. return ret;
  64. }
  65. static void sbr_neg_odd_64_c(int *x)
  66. {
  67. int i;
  68. for (i = 1; i < 64; i += 2)
  69. x[i] = -x[i];
  70. }
  71. static void sbr_qmf_pre_shuffle_c(int *z)
  72. {
  73. int k;
  74. z[64] = z[0];
  75. z[65] = z[1];
  76. for (k = 1; k < 32; k++) {
  77. z[64+2*k ] = -z[64 - k];
  78. z[64+2*k+1] = z[ k + 1];
  79. }
  80. }
  81. static void sbr_qmf_post_shuffle_c(int W[32][2], const int *z)
  82. {
  83. int k;
  84. for (k = 0; k < 32; k++) {
  85. W[k][0] = -z[63-k];
  86. W[k][1] = z[k];
  87. }
  88. }
  89. static void sbr_qmf_deint_neg_c(int *v, const int *src)
  90. {
  91. int i;
  92. for (i = 0; i < 32; i++) {
  93. v[ i] = ( src[63 - 2*i ] + 0x10) >> 5;
  94. v[63 - i] = (-src[63 - 2*i - 1] + 0x10) >> 5;
  95. }
  96. }
  97. static av_always_inline SoftFloat autocorr_calc(int64_t accu)
  98. {
  99. int nz, mant, expo;
  100. unsigned round;
  101. int i = (int)(accu >> 32);
  102. if (i == 0) {
  103. nz = 1;
  104. } else {
  105. nz = 0;
  106. while (FFABS(i) < 0x40000000) {
  107. i *= 2;
  108. nz++;
  109. }
  110. nz = 32-nz;
  111. }
  112. round = 1U << (nz-1);
  113. mant = (int)((accu + round) >> nz);
  114. mant = (mant + 0x40)>>7;
  115. mant *= 64;
  116. expo = nz + 15;
  117. return av_int2sf(mant, 30 - expo);
  118. }
  119. static av_always_inline void autocorrelate(const int x[40][2], SoftFloat phi[3][2][2], int lag)
  120. {
  121. int i;
  122. int64_t real_sum, imag_sum;
  123. int64_t accu_re = 0, accu_im = 0;
  124. if (lag) {
  125. for (i = 1; i < 38; i++) {
  126. accu_re += (int64_t)x[i][0] * x[i+lag][0];
  127. accu_re += (int64_t)x[i][1] * x[i+lag][1];
  128. accu_im += (int64_t)x[i][0] * x[i+lag][1];
  129. accu_im -= (int64_t)x[i][1] * x[i+lag][0];
  130. }
  131. real_sum = accu_re;
  132. imag_sum = accu_im;
  133. accu_re += (int64_t)x[ 0][0] * x[lag][0];
  134. accu_re += (int64_t)x[ 0][1] * x[lag][1];
  135. accu_im += (int64_t)x[ 0][0] * x[lag][1];
  136. accu_im -= (int64_t)x[ 0][1] * x[lag][0];
  137. phi[2-lag][1][0] = autocorr_calc(accu_re);
  138. phi[2-lag][1][1] = autocorr_calc(accu_im);
  139. if (lag == 1) {
  140. accu_re = real_sum;
  141. accu_im = imag_sum;
  142. accu_re += (int64_t)x[38][0] * x[39][0];
  143. accu_re += (int64_t)x[38][1] * x[39][1];
  144. accu_im += (int64_t)x[38][0] * x[39][1];
  145. accu_im -= (int64_t)x[38][1] * x[39][0];
  146. phi[0][0][0] = autocorr_calc(accu_re);
  147. phi[0][0][1] = autocorr_calc(accu_im);
  148. }
  149. } else {
  150. for (i = 1; i < 38; i++) {
  151. accu_re += (int64_t)x[i][0] * x[i][0];
  152. accu_re += (int64_t)x[i][1] * x[i][1];
  153. }
  154. real_sum = accu_re;
  155. accu_re += (int64_t)x[ 0][0] * x[ 0][0];
  156. accu_re += (int64_t)x[ 0][1] * x[ 0][1];
  157. phi[2][1][0] = autocorr_calc(accu_re);
  158. accu_re = real_sum;
  159. accu_re += (int64_t)x[38][0] * x[38][0];
  160. accu_re += (int64_t)x[38][1] * x[38][1];
  161. phi[1][0][0] = autocorr_calc(accu_re);
  162. }
  163. }
  164. static void sbr_autocorrelate_c(const int x[40][2], SoftFloat phi[3][2][2])
  165. {
  166. autocorrelate(x, phi, 0);
  167. autocorrelate(x, phi, 1);
