You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1844 lines
59KB

  1. /*
  2. * FFV1 codec for libavcodec
  3. *
  4. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec)
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "put_bits.h"
  29. #include "dsputil.h"
  30. #include "rangecoder.h"
  31. #include "golomb.h"
  32. #include "mathops.h"
  33. #include "libavutil/avassert.h"
  34. #define MAX_PLANES 4
  35. #define CONTEXT_SIZE 32
  36. #define MAX_QUANT_TABLES 8
  37. #define MAX_CONTEXT_INPUTS 5
  38. extern const uint8_t ff_log2_run[41];
  39. static const int8_t quant5_10bit[256]={
  40. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  41. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  43. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  44. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  45. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  46. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  47. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  48. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  49. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  50. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  51. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  52. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
  53. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  54. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  55. -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
  56. };
  57. static const int8_t quant5[256]={
  58. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  59. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  60. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  61. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  66. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  67. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  68. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  69. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  70. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  71. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  72. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  73. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
  74. };
  75. static const int8_t quant9_10bit[256]={
  76. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  77. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  78. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  79. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  80. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  81. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  82. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  83. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  84. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  85. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  86. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  87. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  88. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
  89. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  90. -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  91. -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
  92. };
  93. static const int8_t quant11[256]={
  94. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  95. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  96. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  97. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  98. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  99. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  100. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  101. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  102. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  103. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  104. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  105. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  106. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  107. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
  108. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  109. -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
  110. };
  111. static const uint8_t ver2_state[256]= {
  112. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  113. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  114. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  115. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  116. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  117. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  118. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  119. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  120. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  121. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  122. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  123. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  124. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  125. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  126. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  127. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  128. };
  129. typedef struct VlcState{
  130. int16_t drift;
  131. uint16_t error_sum;
  132. int8_t bias;
  133. uint8_t count;
  134. } VlcState;
  135. typedef struct PlaneContext{
  136. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  137. int quant_table_index;
  138. int context_count;
  139. uint8_t (*state)[CONTEXT_SIZE];
  140. VlcState *vlc_state;
  141. uint8_t interlace_bit_state[2];
  142. } PlaneContext;
  143. #define MAX_SLICES 256
  144. typedef struct FFV1Context{
  145. AVCodecContext *avctx;
  146. RangeCoder c;
  147. GetBitContext gb;
  148. PutBitContext pb;
  149. uint64_t rc_stat[256][2];
  150. uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2];
  151. int version;
  152. int width, height;
  153. int chroma_h_shift, chroma_v_shift;
  154. int chroma_planes;
  155. int transparency;
  156. int flags;
  157. int picture_number;
  158. AVFrame picture;
  159. int plane_count;
  160. int ac; ///< 1=range coder <-> 0=golomb rice
  161. PlaneContext plane[MAX_PLANES];
  162. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  163. int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
  164. int context_count[MAX_QUANT_TABLES];
  165. uint8_t state_transition[256];
  166. uint8_t (*initial_states[MAX_QUANT_TABLES])[32];
  167. int run_index;
  168. int colorspace;
  169. int16_t *sample_buffer;
  170. int gob_count;
  171. int packed_at_lsb;
  172. int quant_table_count;
  173. DSPContext dsp;
  174. struct FFV1Context *slice_context[MAX_SLICES];
  175. int slice_count;
  176. int num_v_slices;
  177. int num_h_slices;
  178. int slice_width;
  179. int slice_height;
  180. int slice_x;
  181. int slice_y;
  182. int bits_per_raw_sample;
