You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1031 lines
33KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project.
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * ftp://ftp.mplayerhq.hu/MPlayer/samples/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #ifdef CONFIG_ZLIB
  42. #include <zlib.h>
  43. #endif
  44. #include "svq1.h"
  45. /**
  46. * @file svq3.c
  47. * svq3 decoder.
  48. */
  49. #define FULLPEL_MODE 1
  50. #define HALFPEL_MODE 2
  51. #define THIRDPEL_MODE 3
  52. #define PREDICT_MODE 4
  53. /* dual scan (from some older h264 draft)
  54. o-->o-->o o
  55. | /|
  56. o o o / o
  57. | / | |/ |
  58. o o o o
  59. /
  60. o-->o-->o-->o
  61. */
  62. static const uint8_t svq3_scan[16]={
  63. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  64. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  65. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  66. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  67. };
  68. static const uint8_t svq3_pred_0[25][2] = {
  69. { 0, 0 },
  70. { 1, 0 }, { 0, 1 },
  71. { 0, 2 }, { 1, 1 }, { 2, 0 },
  72. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  73. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  74. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  75. { 2, 4 }, { 3, 3 }, { 4, 2 },
  76. { 4, 3 }, { 3, 4 },
  77. { 4, 4 }
  78. };
  79. static const int8_t svq3_pred_1[6][6][5] = {
  80. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  81. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  82. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  83. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  84. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  85. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  86. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  87. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  88. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  89. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  90. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  91. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  92. };
  93. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  94. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  95. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  96. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  97. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  98. };
  99. static const uint32_t svq3_dequant_coeff[32] = {
  100. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  101. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  102. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  103. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  104. };
  105. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
  106. const int qmul= svq3_dequant_coeff[qp];
  107. #define stride 16
  108. int i;
  109. int temp[16];
  110. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  111. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  112. for(i=0; i<4; i++){
  113. const int offset= y_offset[i];
  114. const int z0= 13*(block[offset+stride*0] + block[offset+stride*4]);
  115. const int z1= 13*(block[offset+stride*0] - block[offset+stride*4]);
  116. const int z2= 7* block[offset+stride*1] - 17*block[offset+stride*5];
  117. const int z3= 17* block[offset+stride*1] + 7*block[offset+stride*5];
  118. temp[4*i+0]= z0+z3;
  119. temp[4*i+1]= z1+z2;
  120. temp[4*i+2]= z1-z2;
  121. temp[4*i+3]= z0-z3;
  122. }
  123. for(i=0; i<4; i++){
  124. const int offset= x_offset[i];
  125. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  126. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  127. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  128. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  129. block[stride*0 +offset]= ((z0 + z3)*qmul + 0x80000)>>20;
  130. block[stride*2 +offset]= ((z1 + z2)*qmul + 0x80000)>>20;
