You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

150 lines
4.0KB

  1. /*
  2. * linear least squares model
  3. *
  4. * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file lls.c
  22. * linear least squares model
  23. */
  24. #include <math.h>
  25. #include <string.h>
  26. #include "lls.h"
  27. #ifdef TEST
  28. #define av_log(a,b,...) printf(__VA_ARGS__)
  29. #endif
  30. void av_init_lls(LLSModel *m, int indep_count){
  31. memset(m, 0, sizeof(LLSModel));
  32. m->indep_count= indep_count;
  33. }
  34. void av_update_lls(LLSModel *m, double *var, double decay){
  35. int i,j;
  36. for(i=0; i<=m->indep_count; i++){
  37. for(j=i; j<=m->indep_count; j++){
  38. m->covariance[i][j] *= decay;
  39. m->covariance[i][j] += var[i]*var[j];
  40. }
  41. }
  42. }
  43. void av_solve_lls(LLSModel *m, double threshold, int min_order){
  44. int i,j,k;
  45. double (*factor)[MAX_VARS+1]= &m->covariance[1][0];
  46. double (*covar )[MAX_VARS+1]= &m->covariance[1][1];
  47. double *covar_y = m->covariance[0];
  48. int count= m->indep_count;
  49. for(i=0; i<count; i++){
  50. for(j=i; j<count; j++){
  51. double sum= covar[i][j];
  52. for(k=i-1; k>=0; k--)
  53. sum -= factor[i][k]*factor[j][k];
  54. if(i==j){
  55. if(sum < threshold)
  56. sum= 1.0;
  57. factor[i][i]= sqrt(sum);
  58. }else
  59. factor[j][i]= sum / factor[i][i];
  60. }
  61. }
  62. for(i=0; i<count; i++){
  63. double sum= covar_y[i+1];
  64. for(k=i-1; k>=0; k--)
  65. sum -= factor[i][k]*m->coeff[0][k];
  66. m->coeff[0][i]= sum / factor[i][i];
  67. }
  68. for(j=count-1; j>=min_order; j--){
  69. for(i=j; i>=0; i--){
  70. double sum= m->coeff[0][i];
  71. for(k=i+1; k<=j; k++)
  72. sum -= factor[k][i]*m->coeff[j][k];
  73. m->coeff[j][i]= sum / factor[i][i];
  74. }
  75. m->variance[j]= covar_y[0];
  76. for(i=0; i<=j; i++){
  77. double sum= m->coeff[j][i]*covar[i][i] - 2*covar_y[i+1];
  78. for(k=0; k<i; k++)
  79. sum += 2*m->coeff[j][k]*covar[k][i];
  80. m->variance[j] += m->coeff[j][i]*sum;
  81. }
  82. }
  83. }
  84. double av_evaluate_lls(LLSModel *m, double *param, int order){
  85. int i;
  86. double out= 0;
  87. for(i=0; i<=order; i++)
  88. out+= param[i]*m->coeff[order][i];
  89. return out;
  90. }
  91. #ifdef TEST
  92. #include <stdlib.h>
  93. #include <stdio.h>
  94. int main(){
  95. LLSModel m;
  96. int i, order;
  97. av_init_lls(&m, 3);
  98. for(i=0; i<100; i++){
  99. double var[4];
  100. double eval, variance;
  101. #if 0
  102. var[1] = rand() / (double)RAND_MAX;
  103. var[2] = rand() / (double)RAND_MAX;
  104. var[3] = rand() / (double)RAND_MAX;
  105. var[2]= var[1] + var[3]/2;
  106. var[0] = var[1] + var[2] + var[3] + var[1]*var[2]/100;
  107. #else
  108. var[0] = (rand() / (double)RAND_MAX - 0.5)*2;
  109. var[1] = var[0] + rand() / (double)RAND_MAX - 0.5;
  110. var[2] = var[1] + rand() / (double)RAND_MAX - 0.5;
  111. var[3] = var[2] + rand() / (double)RAND_MAX - 0.5;
  112. #endif
  113. av_update_lls(&m, var, 0.99);
  114. av_solve_lls(&m, 0.001, 0);
  115. for(order=0; order<3; order++){
  116. eval= av_evaluate_lls(&m, var+1, order);
  117. av_log(NULL, AV_LOG_DEBUG, "real:%f order:%d pred:%f var:%f coeffs:%f %f %f\n",
  118. var[0], order, eval, sqrt(m.variance[order] / (i+1)),
  119. m.coeff[order][0], m.coeff[order][1], m.coeff[order][2]);
  120. }
  121. }
  122. return 0;
  123. }
  124. #endif