  183. }FFV1Context;
  184. static av_always_inline int fold(int diff, int bits){
  185. if(bits==8)
  186. diff= (int8_t)diff;
  187. else{
  188. diff+= 1<<(bits-1);
  189. diff&=(1<<bits)-1;
  190. diff-= 1<<(bits-1);
  191. }
  192. return diff;
  193. }
  194. static inline int predict(int16_t *src, int16_t *last)
  195. {
  196. const int LT= last[-1];
  197. const int T= last[ 0];
  198. const int L = src[-1];
  199. return mid_pred(L, L + T - LT, T);
  200. }
  201. static inline int get_context(PlaneContext *p, int16_t *src,
  202. int16_t *last, int16_t *last2)
  203. {
  204. const int LT= last[-1];
  205. const int T= last[ 0];
  206. const int RT= last[ 1];
  207. const int L = src[-1];
  208. if(p->quant_table[3][127]){
  209. const int TT= last2[0];
  210. const int LL= src[-2];
  211. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
  212. +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
  213. }else
  214. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
  215. }
  216. static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256]){
  217. int i,j,k,m;
  218. double l2tab[256];
  219. for(i=1; i<256; i++)
  220. l2tab[i]= log2(i/256.0);
  221. for(i=0; i<256; i++){
  222. double best_len[256];
  223. double p= i/256.0;
  224. for(j=0; j<256; j++)
  225. best_len[j]= 1<<30;
  226. for(j=FFMAX(i-10,1); j<FFMIN(i+11,256); j++){
  227. double occ[256]={0};
  228. double len=0;
  229. occ[j]=1.0;
  230. for(k=0; k<256; k++){
  231. double newocc[256]={0};
  232. for(m=0; m<256; m++){
  233. if(occ[m]){
  234. len -=occ[m]*( p *l2tab[ m]
  235. + (1-p)*l2tab[256-m]);
  236. }
  237. }
  238. if(len < best_len[k]){
  239. best_len[k]= len;
  240. best_state[i][k]= j;
  241. }
  242. for(m=0; m<256; m++){
  243. if(occ[m]){
  244. newocc[ one_state[ m]] += occ[m]* p ;
  245. newocc[256-one_state[256-m]] += occ[m]*(1-p);
  246. }
  247. }
  248. memcpy(occ, newocc, sizeof(occ));
  249. }
  250. }
  251. }
  252. }
  253. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
  254. int i;
  255. #define put_rac(C,S,B) \
  256. do{\
  257. if(rc_stat){\
  258. rc_stat[*(S)][B]++;\
  259. rc_stat2[(S)-state][B]++;\
  260. }\
  261. put_rac(C,S,B);\
  262. }while(0)
  263. if(v){
  264. const int a= FFABS(v);
  265. const int e= av_log2(a);
  266. put_rac(c, state+0, 0);
  267. if(e<=9){
  268. for(i=0; i<e; i++){
  269. put_rac(c, state+1+i, 1); //1..10
  270. }
  271. put_rac(c, state+1+i, 0);
  272. for(i=e-1; i>=0; i--){
  273. put_rac(c, state+22+i, (a>>i)&1); //22..31
  274. }
  275. if(is_signed)
  276. put_rac(c, state+11 + e, v < 0); //11..21
  277. }else{
  278. for(i=0; i<e; i++){
  279. put_rac(c, state+1+FFMIN(i,9), 1); //1..10
  280. }
  281. put_rac(c, state+1+9, 0);
  282. for(i=e-1; i>=0; i--){
  283. put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
  284. }
  285. if(is_signed)
  286. put_rac(c, state+11 + 10, v < 0); //11..21
  287. }
  288. }else{
  289. put_rac(c, state+0, 1);
  290. }
  291. #undef put_rac
  292. }
  293. static void av_noinline put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
  294. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  295. }
  296. static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
  297. if(get_rac(c, state+0))
  298. return 0;
  299. else{
  300. int i, e, a;
  301. e= 0;
  302. while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
  303. e++;
  304. }
  305. a= 1;
  306. for(i=e-1; i>=0; i--){
  307. a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
  308. }
  309. e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
  310. return (a^e)-e;
  311. }
  312. }
  313. static int av_noinline get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
  314. return get_symbol_inline(c, state, is_signed);
  315. }
  316. static inline void update_vlc_state(VlcState * const state, const int v){
  317. int drift= state->drift;
  318. int count= state->count;
  319. state->error_sum += FFABS(v);
  320. drift += v;
  321. if(count == 128){ //FIXME variable
  322. count >>= 1;
  323. drift >>= 1;
  324. state->error_sum >>= 1;
  325. }
  326. count++;
  327. if(drift <= -count){
  328. if(state->bias > -128) state->bias--;
  329. drift += count;
  330. if(drift <= -count)
  331. drift= -count + 1;
  332. }else if(drift > 0){
  333. if(state->bias < 127) state->bias++;
  334. drift -= count;
  335. if(drift > 0)
  336. drift= 0;
  337. }
  338. state->drift= drift;
  339. state->count= count;
  340. }
  341. static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
  342. int i, k, code;
  343. //printf("final: %d ", v);
  344. v = fold(v - state->bias, bits);
  345. i= state->count;
  346. k=0;
  347. while(i < state->error_sum){ //FIXME optimize
  348. k++;
  349. i += i;
  350. }
  351. assert(k<=8);
  352. #if 0 // JPEG LS
  353. if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
  354. else code= v;
  355. #else
  356. code= v ^ ((2*state->drift + state->count)>>31);
  357. #endif
  358. //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
  359. set_sr_golomb(pb, code, k, 12, bits);
  360. update_vlc_state(state, v);
  361. }
  362. static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
  363. int k, i, v, ret;
  364. i= state->count;
  365. k=0;
  366. while(i < state->error_sum){ //FIXME optimize
  367. k++;
  368. i += i;
  369. }
  370. assert(k<=8);
  371. v= get_sr_golomb(gb, k, 12, bits);
  372. //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
  373. #if 0 // JPEG LS
  374. if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
  375. #else
  376. v ^= ((2*state->drift + state->count)>>31);
  377. #endif
  378. ret= fold(v + state->bias, bits);
  379. update_vlc_state(state, v);
  380. //printf("final: %d\n", ret);
  381. return ret;
  382. }
  383. #if CONFIG_FFV1_ENCODER
  384. static av_always_inline int encode_line(FFV1Context *s, int w,
  385. int16_t *sample[2],
  386. int plane_index, int bits)
  387. {
  388. PlaneContext * const p= &s->plane[plane_index];
  389. RangeCoder * const c= &s->c;
  390. int x;
  391. int run_index= s->run_index;
  392. int run_count=0;
  393. int run_mode=0;
  394. if(s->ac){
  395. if(c->bytestream_end - c->bytestream < w*20){
  396. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  397. return -1;
  398. }
  399. }else{
  400. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
  401. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  402. return -1;
  403. }
  404. }
  405. for(x=0; x<w; x++){
  406. int diff, context;
  407. context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
  408. diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
  409. if(context < 0){
  410. context = -context;
  411. diff= -diff;
  412. }
  413. diff= fold(diff, bits);
  414. if(s->ac){
  415. if(s->flags & CODEC_FLAG_PASS1){
  416. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]);
  417. }else{