  131. block[stride*8 +offset]= ((z1 - z2)*qmul + 0x80000)>>20;
  132. block[stride*10+offset]= ((z0 - z3)*qmul + 0x80000)>>20;
  133. }
  134. }
  135. #undef stride
  136. static void svq3_add_idct_c (uint8_t *dst, DCTELEM *block, int stride, int qp, int dc){
  137. const int qmul= svq3_dequant_coeff[qp];
  138. int i;
  139. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  140. if (dc) {
  141. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  142. block[0] = 0;
  143. }
  144. for (i=0; i < 4; i++) {
  145. const int z0= 13*(block[0 + 4*i] + block[2 + 4*i]);
  146. const int z1= 13*(block[0 + 4*i] - block[2 + 4*i]);
  147. const int z2= 7* block[1 + 4*i] - 17*block[3 + 4*i];
  148. const int z3= 17* block[1 + 4*i] + 7*block[3 + 4*i];
  149. block[0 + 4*i]= z0 + z3;
  150. block[1 + 4*i]= z1 + z2;
  151. block[2 + 4*i]= z1 - z2;
  152. block[3 + 4*i]= z0 - z3;
  153. }
  154. for (i=0; i < 4; i++) {
  155. const int z0= 13*(block[i + 4*0] + block[i + 4*2]);
  156. const int z1= 13*(block[i + 4*0] - block[i + 4*2]);
  157. const int z2= 7* block[i + 4*1] - 17*block[i + 4*3];
  158. const int z3= 17* block[i + 4*1] + 7*block[i + 4*3];
  159. const int rr= (dc + 0x80000);
  160. dst[i + stride*0]= cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  161. dst[i + stride*1]= cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  162. dst[i + stride*2]= cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  163. dst[i + stride*3]= cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  164. }
  165. }
  166. static inline int svq3_decode_block (GetBitContext *gb, DCTELEM *block,
  167. int index, const int type) {
  168. static const uint8_t *const scan_patterns[4] =
  169. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  170. int run, level, sign, vlc, limit;
  171. const int intra = (3 * type) >> 2;
  172. const uint8_t *const scan = scan_patterns[type];
  173. for (limit=(16 >> intra); index < 16; index=limit, limit+=8) {
  174. for (; (vlc = svq3_get_ue_golomb (gb)) != 0; index++) {
  175. if (vlc == INVALID_VLC)
  176. return -1;
  177. sign = (vlc & 0x1) - 1;
  178. vlc = (vlc + 1) >> 1;
  179. if (type == 3) {
  180. if (vlc < 3) {
  181. run = 0;
  182. level = vlc;
  183. } else if (vlc < 4) {
  184. run = 1;
  185. level = 1;
  186. } else {
  187. run = (vlc & 0x3);
  188. level = ((vlc + 9) >> 2) - run;
  189. }
  190. } else {
  191. if (vlc < 16) {
  192. run = svq3_dct_tables[intra][vlc].run;
  193. level = svq3_dct_tables[intra][vlc].level;
  194. } else if (intra) {
  195. run = (vlc & 0x7);
  196. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  197. } else {
  198. run = (vlc & 0xF);
  199. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  200. }
  201. }
  202. if ((index += run) >= limit)
  203. return -1;
  204. block[scan[index]] = (level ^ sign) - sign;
  205. }
  206. if (type != 2) {
  207. break;
  208. }
  209. }
  210. return 0;
  211. }
  212. static inline void svq3_mc_dir_part (MpegEncContext *s,
  213. int x, int y, int width, int height,
  214. int mx, int my, int dxy,
  215. int thirdpel, int dir, int avg) {
  216. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  217. uint8_t *src, *dest;
  218. int i, emu = 0;
  219. int blocksize= 2 - (width>>3); //16->0, 8->1, 4->2
  220. mx += x;
  221. my += y;
  222. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  223. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  224. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  225. emu = 1;
  226. }
  227. mx = av_clip (mx, -16, (s->h_edge_pos - width + 15));
  228. my = av_clip (my, -16, (s->v_edge_pos - height + 15));
  229. }
  230. /* form component predictions */
  231. dest = s->current_picture.data[0] + x + y*s->linesize;
  232. src = pic->data[0] + mx + my*s->linesize;
  233. if (emu) {
  234. ff_emulated_edge_mc (s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
  235. mx, my, s->h_edge_pos, s->v_edge_pos);
  236. src = s->edge_emu_buffer;
