You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

137 lines
6.1KB

  1. /*
  2. * AAC encoder intensity stereo
  3. * Copyright (C) 2015 Rostislav Pehlivanov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder Intensity Stereo
  24. * @author Rostislav Pehlivanov ( atomnuker gmail com )
  25. */
  26. #include "aacenc.h"
  27. #include "aacenc_utils.h"
  28. #include "aacenc_is.h"
  29. #include "aacenc_quantization.h"
  30. struct AACISError ff_aac_is_encoding_err(AACEncContext *s, ChannelElement *cpe,
  31. int start, int w, int g, float ener0,
  32. float ener1, float ener01, int phase)
  33. {
  34. int i, w2;
  35. float *L34 = &s->scoefs[256*0], *R34 = &s->scoefs[256*1];
  36. float *IS = &s->scoefs[256*2], *I34 = &s->scoefs[256*3];
  37. float dist1 = 0.0f, dist2 = 0.0f;
  38. struct AACISError is_error = {0};
  39. SingleChannelElement *sce0 = &cpe->ch[0];
  40. SingleChannelElement *sce1 = &cpe->ch[1];
  41. for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
  42. FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
  43. FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
  44. int is_band_type, is_sf_idx = FFMAX(1, sce0->sf_idx[(w+w2)*16+g]-4);
  45. float e01_34 = phase*pow(sqrt(ener1/ener0), 3.0/4.0);
  46. float maxval, dist_spec_err = 0.0f;
  47. float minthr = FFMIN(band0->threshold, band1->threshold);
  48. for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
  49. IS[i] = (sce0->pcoeffs[start+(w+w2)*128+i]+
  50. phase*sce1->pcoeffs[start+(w+w2)*128+i])*
  51. sqrt(ener0/ener01);
  52. }
  53. abs_pow34_v(L34, &sce0->coeffs[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
  54. abs_pow34_v(R34, &sce1->coeffs[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
  55. abs_pow34_v(I34, IS, sce0->ics.swb_sizes[g]);
  56. maxval = find_max_val(1, sce0->ics.swb_sizes[g], I34);
  57. is_band_type = find_min_book(maxval, is_sf_idx);
  58. dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128], L34,
  59. sce0->ics.swb_sizes[g],
  60. sce0->sf_idx[(w+w2)*16+g],
  61. sce0->band_type[(w+w2)*16+g],
  62. s->lambda / band0->threshold, INFINITY, NULL, 0);
  63. dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128], R34,
  64. sce1->ics.swb_sizes[g],
  65. sce1->sf_idx[(w+w2)*16+g],
  66. sce1->band_type[(w+w2)*16+g],
  67. s->lambda / band1->threshold, INFINITY, NULL, 0);
  68. dist2 += quantize_band_cost(s, IS, I34, sce0->ics.swb_sizes[g],
  69. is_sf_idx, is_band_type,
  70. s->lambda / minthr, INFINITY, NULL, 0);
  71. for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
  72. dist_spec_err += (L34[i] - I34[i])*(L34[i] - I34[i]);
  73. dist_spec_err += (R34[i] - I34[i]*e01_34)*(R34[i] - I34[i]*e01_34);
  74. }
  75. dist_spec_err *= s->lambda / minthr;
  76. dist2 += dist_spec_err;
  77. }
  78. is_error.pass = dist2 <= dist1;
  79. is_error.phase = phase;
  80. is_error.error = fabsf(dist1 - dist2);
  81. is_error.dist1 = dist1;
  82. is_error.dist2 = dist2;
  83. return is_error;
  84. }
  85. void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
  86. {
  87. SingleChannelElement *sce0 = &cpe->ch[0];
  88. SingleChannelElement *sce1 = &cpe->ch[1];
  89. int start = 0, count = 0, w, w2, g, i;
  90. const float freq_mult = avctx->sample_rate/(1024.0f/sce0->ics.num_windows)/2.0f;
  91. if (!cpe->common_window)
  92. return;
  93. for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
  94. start = 0;
  95. for (g = 0; g < sce0->ics.num_swb; g++) {
  96. if (start*freq_mult > INT_STEREO_LOW_LIMIT*(s->lambda/170.0f) &&
  97. cpe->ch[0].band_type[w*16+g] != NOISE_BT && !cpe->ch[0].zeroes[w*16+g] &&
  98. cpe->ch[1].band_type[w*16+g] != NOISE_BT && !cpe->ch[1].zeroes[w*16+g]) {
  99. float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f;
  100. struct AACISError ph_err1, ph_err2, *erf;
  101. for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
  102. for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
  103. float coef0 = sce0->pcoeffs[start+(w+w2)*128+i];
  104. float coef1 = sce1->pcoeffs[start+(w+w2)*128+i];
  105. ener0 += coef0*coef0;
  106. ener1 += coef1*coef1;
  107. ener01 += (coef0 + coef1)*(coef0 + coef1);
  108. }
  109. }
  110. ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
  111. ener0, ener1, ener01, -1);
  112. ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
  113. ener0, ener1, ener01, +1);
  114. erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2;
  115. if (erf->pass) {
  116. cpe->is_mask[w*16+g] = 1;
  117. cpe->ch[0].is_ener[w*16+g] = sqrt(ener0/ener01);
  118. cpe->ch[1].is_ener[w*16+g] = ener0/ener1;
  119. cpe->ch[1].band_type[w*16+g] = erf->phase ? INTENSITY_BT : INTENSITY_BT2;
  120. count++;
  121. }
  122. }
  123. start += sce0->ics.swb_sizes[g];
  124. }
  125. }
  126. cpe->is_mode = !!count;
  127. }