  418. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  419. }
  420. }else{
  421. if(context == 0) run_mode=1;
  422. if(run_mode){
  423. if(diff){
  424. while(run_count >= 1<<ff_log2_run[run_index]){
  425. run_count -= 1<<ff_log2_run[run_index];
  426. run_index++;
  427. put_bits(&s->pb, 1, 1);
  428. }
  429. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  430. if(run_index) run_index--;
  431. run_count=0;
  432. run_mode=0;
  433. if(diff>0) diff--;
  434. }else{
  435. run_count++;
  436. }
  437. }
  438. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
  439. if(run_mode == 0)
  440. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  441. }
  442. }
  443. if(run_mode){
  444. while(run_count >= 1<<ff_log2_run[run_index]){
  445. run_count -= 1<<ff_log2_run[run_index];
  446. run_index++;
  447. put_bits(&s->pb, 1, 1);
  448. }
  449. if(run_count)
  450. put_bits(&s->pb, 1, 1);
  451. }
  452. s->run_index= run_index;
  453. return 0;
  454. }
  455. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  456. int x,y,i;
  457. const int ring_size= s->avctx->context_model ? 3 : 2;
  458. int16_t *sample[3];
  459. s->run_index=0;
  460. memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
  461. for(y=0; y<h; y++){
  462. for(i=0; i<ring_size; i++)
  463. sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
  464. sample[0][-1]= sample[1][0 ];
  465. sample[1][ w]= sample[1][w-1];
  466. //{START_TIMER
  467. if(s->bits_per_raw_sample<=8){
  468. for(x=0; x<w; x++){
  469. sample[0][x]= src[x + stride*y];
  470. }
  471. encode_line(s, w, sample, plane_index, 8);
  472. }else{
  473. if(s->packed_at_lsb){
  474. for(x=0; x<w; x++){
  475. sample[0][x]= ((uint16_t*)(src + stride*y))[x];
  476. }
  477. }else{
  478. for(x=0; x<w; x++){
  479. sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->bits_per_raw_sample);
  480. }
  481. }
  482. encode_line(s, w, sample, plane_index, s->bits_per_raw_sample);
  483. }
  484. //STOP_TIMER("encode line")}
  485. }
  486. }
  487. static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  488. int x, y, p, i;
  489. const int ring_size= s->avctx->context_model ? 3 : 2;
  490. int16_t *sample[4][3];
  491. s->run_index=0;
  492. memset(s->sample_buffer, 0, ring_size*4*(w+6)*sizeof(*s->sample_buffer));
  493. for(y=0; y<h; y++){
  494. for(i=0; i<ring_size; i++)
  495. for(p=0; p<4; p++)
  496. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  497. for(x=0; x<w; x++){
  498. unsigned v= src[x + stride*y];
  499. int b= v&0xFF;
  500. int g= (v>>8)&0xFF;
  501. int r= (v>>16)&0xFF;
  502. int a= v>>24;
  503. b -= g;
  504. r -= g;
  505. g += (b + r)>>2;
  506. b += 0x100;
  507. r += 0x100;
  508. // assert(g>=0 && b>=0 && r>=0);
  509. // assert(g<256 && b<512 && r<512);
  510. sample[0][0][x]= g;
  511. sample[1][0][x]= b;
  512. sample[2][0][x]= r;
  513. sample[3][0][x]= a;
  514. }
  515. for(p=0; p<3 + s->transparency; p++){
  516. sample[p][0][-1]= sample[p][1][0 ];
  517. sample[p][1][ w]= sample[p][1][w-1];
  518. encode_line(s, w, sample[p], (p+1)/2, 9);
  519. }
  520. }
  521. }
  522. static void write_quant_table(RangeCoder *c, int16_t *quant_table){
  523. int last=0;
  524. int i;
  525. uint8_t state[CONTEXT_SIZE];
  526. memset(state, 128, sizeof(state));
  527. for(i=1; i<128 ; i++){
  528. if(quant_table[i] != quant_table[i-1]){
  529. put_symbol(c, state, i-last-1, 0);
  530. last= i;
  531. }
  532. }
  533. put_symbol(c, state, i-last-1, 0);
  534. }
  535. static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  536. int i;
  537. for(i=0; i<5; i++)
  538. write_quant_table(c, quant_table[i]);
  539. }
  540. static void write_header(FFV1Context *f){
  541. uint8_t state[CONTEXT_SIZE];
  542. int i, j;
  543. RangeCoder * const c= &f->slice_context[0]->c;
  544. memset(state, 128, sizeof(state));
  545. if(f->version < 2){
  546. put_symbol(c, state, f->version, 0);
  547. put_symbol(c, state, f->ac, 0);
  548. if(f->ac>1){
  549. for(i=1; i<256; i++){
  550. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  551. }
  552. }
  553. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  554. if(f->version>0)
  555. put_symbol(c, state, f->bits_per_raw_sample, 0);
  556. put_rac(c, state, f->chroma_planes);
  557. put_symbol(c, state, f->chroma_h_shift, 0);
  558. put_symbol(c, state, f->chroma_v_shift, 0);
  559. put_rac(c, state, f->transparency);
  560. write_quant_tables(c, f->quant_table);
  561. }else{
  562. put_symbol(c, state, f->slice_count, 0);
  563. for(i=0; i<f->slice_count; i++){
  564. FFV1Context *fs= f->slice_context[i];
  565. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  566. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  567. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  568. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  569. for(j=0; j<f->plane_count; j++){
  570. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  571. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  572. }
  573. }
  574. }
  575. }
  576. #endif /* CONFIG_FFV1_ENCODER */
  577. static av_cold int common_init(AVCodecContext *avctx){
  578. FFV1Context *s = avctx->priv_data;
  579. s->avctx= avctx;
  580. s->flags= avctx->flags;
  581. avcodec_get_frame_defaults(&s->picture);
  582. dsputil_init(&s->dsp, avctx);
  583. s->width = avctx->width;
  584. s->height= avctx->height;
  585. assert(s->width && s->height);
  586. //defaults
  587. s->num_h_slices=1;
  588. s->num_v_slices=1;
  589. return 0;
  590. }
  591. static int init_slice_state(FFV1Context *f){
  592. int i, j;
  593. for(i=0; i<f->slice_count; i++){
  594. FFV1Context *fs= f->slice_context[i];
  595. fs->plane_count= f->plane_count;
  596. fs->transparency= f->transparency;
  597. for(j=0; j<f->plane_count; j++){
  598. PlaneContext * const p= &fs->plane[j];
  599. if(fs->ac){
  600. if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
  601. if(!p-> state)
  602. return AVERROR(ENOMEM);
  603. }else{
  604. if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
  605. if(!p->vlc_state)
  606. return AVERROR(ENOMEM);
  607. }
  608. }
  609. if (fs->ac>1){
  610. //FIXME only redo if state_transition changed
  611. for(j=1; j<256; j++){
  612. fs->c.one_state [ j]= fs->state_transition[j];
  613. fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
  614. }
  615. }
  616. }
  617. return 0;
  618. }
  619. static av_cold int init_slice_contexts(FFV1Context *f){
  620. int i;
  621. f->slice_count= f->num_h_slices * f->num_v_slices;
  622. for(i=0; i<f->slice_count; i++){
  623. FFV1Context *fs= av_mallocz(sizeof(*fs));
  624. int sx= i % f->num_h_slices;
  625. int sy= i / f->num_h_slices;
  626. int sxs= f->avctx->width * sx / f->num_h_slices;
  627. int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
  628. int sys= f->avctx->height* sy / f->num_v_slices;