  237. }
  238. if(thirdpel)
  239. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
  240. else
  241. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
  242. if (!(s->flags & CODEC_FLAG_GRAY)) {
  243. mx = (mx + (mx < (int) x)) >> 1;
  244. my = (my + (my < (int) y)) >> 1;
  245. width = (width >> 1);
  246. height = (height >> 1);
  247. blocksize++;
  248. for (i=1; i < 3; i++) {
  249. dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;
  250. src = pic->data[i] + mx + my*s->uvlinesize;
  251. if (emu) {
  252. ff_emulated_edge_mc (s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
  253. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  254. src = s->edge_emu_buffer;
  255. }
  256. if(thirdpel)
  257. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
  258. else
  259. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
  260. }
  261. }
  262. }
  263. static inline int svq3_mc_dir (H264Context *h, int size, int mode, int dir, int avg) {
  264. int i, j, k, mx, my, dx, dy, x, y;
  265. MpegEncContext *const s = (MpegEncContext *) h;
  266. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  267. const int part_height = 16 >> ((unsigned) (size + 1) / 3);
  268. const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;
  269. const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width;
  270. const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width;
  271. for (i=0; i < 16; i+=part_height) {
  272. for (j=0; j < 16; j+=part_width) {
  273. const int b_xy = (4*s->mb_x+(j>>2)) + (4*s->mb_y+(i>>2))*h->b_stride;
  274. int dxy;
  275. x = 16*s->mb_x + j;
  276. y = 16*s->mb_y + i;
  277. k = ((j>>2)&1) + ((i>>1)&2) + ((j>>1)&4) + (i&8);
  278. if (mode != PREDICT_MODE) {
  279. pred_motion (h, k, (part_width >> 2), dir, 1, &mx, &my);
  280. } else {
  281. mx = s->next_picture.motion_val[0][b_xy][0]<<1;
  282. my = s->next_picture.motion_val[0][b_xy][1]<<1;
  283. if (dir == 0) {
  284. mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1)>>1;
  285. my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1)>>1;
  286. } else {
  287. mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1)>>1;
  288. my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1)>>1;
  289. }
  290. }
  291. /* clip motion vector prediction to frame border */
  292. mx = av_clip (mx, extra_width - 6*x, h_edge_pos - 6*x);
  293. my = av_clip (my, extra_width - 6*y, v_edge_pos - 6*y);
  294. /* get (optional) motion vector differential */
  295. if (mode == PREDICT_MODE) {
  296. dx = dy = 0;
  297. } else {
  298. dy = svq3_get_se_golomb (&s->gb);
  299. dx = svq3_get_se_golomb (&s->gb);
  300. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  301. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  302. return -1;
  303. }
  304. }
  305. /* compute motion vector */
  306. if (mode == THIRDPEL_MODE) {
  307. int fx, fy;
  308. mx = ((mx + 1)>>1) + dx;
  309. my = ((my + 1)>>1) + dy;
  310. fx= ((unsigned)(mx + 0x3000))/3 - 0x1000;
  311. fy= ((unsigned)(my + 0x3000))/3 - 0x1000;
  312. dxy= (mx - 3*fx) + 4*(my - 3*fy);
  313. svq3_mc_dir_part (s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
  314. mx += mx;
  315. my += my;
  316. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  317. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  318. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  319. dxy= (mx&1) + 2*(my&1);
  320. svq3_mc_dir_part (s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
  321. mx *= 3;
  322. my *= 3;
  323. } else {
  324. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  325. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  326. svq3_mc_dir_part (s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
  327. mx *= 6;
  328. my *= 6;
  329. }
  330. /* update mv_cache */
  331. if (mode != PREDICT_MODE) {
  332. int32_t mv = pack16to32(mx,my);
  333. if (part_height == 8 && i < 8) {