  168. autocorrelate(x, phi, 2);
  169. }
  170. static void sbr_hf_gen_c(int (*X_high)[2], const int (*X_low)[2],
  171. const int alpha0[2], const int alpha1[2],
  172. int bw, int start, int end)
  173. {
  174. int alpha[4];
  175. int i;
  176. int64_t accu;
  177. accu = (int64_t)alpha0[0] * bw;
  178. alpha[2] = (int)((accu + 0x40000000) >> 31);
  179. accu = (int64_t)alpha0[1] * bw;
  180. alpha[3] = (int)((accu + 0x40000000) >> 31);
  181. accu = (int64_t)bw * bw;
  182. bw = (int)((accu + 0x40000000) >> 31);
  183. accu = (int64_t)alpha1[0] * bw;
  184. alpha[0] = (int)((accu + 0x40000000) >> 31);
  185. accu = (int64_t)alpha1[1] * bw;
  186. alpha[1] = (int)((accu + 0x40000000) >> 31);
  187. for (i = start; i < end; i++) {
  188. accu = (int64_t)X_low[i][0] * 0x20000000;
  189. accu += (int64_t)X_low[i - 2][0] * alpha[0];
  190. accu -= (int64_t)X_low[i - 2][1] * alpha[1];
  191. accu += (int64_t)X_low[i - 1][0] * alpha[2];
  192. accu -= (int64_t)X_low[i - 1][1] * alpha[3];
  193. X_high[i][0] = (int)((accu + 0x10000000) >> 29);
  194. accu = (int64_t)X_low[i][1] * 0x20000000;
  195. accu += (int64_t)X_low[i - 2][1] * alpha[0];
  196. accu += (int64_t)X_low[i - 2][0] * alpha[1];
  197. accu += (int64_t)X_low[i - 1][1] * alpha[2];
  198. accu += (int64_t)X_low[i - 1][0] * alpha[3];
  199. X_high[i][1] = (int)((accu + 0x10000000) >> 29);
  200. }
  201. }
  202. static void sbr_hf_g_filt_c(int (*Y)[2], const int (*X_high)[40][2],
  203. const SoftFloat *g_filt, int m_max, intptr_t ixh)
  204. {
  205. int m, r;
  206. int64_t accu;
  207. for (m = 0; m < m_max; m++) {
  208. r = 1 << (22-g_filt[m].exp);
  209. accu = (int64_t)X_high[m][ixh][0] * ((g_filt[m].mant + 0x40)>>7);
  210. Y[m][0] = (int)((accu + r) >> (23-g_filt[m].exp));
  211. accu = (int64_t)X_high[m][ixh][1] * ((g_filt[m].mant + 0x40)>>7);
  212. Y[m][1] = (int)((accu + r) >> (23-g_filt[m].exp));
  213. }
  214. }
  215. static av_always_inline void sbr_hf_apply_noise(int (*Y)[2],
  216. const SoftFloat *s_m,
  217. const SoftFloat *q_filt,
  218. int noise,
  219. int phi_sign0,
  220. int phi_sign1,
  221. int m_max)
  222. {
  223. int m;
  224. for (m = 0; m < m_max; m++) {
  225. int y0 = Y[m][0];
  226. int y1 = Y[m][1];
  227. noise = (noise + 1) & 0x1ff;
  228. if (s_m[m].mant) {
  229. int shift, round;
  230. shift = 22 - s_m[m].exp;
  231. if (shift < 30) {
  232. round = 1 << (shift-1);
  233. y0 += (s_m[m].mant * phi_sign0 + round) >> shift;
  234. y1 += (s_m[m].mant * phi_sign1 + round) >> shift;
  235. }
  236. } else {
  237. int shift, round, tmp;
  238. int64_t accu;
  239. shift = 22 - q_filt[m].exp;
  240. if (shift < 30) {
  241. round = 1 << (shift-1);
  242. accu = (int64_t)q_filt[m].mant * ff_sbr_noise_table_fixed[noise][0];
  243. tmp = (int)((accu + 0x40000000) >> 31);
  244. y0 += (tmp + round) >> shift;
  245. accu = (int64_t)q_filt[m].mant * ff_sbr_noise_table_fixed[noise][1];
  246. tmp = (int)((accu + 0x40000000) >> 31);
  247. y1 += (tmp + round) >> shift;
  248. }
  249. }
  250. Y[m][0] = y0;
  251. Y[m][1] = y1;
  252. phi_sign1 = -phi_sign1;
  253. }
  254. }
  255. #include "sbrdsp_template.c"