  629. int sye= f->avctx->height*(sy+1) / f->num_v_slices;
  630. f->slice_context[i]= fs;
  631. memcpy(fs, f, sizeof(*fs));
  632. memset(fs->rc_stat2, 0, sizeof(fs->rc_stat2));
  633. fs->slice_width = sxe - sxs;
  634. fs->slice_height= sye - sys;
  635. fs->slice_x = sxs;
  636. fs->slice_y = sys;
  637. fs->sample_buffer = av_malloc(3*4 * (fs->width+6) * sizeof(*fs->sample_buffer));
  638. if (!fs->sample_buffer)
  639. return AVERROR(ENOMEM);
  640. }
  641. return 0;
  642. }
  643. static int allocate_initial_states(FFV1Context *f){
  644. int i;
  645. for(i=0; i<f->quant_table_count; i++){
  646. f->initial_states[i]= av_malloc(f->context_count[i]*sizeof(*f->initial_states[i]));
  647. if(!f->initial_states[i])
  648. return AVERROR(ENOMEM);
  649. memset(f->initial_states[i], 128, f->context_count[i]*sizeof(*f->initial_states[i]));
  650. }
  651. return 0;
  652. }
  653. #if CONFIG_FFV1_ENCODER
  654. static int write_extra_header(FFV1Context *f){
  655. RangeCoder * const c= &f->c;
  656. uint8_t state[CONTEXT_SIZE];
  657. int i, j, k;
  658. uint8_t state2[32][CONTEXT_SIZE];
  659. memset(state2, 128, sizeof(state2));
  660. memset(state, 128, sizeof(state));
  661. f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000 + (11*11*5*5*5+11*11*11)*32);
  662. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  663. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  664. put_symbol(c, state, f->version, 0);
  665. put_symbol(c, state, f->ac, 0);
  666. if(f->ac>1){
  667. for(i=1; i<256; i++){
  668. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  669. }
  670. }
  671. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  672. put_symbol(c, state, f->bits_per_raw_sample, 0);
  673. put_rac(c, state, f->chroma_planes);
  674. put_symbol(c, state, f->chroma_h_shift, 0);
  675. put_symbol(c, state, f->chroma_v_shift, 0);
  676. put_rac(c, state, f->transparency);
  677. put_symbol(c, state, f->num_h_slices-1, 0);
  678. put_symbol(c, state, f->num_v_slices-1, 0);
  679. put_symbol(c, state, f->quant_table_count, 0);
  680. for(i=0; i<f->quant_table_count; i++)
  681. write_quant_tables(c, f->quant_tables[i]);
  682. for(i=0; i<f->quant_table_count; i++){
  683. for(j=0; j<f->context_count[i]*CONTEXT_SIZE; j++)
  684. if(f->initial_states[i] && f->initial_states[i][0][j] != 128)
  685. break;
  686. if(j<f->context_count[i]*CONTEXT_SIZE){
  687. put_rac(c, state, 1);
  688. for(j=0; j<f->context_count[i]; j++){
  689. for(k=0; k<CONTEXT_SIZE; k++){
  690. int pred= j ? f->initial_states[i][j-1][k] : 128;
  691. put_symbol(c, state2[k], (int8_t)(f->initial_states[i][j][k]-pred), 1);
  692. }
  693. }
  694. }else{
  695. put_rac(c, state, 0);
  696. }
  697. }
  698. f->avctx->extradata_size= ff_rac_terminate(c);
  699. return 0;
  700. }
  701. static int sort_stt(FFV1Context *s, uint8_t stt[256]){
  702. int i,i2,changed,print=0;
  703. do{
  704. changed=0;
  705. for(i=12; i<244; i++){
  706. for(i2=i+1; i2<245 && i2<i+4; i2++){
  707. #define COST(old, new) \
  708. s->rc_stat[old][0]*-log2((256-(new))/256.0)\
  709. +s->rc_stat[old][1]*-log2( (new) /256.0)
  710. #define COST2(old, new) \
  711. COST(old, new)\
  712. +COST(256-(old), 256-(new))
  713. double size0= COST2(i, i ) + COST2(i2, i2);
  714. double sizeX= COST2(i, i2) + COST2(i2, i );
  715. if(sizeX < size0 && i!=128 && i2!=128){
  716. int j;
  717. FFSWAP(int, stt[ i], stt[ i2]);
  718. FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]);
  719. FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]);
  720. if(i != 256-i2){
  721. FFSWAP(int, stt[256-i], stt[256-i2]);
  722. FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]);
  723. FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]);
  724. }
  725. for(j=1; j<256; j++){
  726. if (stt[j] == i ) stt[j] = i2;
  727. else if(stt[j] == i2) stt[j] = i ;
  728. if(i != 256-i2){
  729. if (stt[256-j] == 256-i ) stt[256-j] = 256-i2;
  730. else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ;
  731. }
  732. }
  733. print=changed=1;
  734. }
  735. }
  736. }
  737. }while(changed);
  738. return print;
  739. }
  740. static av_cold int encode_init(AVCodecContext *avctx)
  741. {
  742. FFV1Context *s = avctx->priv_data;
  743. int i, j, k, m;
  744. common_init(avctx);
  745. s->version=0;
  746. s->ac= avctx->coder_type ? 2:0;
  747. if(s->ac>1)
  748. for(i=1; i<256; i++)
  749. s->state_transition[i]=ver2_state[i];
  750. s->plane_count=3;
  751. switch(avctx->pix_fmt){
  752. case PIX_FMT_YUV420P9:
  753. if (!avctx->bits_per_raw_sample)
  754. s->bits_per_raw_sample = 9;
  755. case PIX_FMT_YUV420P10:
  756. case PIX_FMT_YUV422P10:
  757. s->packed_at_lsb = 1;
  758. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  759. s->bits_per_raw_sample = 10;
  760. case PIX_FMT_GRAY16:
  761. case PIX_FMT_YUV444P16:
  762. case PIX_FMT_YUV422P16:
  763. case PIX_FMT_YUV420P16:
  764. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
  765. s->bits_per_raw_sample = 16;
  766. } else if (!s->bits_per_raw_sample){
  767. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  768. }
  769. if(s->bits_per_raw_sample <=8){
  770. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  771. return -1;
  772. }
  773. if(!s->ac){
  774. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  775. return -1;
  776. }
  777. s->version= FFMAX(s->version, 1);
  778. case PIX_FMT_YUV444P:
  779. case PIX_FMT_YUV440P:
  780. case PIX_FMT_YUV422P:
  781. case PIX_FMT_YUV420P:
  782. case PIX_FMT_YUV411P:
  783. case PIX_FMT_YUV410P:
  784. s->chroma_planes= avctx->pix_fmt == PIX_FMT_GRAY16 ? 0 : 1;
  785. s->colorspace= 0;
  786. break;
  787. case PIX_FMT_YUVA444P:
  788. case PIX_FMT_YUVA420P:
  789. s->chroma_planes= 1;
  790. s->colorspace= 0;
  791. s->transparency= 1;
  792. break;
  793. case PIX_FMT_RGB32:
  794. s->colorspace= 1;
  795. s->transparency= 1;
  796. break;
  797. case PIX_FMT_0RGB32:
  798. s->colorspace= 1;
  799. break;
  800. default:
  801. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  802. return -1;
  803. }
  804. for(i=0; i<256; i++){
  805. s->quant_table_count=2;
  806. if(s->bits_per_raw_sample <=8){
  807. s->quant_tables[0][0][i]= quant11[i];
  808. s->quant_tables[0][1][i]= 11*quant11[i];
  809. s->quant_tables[0][2][i]= 11*11*quant11[i];
  810. s->quant_tables[1][0][i]= quant11[i];
  811. s->quant_tables[1][1][i]= 11*quant11[i];
  812. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  813. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  814. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  815. }else{
  816. s->quant_tables[0][0][i]= quant9_10bit[i];
  817. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  818. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  819. s->quant_tables[1][0][i]= quant9_10bit[i];