  334. *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;
  335. if (part_width == 8 && j < 8) {
  336. *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;
  337. }
  338. }
  339. if (part_width == 8 && j < 8) {
  340. *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;
  341. }
  342. if (part_width == 4 || part_height == 4) {
  343. *(int32_t *) h->mv_cache[dir][scan8[k]] = mv;
  344. }
  345. }
  346. /* write back motion vectors */
  347. fill_rectangle(s->current_picture.motion_val[dir][b_xy], part_width>>2, part_height>>2, h->b_stride, pack16to32(mx,my), 4);
  348. }
  349. }
  350. return 0;
  351. }
  352. static int svq3_decode_mb (H264Context *h, unsigned int mb_type) {
  353. int i, j, k, m, dir, mode;
  354. int cbp = 0;
  355. uint32_t vlc;
  356. int8_t *top, *left;
  357. MpegEncContext *const s = (MpegEncContext *) h;
  358. const int mb_xy = h->mb_xy;
  359. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  360. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  361. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  362. h->topright_samples_available = 0xFFFF;
  363. if (mb_type == 0) { /* SKIP */
  364. if (s->pict_type == FF_P_TYPE || s->next_picture.mb_type[mb_xy] == -1) {
  365. svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
  366. if (s->pict_type == FF_B_TYPE) {
  367. svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);
  368. }
  369. mb_type = MB_TYPE_SKIP;
  370. } else {
  371. mb_type= FFMIN(s->next_picture.mb_type[mb_xy], 6);
  372. if(svq3_mc_dir (h, mb_type, PREDICT_MODE, 0, 0) < 0)
  373. return -1;
  374. if(svq3_mc_dir (h, mb_type, PREDICT_MODE, 1, 1) < 0)
  375. return -1;
  376. mb_type = MB_TYPE_16x16;
  377. }
  378. } else if (mb_type < 8) { /* INTER */
  379. if (h->thirdpel_flag && h->halfpel_flag == !get_bits1 (&s->gb)) {
  380. mode = THIRDPEL_MODE;
  381. } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits1 (&s->gb)) {
  382. mode = HALFPEL_MODE;
  383. } else {
  384. mode = FULLPEL_MODE;
  385. }
  386. /* fill caches */
  387. /* note ref_cache should contain here:
  388. ????????
  389. ???11111
  390. N??11111
  391. N??11111
  392. N??11111
  393. */
  394. for (m=0; m < 2; m++) {
  395. if (s->mb_x > 0 && h->intra4x4_pred_mode[mb_xy - 1][0] != -1) {
  396. for (i=0; i < 4; i++) {
  397. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - 1 + i*h->b_stride];
  398. }
  399. } else {
  400. for (i=0; i < 4; i++) {
  401. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
  402. }
  403. }
  404. if (s->mb_y > 0) {
  405. memcpy (h->mv_cache[m][scan8[0] - 1*8], s->current_picture.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  406. memset (&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  407. if (s->mb_x < (s->mb_width - 1)) {
  408. *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride + 4];
  409. h->ref_cache[m][scan8[0] + 4 - 1*8] =
  410. (h->intra4x4_pred_mode[mb_xy - s->mb_stride + 1][0] == -1 ||
  411. h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1;
  412. }else
  413. h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  414. if (s->mb_x > 0) {
  415. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride - 1];
  416. h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] == -1) ? PART_NOT_AVAILABLE : 1;
  417. }else
  418. h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  419. }else
  420. memset (&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  421. if (s->pict_type != FF_B_TYPE)
  422. break;
  423. }
  424. /* decode motion vector(s) and form prediction(s) */
  425. if (s->pict_type == FF_P_TYPE) {
  426. if(svq3_mc_dir (h, (mb_type - 1), mode, 0, 0) < 0)
  427. return -1;
  428. } else { /* FF_B_TYPE */
  429. if (mb_type != 2) {
  430. if(svq3_mc_dir (h, 0, mode, 0, 0) < 0)
  431. return -1;
  432. } else {
  433. for (i=0; i < 4; i++) {
  434. memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  435. }
  436. }
  437. if (mb_type != 1) {
  438. if(svq3_mc_dir (h, 0, mode, 1, (mb_type == 3)) < 0)
  439. return -1;
  440. } else {
  441. for (i=0; i < 4; i++) {
  442. memset (s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  443. }
  444. }
  445. }
  446. mb_type = MB_TYPE_16x16;
  447. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  448. memset (h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  449. if (mb_type == 8) {
  450. if (s->mb_x > 0) {
  451. for (i=0; i < 4; i++) {
  452. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[mb_xy - 1][i];
  453. }
  454. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
  455. h->left_samples_available = 0x5F5F;
  456. }
  457. }
  458. if (s->mb_y > 0) {
  459. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][4];
  460. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][5];
  461. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][6];
  462. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][3];
  463. if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
  464. h->top_samples_available = 0x33FF;
  465. }
  466. }
  467. /* decode prediction codes for luma blocks */
  468. for (i=0; i < 16; i+=2) {
  469. vlc = svq3_get_ue_golomb (&s->gb);
  470. if (vlc >= 25){
  471. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  472. return -1;
  473. }
  474. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  475. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  476. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  477. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  478. if (left[1] == -1 || left[2] == -1){
  479. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  480. return -1;
  481. }
  482. }
  483. } else { /* mb_type == 33, DC_128_PRED block type */
  484. for (i=0; i < 4; i++) {
  485. memset (&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
  486. }
  487. }
  488. write_back_intra_pred_mode (h);
  489. if (mb_type == 8) {
  490. check_intra4x4_pred_mode (h);
  491. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  492. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  493. } else {
  494. for (i=0; i < 4; i++) {
  495. memset (&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
  496. }
  497. h->top_samples_available = 0x33FF;
  498. h->left_samples_available = 0x5F5F;
  499. }
  500. mb_type = MB_TYPE_INTRA4x4;
  501. } else { /* INTRA16x16 */
  502. dir = i_mb_type_info[mb_type - 8].pred_mode;
  503. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  504. if ((h->intra16x16_pred_mode = check_intra_pred_mode (h, dir)) == -1){
  505. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  506. return -1;
  507. }
  508. cbp = i_mb_type_info[mb_type - 8].cbp;
  509. mb_type = MB_TYPE_INTRA16x16;
  510. }
  511. if (!IS_INTER(mb_type) && s->pict_type != FF_I_TYPE) {
  512. for (i=0; i < 4; i++) {
  513. memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  514. }
  515. if (s->pict_type == FF_B_TYPE) {
  516. for (i=0; i < 4; i++) {
  517. memset (s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  518. }
  519. }
  520. }
  521. if (!IS_INTRA4x4(mb_type)) {
  522. memset (h->intra4x4_pred_mode[mb_xy], DC_PRED, 8);
  523. }
  524. if (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE) {
  525. memset (h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t));
  526. s->dsp.clear_blocks(h->mb);
  527. }
  528. if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE)) {
  529. if ((vlc = svq3_get_ue_golomb (&s->gb)) >= 48){
  530. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  531. return -1;
  532. }
  533. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc];
  534. }
  535. if (IS_INTRA16x16(mb_type) || (s->pict_type != FF_I_TYPE && s->adaptive_quant && cbp)) {
  536. s->qscale += svq3_get_se_golomb (&s->gb);
  537. if (s->qscale > 31){
  538. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  539. return -1;
  540. }
  541. }
  542. if (IS_INTRA16x16(mb_type)) {