  820. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  821. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  822. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  823. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  824. }
  825. }
  826. s->context_count[0]= (11*11*11+1)/2;
  827. s->context_count[1]= (11*11*5*5*5+1)/2;
  828. memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
  829. for(i=0; i<s->plane_count; i++){
  830. PlaneContext * const p= &s->plane[i];
  831. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  832. p->quant_table_index= avctx->context_model;
  833. p->context_count= s->context_count[p->quant_table_index];
  834. }
  835. if(allocate_initial_states(s) < 0)
  836. return AVERROR(ENOMEM);
  837. avctx->coded_frame= &s->picture;
  838. if(!s->transparency)
  839. s->plane_count= 2;
  840. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  841. s->picture_number=0;
  842. if(avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  843. for(i=0; i<s->quant_table_count; i++){
  844. s->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*s->rc_stat2[i]));
  845. if(!s->rc_stat2[i])
  846. return AVERROR(ENOMEM);
  847. }
  848. }
  849. if(avctx->stats_in){
  850. char *p= avctx->stats_in;
  851. uint8_t best_state[256][256];
  852. int gob_count=0;
  853. char *next;
  854. av_assert0(s->version>=2);
  855. for(;;){
  856. for(j=0; j<256; j++){
  857. for(i=0; i<2; i++){
  858. s->rc_stat[j][i]= strtol(p, &next, 0);
  859. if(next==p){
  860. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p);
  861. return -1;
  862. }
  863. p=next;
  864. }
  865. }
  866. for(i=0; i<s->quant_table_count; i++){
  867. for(j=0; j<s->context_count[i]; j++){
  868. for(k=0; k<32; k++){
  869. for(m=0; m<2; m++){
  870. s->rc_stat2[i][j][k][m]= strtol(p, &next, 0);
  871. if(next==p){
  872. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d %d %d [%s]\n", i,j,k,m,p);
  873. return -1;
  874. }
  875. p=next;
  876. }
  877. }
  878. }
  879. }
  880. gob_count= strtol(p, &next, 0);
  881. if(next==p || gob_count <0){
  882. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
  883. return -1;
  884. }
  885. p=next;
  886. while(*p=='\n' || *p==' ') p++;
  887. if(p[0]==0) break;
  888. }
  889. sort_stt(s, s->state_transition);
  890. find_best_state(best_state, s->state_transition);
  891. for(i=0; i<s->quant_table_count; i++){
  892. for(j=0; j<s->context_count[i]; j++){
  893. for(k=0; k<32; k++){
  894. double p= 128;
  895. if(s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]){
  896. p=256.0*s->rc_stat2[i][j][k][1] / (s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]);
  897. }
  898. s->initial_states[i][j][k]= best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1])/gob_count, 0, 255)];
  899. }
  900. }
  901. }
  902. }
  903. if(s->version>1){
  904. s->num_h_slices=2;
  905. s->num_v_slices=2;
  906. write_extra_header(s);
  907. }
  908. if(init_slice_contexts(s) < 0)
  909. return -1;
  910. if(init_slice_state(s) < 0)
  911. return -1;
  912. #define STATS_OUT_SIZE 1024*1024*6
  913. if(avctx->flags & CODEC_FLAG_PASS1){
  914. avctx->stats_out= av_mallocz(STATS_OUT_SIZE);
  915. for(i=0; i<s->quant_table_count; i++){
  916. for(j=0; j<s->slice_count; j++){
  917. FFV1Context *sf= s->slice_context[j];
  918. av_assert0(!sf->rc_stat2[i]);
  919. sf->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*sf->rc_stat2[i]));
  920. if(!sf->rc_stat2[i])
  921. return AVERROR(ENOMEM);
  922. }
  923. }
  924. }
  925. return 0;
  926. }
  927. #endif /* CONFIG_FFV1_ENCODER */
  928. static void clear_state(FFV1Context *f){
  929. int i, si, j;
  930. for(si=0; si<f->slice_count; si++){
  931. FFV1Context *fs= f->slice_context[si];
  932. for(i=0; i<f->plane_count; i++){
  933. PlaneContext *p= &fs->plane[i];
  934. p->interlace_bit_state[0]= 128;
  935. p->interlace_bit_state[1]= 128;
  936. if(fs->ac){
  937. if(f->initial_states[p->quant_table_index]){
  938. memcpy(p->state, f->initial_states[p->quant_table_index], CONTEXT_SIZE*p->context_count);
  939. }else
  940. memset(p->state, 128, CONTEXT_SIZE*p->context_count);
  941. }else{
  942. for(j=0; j<p->context_count; j++){
  943. p->vlc_state[j].drift= 0;
  944. p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
  945. p->vlc_state[j].bias= 0;
  946. p->vlc_state[j].count= 1;
  947. }
  948. }
  949. }
  950. }
  951. }
  952. #if CONFIG_FFV1_ENCODER
  953. static int encode_slice(AVCodecContext *c, void *arg){
  954. FFV1Context *fs= *(void**)arg;
  955. FFV1Context *f= fs->avctx->priv_data;
  956. int width = fs->slice_width;
  957. int height= fs->slice_height;
  958. int x= fs->slice_x;
  959. int y= fs->slice_y;
  960. AVFrame * const p= &f->picture;
  961. const int ps= (f->bits_per_raw_sample>8)+1;
  962. if(f->colorspace==0){
  963. const int chroma_width = -((-width )>>f->chroma_h_shift);
  964. const int chroma_height= -((-height)>>f->chroma_v_shift);
  965. const int cx= x>>f->chroma_h_shift;
  966. const int cy= y>>f->chroma_v_shift;
  967. encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  968. if (f->chroma_planes){
  969. encode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  970. encode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  971. }
  972. if (fs->transparency)
  973. encode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  974. }else{
  975. encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  976. }
  977. emms_c();
  978. return 0;
  979. }
  980. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  981. FFV1Context *f = avctx->priv_data;
  982. RangeCoder * const c= &f->slice_context[0]->c;
  983. AVFrame *pict = data;
  984. AVFrame * const p= &f->picture;
  985. int used_count= 0;
  986. uint8_t keystate=128;
  987. uint8_t *buf_p;
  988. int i;
  989. ff_init_range_encoder(c, buf, buf_size);
  990. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  991. *p = *pict;
  992. p->pict_type= AV_PICTURE_TYPE_I;
  993. if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
  994. put_rac(c, &keystate, 1);
  995. p->key_frame= 1;
  996. f->gob_count++;
  997. write_header(f);
  998. clear_state(f);
  999. }else{
  1000. put_rac(c, &keystate, 0);
  1001. p->key_frame= 0;
  1002. }
  1003. if(!f->ac){
  1004. used_count += ff_rac_terminate(c);
  1005. //printf("pos=%d\n", used_count);
  1006. init_put_bits(&f->slice_context[0]->pb, buf + used_count, buf_size - used_count);
  1007. }else if (f->ac>1){
  1008. int i;
  1009. for(i=1; i<256; i++){
  1010. c->one_state[i]= f->state_transition[i];
  1011. c->zero_state[256-i]= 256-c->one_state[i];
  1012. }
  1013. }
  1014. for(i=1; i<f->slice_count; i++){
  1015. FFV1Context *fs= f->slice_context[i];
  1016. uint8_t *start= buf + (buf_size-used_count)*i/f->slice_count;
  1017. int len= buf_size/f->slice_count;
  1018. if(fs->ac){
  1019. ff_init_range_encoder(&fs->c, start, len);
  1020. }else{
  1021. init_put_bits(&fs->pb, start, len);