  543. if (svq3_decode_block (&s->gb, h->mb, 0, 0)){
  544. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n");
  545. return -1;
  546. }
  547. }
  548. if (cbp) {
  549. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  550. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  551. for (i=0; i < 4; i++) {
  552. if ((cbp & (1 << i))) {
  553. for (j=0; j < 4; j++) {
  554. k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  555. h->non_zero_count_cache[ scan8[k] ] = 1;
  556. if (svq3_decode_block (&s->gb, &h->mb[16*k], index, type)){
  557. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n");
  558. return -1;
  559. }
  560. }
  561. }
  562. }
  563. if ((cbp & 0x30)) {
  564. for (i=0; i < 2; ++i) {
  565. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + 4*i)], 0, 3)){
  566. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n");
  567. return -1;
  568. }
  569. }
  570. if ((cbp & 0x20)) {
  571. for (i=0; i < 8; i++) {
  572. h->non_zero_count_cache[ scan8[16+i] ] = 1;
  573. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + i)], 1, 1)){
  574. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n");
  575. return -1;
  576. }
  577. }
  578. }
  579. }
  580. }
  581. s->current_picture.mb_type[mb_xy] = mb_type;
  582. if (IS_INTRA(mb_type)) {
  583. h->chroma_pred_mode = check_intra_pred_mode (h, DC_PRED8x8);
  584. }
  585. return 0;
  586. }
  587. static int svq3_decode_slice_header (H264Context *h) {
  588. MpegEncContext *const s = (MpegEncContext *) h;
  589. const int mb_xy = h->mb_xy;
  590. int i, header;
  591. header = get_bits (&s->gb, 8);
  592. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  593. /* TODO: what? */
  594. av_log(h->s.avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  595. return -1;
  596. } else {
  597. int length = (header >> 5) & 3;
  598. h->next_slice_index = get_bits_count(&s->gb) + 8*show_bits (&s->gb, 8*length) + 8*length;
  599. if (h->next_slice_index > s->gb.size_in_bits){
  600. av_log(h->s.avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  601. return -1;
  602. }
  603. s->gb.size_in_bits = h->next_slice_index - 8*(length - 1);
  604. skip_bits(&s->gb, 8);
  605. if (h->svq3_watermark_key) {
  606. uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1]);
  607. AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1], header ^ h->svq3_watermark_key);
  608. }
  609. if (length > 0) {
  610. memcpy ((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  611. &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
  612. }
  613. }
  614. if ((i = svq3_get_ue_golomb (&s->gb)) == INVALID_VLC || i >= 3){
  615. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  616. return -1;
  617. }
  618. h->slice_type = golomb_to_pict_type[i];
  619. if ((header & 0x9F) == 2) {
  620. i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
  621. s->mb_skip_run = get_bits (&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
  622. } else {
  623. skip_bits1 (&s->gb);
  624. s->mb_skip_run = 0;
  625. }
  626. h->slice_num = get_bits (&s->gb, 8);
  627. s->qscale = get_bits (&s->gb, 5);
  628. s->adaptive_quant = get_bits1 (&s->gb);
  629. /* unknown fields */
  630. skip_bits1 (&s->gb);
  631. if (h->unknown_svq3_flag) {
  632. skip_bits1 (&s->gb);
  633. }
  634. skip_bits1 (&s->gb);
  635. skip_bits (&s->gb, 2);
  636. while (get_bits1 (&s->gb)) {
  637. skip_bits (&s->gb, 8);
  638. }
  639. /* reset intra predictors and invalidate motion vector references */
  640. if (s->mb_x > 0) {
  641. memset (h->intra4x4_pred_mode[mb_xy - 1], -1, 4*sizeof(int8_t));
  642. memset (h->intra4x4_pred_mode[mb_xy - s->mb_x], -1, 8*sizeof(int8_t)*s->mb_x);
  643. }
  644. if (s->mb_y > 0) {
  645. memset (h->intra4x4_pred_mode[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
  646. if (s->mb_x > 0) {
  647. h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] = -1;
  648. }
  649. }
  650. return 0;
  651. }
  652. static int svq3_decode_frame (AVCodecContext *avctx,
  653. void *data, int *data_size,
  654. const uint8_t *buf, int buf_size) {
  655. MpegEncContext *const s = avctx->priv_data;
  656. H264Context *const h = avctx->priv_data;
  657. int m, mb_type;
  658. unsigned char *extradata;
  659. unsigned int size;
  660. s->flags = avctx->flags;
  661. s->flags2 = avctx->flags2;
  662. s->unrestricted_mv = 1;
  663. if (!s->context_initialized) {
  664. s->width = avctx->width;
  665. s->height = avctx->height;
  666. h->halfpel_flag = 1;
  667. h->thirdpel_flag = 1;
  668. h->unknown_svq3_flag = 0;
  669. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  670. if (MPV_common_init (s) < 0)
  671. return -1;
  672. h->b_stride = 4*s->mb_width;
  673. alloc_tables (h);
  674. /* prowl for the "SEQH" marker in the extradata */
  675. extradata = (unsigned char *)avctx->extradata;
  676. for (m = 0; m < avctx->extradata_size; m++) {
  677. if (!memcmp (extradata, "SEQH", 4))
  678. break;
  679. extradata++;
  680. }
  681. /* if a match was found, parse the extra data */
  682. if (extradata && !memcmp (extradata, "SEQH", 4)) {
  683. GetBitContext gb;
  684. size = AV_RB32(&extradata[4]);
  685. init_get_bits (&gb, extradata + 8, size*8);
  686. /* 'frame size code' and optional 'width, height' */
  687. if (get_bits (&gb, 3) == 7) {
  688. skip_bits (&gb, 12);
  689. skip_bits (&gb, 12);
  690. }
  691. h->halfpel_flag = get_bits1 (&gb);
  692. h->thirdpel_flag = get_bits1 (&gb);
  693. /* unknown fields */
  694. skip_bits1 (&gb);
  695. skip_bits1 (&gb);
  696. skip_bits1 (&gb);
  697. skip_bits1 (&gb);
  698. s->low_delay = get_bits1 (&gb);
  699. /* unknown field */
  700. skip_bits1 (&gb);
  701. while (get_bits1 (&gb)) {
  702. skip_bits (&gb, 8);
  703. }
  704. h->unknown_svq3_flag = get_bits1 (&gb);
  705. avctx->has_b_frames = !s->low_delay;
  706. if (h->unknown_svq3_flag) {
  707. #ifdef CONFIG_ZLIB
  708. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  709. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  710. int u1 = svq3_get_ue_golomb(&gb);
  711. int u2 = get_bits(&gb, 8);
  712. int u3 = get_bits(&gb, 2);
  713. int u4 = svq3_get_ue_golomb(&gb);
  714. unsigned buf_len = watermark_width*watermark_height*4;
  715. int offset = (get_bits_count(&gb)+7)>>3;
  716. uint8_t *buf;
  717. if ((uint64_t)watermark_width*4 > UINT_MAX/watermark_height)
  718. return -1;
  719. buf = av_malloc(buf_len);
  720. av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n", watermark_width, watermark_height);
  721. av_log(avctx, AV_LOG_DEBUG, "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n", u1, u2, u3, u4, offset);
  722. if (uncompress(buf, (uLong*)&buf_len, extradata + 8 + offset, size - offset) != Z_OK) {
  723. av_log(avctx, AV_LOG_ERROR, "could not uncompress watermark logo\n");
  724. av_free(buf);
  725. return -1;
  726. }
  727. h->svq3_watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  728. h->svq3_watermark_key = h->svq3_watermark_key << 16 | h->svq3_watermark_key;
  729. av_log(avctx, AV_LOG_DEBUG, "watermark key %#x\n", h->svq3_watermark_key);
  730. av_free(buf);
  731. #else
  732. av_log(avctx, AV_LOG_ERROR, "this svq3 file contains watermark which need zlib support compiled in\n");
  733. return -1;
  734. #endif
  735. }
  736. }
  737. }
  738. /* special case for last picture */
  739. if (buf_size == 0) {
  740. if (s->next_picture_ptr && !s->low_delay) {
  741. *(AVFrame *) data = *(AVFrame *) &s->next_picture;
  742. s->next_picture_ptr= NULL;
  743. *data_size = sizeof(AVFrame);
  744. }
  745. return 0;
  746. }
  747. init_get_bits (&s->gb, buf, 8*buf_size);
  748. s->mb_x = s->mb_y = h->mb_xy = 0;
  749. if (svq3_decode_slice_header (h))
  750. return -1;
  751. s->pict_type = h->slice_type;
  752. s->picture_number = h->slice_num;
  753. if(avctx->debug&FF_DEBUG_PICT_INFO){