  1022. }
  1023. }
  1024. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1025. buf_p=buf;
  1026. for(i=0; i<f->slice_count; i++){
  1027. FFV1Context *fs= f->slice_context[i];
  1028. int bytes;
  1029. if(fs->ac){
  1030. uint8_t state=128;
  1031. put_rac(&fs->c, &state, 0);
  1032. bytes= ff_rac_terminate(&fs->c);
  1033. }else{
  1034. flush_put_bits(&fs->pb); //nicer padding FIXME
  1035. bytes= used_count + (put_bits_count(&fs->pb)+7)/8;
  1036. used_count= 0;
  1037. }
  1038. if(i>0){
  1039. av_assert0(bytes < buf_size/f->slice_count);
  1040. memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes);
  1041. av_assert0(bytes < (1<<24));
  1042. AV_WB24(buf_p+bytes, bytes);
  1043. bytes+=3;
  1044. }
  1045. buf_p += bytes;
  1046. }
  1047. if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){
  1048. int j, k, m;
  1049. char *p= avctx->stats_out;
  1050. char *end= p + STATS_OUT_SIZE;
  1051. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  1052. for(i=0; i<f->quant_table_count; i++)
  1053. memset(f->rc_stat2[i], 0, f->context_count[i]*sizeof(*f->rc_stat2[i]));
  1054. for(j=0; j<f->slice_count; j++){
  1055. FFV1Context *fs= f->slice_context[j];
  1056. for(i=0; i<256; i++){
  1057. f->rc_stat[i][0] += fs->rc_stat[i][0];
  1058. f->rc_stat[i][1] += fs->rc_stat[i][1];
  1059. }
  1060. for(i=0; i<f->quant_table_count; i++){
  1061. for(k=0; k<f->context_count[i]; k++){
  1062. for(m=0; m<32; m++){
  1063. f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
  1064. f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
  1065. }
  1066. }
  1067. }
  1068. }
  1069. for(j=0; j<256; j++){
  1070. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]);
  1071. p+= strlen(p);
  1072. }
  1073. snprintf(p, end-p, "\n");
  1074. for(i=0; i<f->quant_table_count; i++){
  1075. for(j=0; j<f->context_count[i]; j++){
  1076. for(m=0; m<32; m++){
  1077. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  1078. p+= strlen(p);
  1079. }
  1080. }
  1081. }
  1082. snprintf(p, end-p, "%d\n", f->gob_count);
  1083. } else if(avctx->flags&CODEC_FLAG_PASS1)
  1084. avctx->stats_out[0] = '\0';
  1085. f->picture_number++;
  1086. return buf_p-buf;
  1087. }
  1088. #endif /* CONFIG_FFV1_ENCODER */
  1089. static av_cold int common_end(AVCodecContext *avctx){
  1090. FFV1Context *s = avctx->priv_data;
  1091. int i, j;
  1092. if (avctx->codec->decode && s->picture.data[0])
  1093. avctx->release_buffer(avctx, &s->picture);
  1094. for(j=0; j<s->slice_count; j++){
  1095. FFV1Context *fs= s->slice_context[j];
  1096. for(i=0; i<s->plane_count; i++){
  1097. PlaneContext *p= &fs->plane[i];
  1098. av_freep(&p->state);
  1099. av_freep(&p->vlc_state);
  1100. }
  1101. av_freep(&fs->sample_buffer);
  1102. }
  1103. av_freep(&avctx->stats_out);
  1104. for(j=0; j<s->quant_table_count; j++){
  1105. av_freep(&s->initial_states[j]);
  1106. for(i=0; i<s->slice_count; i++){
  1107. FFV1Context *sf= s->slice_context[i];
  1108. av_freep(&sf->rc_stat2[j]);
  1109. }
  1110. av_freep(&s->rc_stat2[j]);
  1111. }
  1112. for(i=0; i<s->slice_count; i++){
  1113. av_freep(&s->slice_context[i]);
  1114. }
  1115. return 0;
  1116. }
  1117. static av_always_inline void decode_line(FFV1Context *s, int w,
  1118. int16_t *sample[2],
  1119. int plane_index, int bits)
  1120. {
  1121. PlaneContext * const p= &s->plane[plane_index];
  1122. RangeCoder * const c= &s->c;
  1123. int x;
  1124. int run_count=0;
  1125. int run_mode=0;
  1126. int run_index= s->run_index;
  1127. for(x=0; x<w; x++){
  1128. int diff, context, sign;
  1129. context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
  1130. if(context < 0){
  1131. context= -context;
  1132. sign=1;
  1133. }else
  1134. sign=0;
  1135. av_assert2(context < p->context_count);
  1136. if(s->ac){
  1137. diff= get_symbol_inline(c, p->state[context], 1);
  1138. }else{
  1139. if(context == 0 && run_mode==0) run_mode=1;
  1140. if(run_mode){
  1141. if(run_count==0 && run_mode==1){
  1142. if(get_bits1(&s->gb)){
  1143. run_count = 1<<ff_log2_run[run_index];
  1144. if(x + run_count <= w) run_index++;
  1145. }else{
  1146. if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
  1147. else run_count=0;
  1148. if(run_index) run_index--;
  1149. run_mode=2;
  1150. }
  1151. }
  1152. run_count--;
  1153. if(run_count < 0){
  1154. run_mode=0;
  1155. run_count=0;
  1156. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1157. if(diff>=0) diff++;
  1158. }else
  1159. diff=0;
  1160. }else
  1161. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1162. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
  1163. }
  1164. if(sign) diff= -diff;
  1165. sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
  1166. }
  1167. s->run_index= run_index;
  1168. }
  1169. static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  1170. int x, y;
  1171. int16_t *sample[2];
  1172. sample[0]=s->sample_buffer +3;
  1173. sample[1]=s->sample_buffer+w+6+3;
  1174. s->run_index=0;
  1175. memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
  1176. for(y=0; y<h; y++){
  1177. int16_t *temp = sample[0]; //FIXME try a normal buffer
  1178. sample[0]= sample[1];
  1179. sample[1]= temp;
  1180. sample[1][-1]= sample[0][0 ];
  1181. sample[0][ w]= sample[0][w-1];
  1182. //{START_TIMER
  1183. if(s->avctx->bits_per_raw_sample <= 8){
  1184. decode_line(s, w, sample, plane_index, 8);
  1185. for(x=0; x<w; x++){
  1186. src[x + stride*y]= sample[1][x];
  1187. }
  1188. }else{
  1189. decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  1190. if(s->packed_at_lsb){
  1191. for(x=0; x<w; x++){
  1192. ((uint16_t*)(src + stride*y))[x]= sample[1][x];
  1193. }
  1194. }else{
  1195. for(x=0; x<w; x++){
  1196. ((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
  1197. }
  1198. }
  1199. }
  1200. //STOP_TIMER("decode-line")}
  1201. }
  1202. }
  1203. static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  1204. int x, y, p;
  1205. int16_t *sample[4][2];
  1206. for(x=0; x<4; x++){
  1207. sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
  1208. sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
  1209. }
  1210. s->run_index=0;
  1211. memset(s->sample_buffer, 0, 8*(w+6)*sizeof(*s->sample_buffer));
  1212. for(y=0; y<h; y++){
  1213. for(p=0; p<3 + s->transparency; p++){
  1214. int16_t *temp = sample[p][0]; //FIXME try a normal buffer
  1215. sample[p][0]= sample[p][1];
  1216. sample[p][1]= temp;
  1217. sample[p][1][-1]= sample[p][0][0 ];
  1218. sample[p][0][ w]= sample[p][0][w-1];
  1219. decode_line(s, w, sample[p], (p+1)/2, 9);
  1220. }
  1221. for(x=0; x<w; x++){
  1222. int g= sample[0][1][x];
  1223. int b= sample[1][1][x];
  1224. int r= sample[2][1][x];
  1225. int a= sample[3][1][x];
  1226. // assert(g>=0 && b>=0 && r>=0);
  1227. // assert(g<256 && b<512 && r<512);
  1228. b -= 0x100;
  1229. r -= 0x100;
  1230. g -= (b + r)>>2;
  1231. b += g;
  1232. r += g;
  1233. src[x + stride*y]= b + (g<<8) + (r<<16) + (a<<24);
  1234. }
  1235. }
  1236. }
  1237. static int decode_slice(AVCodecContext *c, void *arg){
  1238. FFV1Context *fs= *(void**)arg;
  1239. FFV1Context *f= fs->avctx->priv_data;
  1240. int width = fs->slice_width;
  1241. int height= fs->slice_height;
  1242. int x= fs->slice_x;
  1243. int y= fs->slice_y;
  1244. const int ps= (c->bits_per_raw_sample>8)+1;
  1245. AVFrame * const p= &f->picture;
  1246. av_assert1(width && height);
  1247. if(f->colorspace==0){
  1248. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1249. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1250. const int cx= x>>f->chroma_h_shift;
  1251. const int cy= y>>f->chroma_v_shift;
  1252. decode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1253. if (f->chroma_planes){
  1254. decode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1255. decode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  1256. }
  1257. if (fs->transparency)
  1258. decode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  1259. }else{
  1260. decode_rgb_frame(fs, (uint32_t*)p->data[0] + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1261. }
  1262. emms_c();
  1263. return 0;
  1264. }
  1265. static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
  1266. int v;
  1267. int i=0;
  1268. uint8_t state[CONTEXT_SIZE];
  1269. memset(state, 128, sizeof(state));
  1270. for(v=0; i<128 ; v++){
  1271. int len= get_symbol(c, state, 0) + 1;
  1272. if(len + i > 128) return -1;
  1273. while(len--){
  1274. quant_table[i] = scale*v;
  1275. i++;
  1276. //printf("%2d ",v);
  1277. //if(i%16==0) printf("\n");
  1278. }
  1279. }
  1280. for(i=1; i<128; i++){
  1281. quant_table[256-i]= -quant_table[i];
  1282. }
  1283. quant_table[128]= -quant_table[127];
  1284. return 2*v - 1;
  1285. }
  1286. static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  1287. int i;
  1288. int context_count=1;
  1289. for(i=0; i<5; i++){
  1290. context_count*= read_quant_table(c, quant_table[i], context_count);
  1291. if(context_count > 32768U){
  1292. return -1;
  1293. }
  1294. }
  1295. return (context_count+1)/2;
  1296. }
  1297. static int read_extra_header(FFV1Context *f){
  1298. RangeCoder * const c= &f->c;
  1299. uint8_t state[CONTEXT_SIZE];
  1300. int i, j, k;
  1301. uint8_t state2[32][CONTEXT_SIZE];
  1302. memset(state2, 128, sizeof(state2));
  1303. memset(state, 128, sizeof(state));
  1304. ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
  1305. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1306. f->version= get_symbol(c, state, 0);
  1307. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1308. if(f->ac>1){
  1309. for(i=1; i<256; i++){
  1310. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1311. }
  1312. }
  1313. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1314. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1315. get_rac(c, state); //no chroma = false
  1316. f->chroma_h_shift= get_symbol(c, state, 0);
  1317. f->chroma_v_shift= get_symbol(c, state, 0);
  1318. f->transparency= get_rac(c, state);
  1319. f->plane_count= 2 + f->transparency;
  1320. f->num_h_slices= 1 + get_symbol(c, state, 0);
  1321. f->num_v_slices= 1 + get_symbol(c, state, 0);
  1322. if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
  1323. av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
  1324. return -1;
  1325. }
  1326. f->quant_table_count= get_symbol(c, state, 0);
  1327. if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
  1328. return -1;
  1329. for(i=0; i<f->quant_table_count; i++){
  1330. if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
  1331. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1332. return -1;
  1333. }
  1334. }
  1335. if(allocate_initial_states(f) < 0)
  1336. return AVERROR(ENOMEM);
  1337. for(i=0; i<f->quant_table_count; i++){
  1338. if(get_rac(c, state)){
  1339. for(j=0; j<f->context_count[i]; j++){
  1340. for(k=0; k<CONTEXT_SIZE; k++){
  1341. int pred= j ? f->initial_states[i][j-1][k] : 128;
  1342. f->initial_states[i][j][k]= (pred+get_symbol(c, state2[k], 1))&0xFF;
  1343. }
  1344. }
  1345. }
  1346. }
  1347. return 0;
  1348. }
  1349. static int read_header(FFV1Context *f){
  1350. uint8_t state[CONTEXT_SIZE];
  1351. int i, j, context_count;
  1352. RangeCoder * const c= &f->slice_context[0]->c;
  1353. memset(state, 128, sizeof(state));
  1354. if(f->version < 2){
  1355. f->version= get_symbol(c, state, 0);
  1356. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1357. if(f->ac>1){
  1358. for(i=1; i<256; i++){
  1359. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1360. }
  1361. }
  1362. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1363. if(f->version>0)
  1364. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1365. f->chroma_planes= get_rac(c, state);
  1366. f->chroma_h_shift= get_symbol(c, state, 0);
  1367. f->chroma_v_shift= get_symbol(c, state, 0);
  1368. f->transparency= get_rac(c, state);
  1369. f->plane_count= 2 + f->transparency;
  1370. }
  1371. if(f->colorspace==0){
  1372. if(f->avctx->bits_per_raw_sample>8 && !f->transparency && !f->chroma_planes){
  1373. f->avctx->pix_fmt= PIX_FMT_GRAY16;
  1374. }else if(f->avctx->bits_per_raw_sample<=8 && !f->transparency){
  1375. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1376. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
  1377. case 0x01: f->avctx->pix_fmt= PIX_FMT_YUV440P; break;
  1378. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
  1379. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
  1380. case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
  1381. case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
  1382. default:
  1383. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1384. return -1;
  1385. }
  1386. }else if(f->avctx->bits_per_raw_sample<=8 && f->transparency){
  1387. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1388. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUVA444P; break;
  1389. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUVA420P; break;
  1390. default:
  1391. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1392. return -1;
  1393. }
  1394. }else if(f->avctx->bits_per_raw_sample==9) {
  1395. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1396. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1397. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1398. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P9 ; f->packed_at_lsb=1; break;
  1399. default:
  1400. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1401. return -1;
  1402. }
  1403. }else if(f->avctx->bits_per_raw_sample==10) {