  754. av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  755. av_get_pict_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag,
  756. s->adaptive_quant, s->qscale, h->slice_num
  757. );
  758. }
  759. /* for hurry_up==5 */
  760. s->current_picture.pict_type = s->pict_type;
  761. s->current_picture.key_frame = (s->pict_type == FF_I_TYPE);
  762. /* Skip B-frames if we do not have reference frames. */
  763. if (s->last_picture_ptr == NULL && s->pict_type == FF_B_TYPE) return 0;
  764. /* Skip B-frames if we are in a hurry. */
  765. if (avctx->hurry_up && s->pict_type == FF_B_TYPE) return 0;
  766. /* Skip everything if we are in a hurry >= 5. */
  767. if (avctx->hurry_up >= 5) return 0;
  768. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  769. ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  770. || avctx->skip_frame >= AVDISCARD_ALL)
  771. return 0;
  772. if (s->next_p_frame_damaged) {
  773. if (s->pict_type == FF_B_TYPE)
  774. return 0;
  775. else
  776. s->next_p_frame_damaged = 0;
  777. }
  778. if (frame_start (h) < 0)
  779. return -1;
  780. if (s->pict_type == FF_B_TYPE) {
  781. h->frame_num_offset = (h->slice_num - h->prev_frame_num);
  782. if (h->frame_num_offset < 0) {
  783. h->frame_num_offset += 256;
  784. }
  785. if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
  786. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  787. return -1;
  788. }
  789. } else {
  790. h->prev_frame_num = h->frame_num;
  791. h->frame_num = h->slice_num;
  792. h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
  793. if (h->prev_frame_num_offset < 0) {
  794. h->prev_frame_num_offset += 256;
  795. }
  796. }
  797. for(m=0; m<2; m++){
  798. int i;
  799. for(i=0; i<4; i++){
  800. int j;
  801. for(j=-1; j<4; j++)
  802. h->ref_cache[m][scan8[0] + 8*i + j]= 1;
  803. if(i<3)
  804. h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  805. }
  806. }
  807. for (s->mb_y=0; s->mb_y < s->mb_height; s->mb_y++) {
  808. for (s->mb_x=0; s->mb_x < s->mb_width; s->mb_x++) {
  809. h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  810. if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  811. ((get_bits_count(&s->gb) & 7) == 0 || show_bits (&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) {
  812. skip_bits(&s->gb, h->next_slice_index - get_bits_count(&s->gb));
  813. s->gb.size_in_bits = 8*buf_size;
  814. if (svq3_decode_slice_header (h))
  815. return -1;
  816. /* TODO: support s->mb_skip_run */
  817. }
  818. mb_type = svq3_get_ue_golomb (&s->gb);
  819. if (s->pict_type == FF_I_TYPE) {
  820. mb_type += 8;
  821. } else if (s->pict_type == FF_B_TYPE && mb_type >= 4) {
  822. mb_type += 4;
  823. }
  824. if (mb_type > 33 || svq3_decode_mb (h, mb_type)) {
  825. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  826. return -1;
  827. }
  828. if (mb_type != 0) {
  829. hl_decode_mb (h);
  830. }
  831. if (s->pict_type != FF_B_TYPE && !s->low_delay) {
  832. s->current_picture.mb_type[s->mb_x + s->mb_y*s->mb_stride] =
  833. (s->pict_type == FF_P_TYPE && mb_type < 8) ? (mb_type - 1) : -1;
  834. }
  835. }
  836. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  837. }
  838. MPV_frame_end(s);
  839. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  840. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  841. } else {
  842. *(AVFrame *) data = *(AVFrame *) &s->last_picture;
  843. }
  844. avctx->frame_number = s->picture_number - 1;
  845. /* Do not output the last pic after seeking. */
  846. if (s->last_picture_ptr || s->low_delay) {
  847. *data_size = sizeof(AVFrame);
  848. }
  849. return buf_size;
  850. }
  851. AVCodec svq3_decoder = {
  852. "svq3",
  853. CODEC_TYPE_VIDEO,
  854. CODEC_ID_SVQ3,
  855. sizeof(H264Context),
  856. decode_init,
  857. NULL,
  858. decode_end,
  859. svq3_decode_frame,
  860. CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  861. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3"),
  862. };