  1404. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1405. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1406. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P10; f->packed_at_lsb=1; break;
  1407. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P10; f->packed_at_lsb=1; break;
  1408. default:
  1409. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1410. return -1;
  1411. }
  1412. }else {
  1413. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1414. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1415. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1416. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
  1417. default:
  1418. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1419. return -1;
  1420. }
  1421. }
  1422. }else if(f->colorspace==1){
  1423. if(f->chroma_h_shift || f->chroma_v_shift){
  1424. av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
  1425. return -1;
  1426. }
  1427. if(f->transparency) f->avctx->pix_fmt= PIX_FMT_RGB32;
  1428. else f->avctx->pix_fmt= PIX_FMT_0RGB32;
  1429. }else{
  1430. av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
  1431. return -1;
  1432. }
  1433. //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
  1434. if(f->version < 2){
  1435. context_count= read_quant_tables(c, f->quant_table);
  1436. if(context_count < 0){
  1437. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1438. return -1;
  1439. }
  1440. }else{
  1441. f->slice_count= get_symbol(c, state, 0);
  1442. if(f->slice_count > (unsigned)MAX_SLICES)
  1443. return -1;
  1444. }
  1445. for(j=0; j<f->slice_count; j++){
  1446. FFV1Context *fs= f->slice_context[j];
  1447. fs->ac= f->ac;
  1448. fs->packed_at_lsb= f->packed_at_lsb;
  1449. if(f->version >= 2){
  1450. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1451. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1452. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1453. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1454. fs->slice_x /= f->num_h_slices;
  1455. fs->slice_y /= f->num_v_slices;
  1456. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1457. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1458. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1459. return -1;
  1460. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1461. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1462. return -1;
  1463. }
  1464. for(i=0; i<f->plane_count; i++){
  1465. PlaneContext * const p= &fs->plane[i];
  1466. if(f->version >= 2){
  1467. int idx=get_symbol(c, state, 0);
  1468. if(idx > (unsigned)f->quant_table_count){
  1469. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1470. return -1;
  1471. }
  1472. p->quant_table_index= idx;
  1473. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1474. context_count= f->context_count[idx];
  1475. }else{
  1476. memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
  1477. }
  1478. if(p->context_count < context_count){
  1479. av_freep(&p->state);
  1480. av_freep(&p->vlc_state);
  1481. }
  1482. p->context_count= context_count;
  1483. }
  1484. }
  1485. return 0;
  1486. }
  1487. static av_cold int decode_init(AVCodecContext *avctx)
  1488. {
  1489. FFV1Context *f = avctx->priv_data;
  1490. common_init(avctx);
  1491. if(avctx->extradata && read_extra_header(f) < 0)
  1492. return -1;
  1493. if(init_slice_contexts(f) < 0)
  1494. return -1;
  1495. return 0;
  1496. }
  1497. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  1498. const uint8_t *buf = avpkt->data;
  1499. int buf_size = avpkt->size;
  1500. FFV1Context *f = avctx->priv_data;
  1501. RangeCoder * const c= &f->slice_context[0]->c;
  1502. AVFrame * const p= &f->picture;
  1503. int bytes_read, i;
  1504. uint8_t keystate= 128;
  1505. const uint8_t *buf_p;
  1506. AVFrame *picture = data;
  1507. /* release previously stored data */
  1508. if (p->data[0])
  1509. avctx->release_buffer(avctx, p);
  1510. ff_init_range_decoder(c, buf, buf_size);
  1511. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1512. p->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
  1513. if(get_rac(c, &keystate)){
  1514. p->key_frame= 1;
  1515. if(read_header(f) < 0)
  1516. return -1;
  1517. if(init_slice_state(f) < 0)
  1518. return -1;
  1519. clear_state(f);
  1520. }else{
  1521. p->key_frame= 0;
  1522. }
  1523. if(f->ac>1){
  1524. int i;
  1525. for(i=1; i<256; i++){
  1526. c->one_state[i]= f->state_transition[i];
  1527. c->zero_state[256-i]= 256-c->one_state[i];
  1528. }
  1529. }
  1530. p->reference= 0;
  1531. if(avctx->get_buffer(avctx, p) < 0){
  1532. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1533. return -1;
  1534. }
  1535. if(avctx->debug&FF_DEBUG_PICT_INFO)
  1536. av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
  1537. if(!f->ac){
  1538. bytes_read = c->bytestream - c->bytestream_start - 1;
  1539. if(bytes_read ==0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); //FIXME
  1540. //printf("pos=%d\n", bytes_read);
  1541. init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, (buf_size - bytes_read) * 8);
  1542. } else {
  1543. bytes_read = 0; /* avoid warning */
  1544. }
  1545. buf_p= buf + buf_size;
  1546. for(i=f->slice_count-1; i>0; i--){
  1547. FFV1Context *fs= f->slice_context[i];
  1548. int v= AV_RB24(buf_p-3)+3;
  1549. if(buf_p - buf <= v){
  1550. av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
  1551. return -1;
  1552. }
  1553. buf_p -= v;
  1554. if(fs->ac){
  1555. ff_init_range_decoder(&fs->c, buf_p, v);
  1556. }else{
  1557. init_get_bits(&fs->gb, buf_p, v * 8);
  1558. }
  1559. }
  1560. avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1561. f->picture_number++;
  1562. *picture= *p;
  1563. *data_size = sizeof(AVFrame);
  1564. return buf_size;
  1565. }
  1566. AVCodec ff_ffv1_decoder = {
  1567. .name = "ffv1",
  1568. .type = AVMEDIA_TYPE_VIDEO,
  1569. .id = CODEC_ID_FFV1,
  1570. .priv_data_size = sizeof(FFV1Context),
  1571. .init = decode_init,
  1572. .close = common_end,
  1573. .decode = decode_frame,
  1574. .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ | CODEC_CAP_SLICE_THREADS,
  1575. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1576. };
  1577. #if CONFIG_FFV1_ENCODER
  1578. AVCodec ff_ffv1_encoder = {
  1579. .name = "ffv1",
  1580. .type = AVMEDIA_TYPE_VIDEO,
  1581. .id = CODEC_ID_FFV1,
  1582. .priv_data_size = sizeof(FFV1Context),
  1583. .init = encode_init,
  1584. .encode = encode_frame,
  1585. .close = common_end,
  1586. .capabilities = CODEC_CAP_SLICE_THREADS,
  1587. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUVA420P, PIX_FMT_YUV444P, PIX_FMT_YUVA444P, PIX_FMT_YUV440P, PIX_FMT_YUV422P, PIX_FMT_YUV411P, PIX_FMT_YUV410P, PIX_FMT_0RGB32, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_YUV420P9, PIX_FMT_YUV420P10, PIX_FMT_YUV422P10, PIX_FMT_GRAY16, PIX_FMT_NONE},
  1588. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1589. };
  1590. #endif