You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

477 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/attributes.h"
  22. #include "avcodec.h"
  23. #include "sinewin.h"
  24. #include "wma.h"
  25. #include "wma_common.h"
  26. #include "wmadata.h"
  27. #undef NDEBUG
  28. #include <assert.h>
  29. /* XXX: use same run/length optimization as mpeg decoders */
  30. // FIXME maybe split decode / encode or pass flag
  31. static av_cold void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  32. float **plevel_table, uint16_t **pint_table,
  33. const CoefVLCTable *vlc_table)
  34. {
  35. int n = vlc_table->n;
  36. const uint8_t *table_bits = vlc_table->huffbits;
  37. const uint32_t *table_codes = vlc_table->huffcodes;
  38. const uint16_t *levels_table = vlc_table->levels;
  39. uint16_t *run_table, *level_table, *int_table;
  40. float *flevel_table;
  41. int i, l, j, k, level;
  42. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  43. run_table = av_malloc(n * sizeof(uint16_t));
  44. level_table = av_malloc(n * sizeof(uint16_t));
  45. flevel_table = av_malloc(n * sizeof(*flevel_table));
  46. int_table = av_malloc(n * sizeof(uint16_t));
  47. i = 2;
  48. level = 1;
  49. k = 0;
  50. while (i < n) {
  51. int_table[k] = i;
  52. l = levels_table[k++];
  53. for (j = 0; j < l; j++) {
  54. run_table[i] = j;
  55. level_table[i] = level;
  56. flevel_table[i] = level;
  57. i++;
  58. }
  59. level++;
  60. }
  61. *prun_table = run_table;
  62. *plevel_table = flevel_table;
  63. *pint_table = int_table;
  64. av_free(level_table);
  65. }
  66. av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
  67. {
  68. WMACodecContext *s = avctx->priv_data;
  69. int i;
  70. float bps1, high_freq;
  71. volatile float bps;
  72. int sample_rate1;
  73. int coef_vlc_table;
  74. if (avctx->sample_rate <= 0 || avctx->sample_rate > 50000 ||
  75. avctx->channels <= 0 || avctx->channels > 2 ||
  76. avctx->bit_rate <= 0)
  77. return -1;
  78. ff_fmt_convert_init(&s->fmt_conv, avctx);
  79. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  80. if (avctx->codec->id == AV_CODEC_ID_WMAV1)
  81. s->version = 1;
  82. else
  83. s->version = 2;
  84. /* compute MDCT block size */
  85. s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
  86. s->version, 0);
  87. s->next_block_len_bits = s->frame_len_bits;
  88. s->prev_block_len_bits = s->frame_len_bits;
  89. s->block_len_bits = s->frame_len_bits;
  90. s->frame_len = 1 << s->frame_len_bits;
  91. if (s->use_variable_block_len) {
  92. int nb_max, nb;
  93. nb = ((flags2 >> 3) & 3) + 1;
  94. if ((avctx->bit_rate / avctx->channels) >= 32000)
  95. nb += 2;
  96. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  97. if (nb > nb_max)
  98. nb = nb_max;
  99. s->nb_block_sizes = nb + 1;
  100. } else
  101. s->nb_block_sizes = 1;
  102. /* init rate dependent parameters */
  103. s->use_noise_coding = 1;
  104. high_freq = avctx->sample_rate * 0.5;
  105. /* if version 2, then the rates are normalized */
  106. sample_rate1 = avctx->sample_rate;
  107. if (s->version == 2) {
  108. if (sample_rate1 >= 44100)
  109. sample_rate1 = 44100;
  110. else if (sample_rate1 >= 22050)
  111. sample_rate1 = 22050;
  112. else if (sample_rate1 >= 16000)
  113. sample_rate1 = 16000;
  114. else if (sample_rate1 >= 11025)
  115. sample_rate1 = 11025;
  116. else if (sample_rate1 >= 8000)
  117. sample_rate1 = 8000;
  118. }
  119. bps = (float) avctx->bit_rate /
  120. (float) (avctx->channels * avctx->sample_rate);
  121. s->byte_offset_bits = av_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
  122. /* compute high frequency value and choose if noise coding should
  123. * be activated */
  124. bps1 = bps;
  125. if (avctx->channels == 2)
  126. bps1 = bps * 1.6;
  127. if (sample_rate1 == 44100) {
  128. if (bps1 >= 0.61)
  129. s->use_noise_coding = 0;
  130. else
  131. high_freq = high_freq * 0.4;
  132. } else if (sample_rate1 == 22050) {
  133. if (bps1 >= 1.16)
  134. s->use_noise_coding = 0;
  135. else if (bps1 >= 0.72)
  136. high_freq = high_freq * 0.7;
  137. else
  138. high_freq = high_freq * 0.6;
  139. } else if (sample_rate1 == 16000) {
  140. if (bps > 0.5)
  141. high_freq = high_freq * 0.5;
  142. else
  143. high_freq = high_freq * 0.3;
  144. } else if (sample_rate1 == 11025)
  145. high_freq = high_freq * 0.7;
  146. else if (sample_rate1 == 8000) {
  147. if (bps <= 0.625)
  148. high_freq = high_freq * 0.5;
  149. else if (bps > 0.75)
  150. s->use_noise_coding = 0;
  151. else
  152. high_freq = high_freq * 0.65;
  153. } else {
  154. if (bps >= 0.8)
  155. high_freq = high_freq * 0.75;
  156. else if (bps >= 0.6)
  157. high_freq = high_freq * 0.6;
  158. else
  159. high_freq = high_freq * 0.5;
  160. }
  161. av_dlog(s->avctx, "flags2=0x%x\n", flags2);
  162. av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  163. s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
  164. avctx->block_align);
  165. av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  166. bps, bps1, high_freq, s->byte_offset_bits);
  167. av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  168. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  169. /* compute the scale factor band sizes for each MDCT block size */
  170. {
  171. int a, b, pos, lpos, k, block_len, i, j, n;
  172. const uint8_t *table;
  173. if (s->version == 1)
  174. s->coefs_start = 3;
  175. else
  176. s->coefs_start = 0;
  177. for (k = 0; k < s->nb_block_sizes; k++) {
  178. block_len = s->frame_len >> k;
  179. if (s->version == 1) {
  180. lpos = 0;
  181. for (i = 0; i < 25; i++) {
  182. a = ff_wma_critical_freqs[i];
  183. b = avctx->sample_rate;
  184. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  185. if (pos > block_len)
  186. pos = block_len;
  187. s->exponent_bands[0][i] = pos - lpos;
  188. if (pos >= block_len) {
  189. i++;
  190. break;
  191. }
  192. lpos = pos;
  193. }
  194. s->exponent_sizes[0] = i;
  195. } else {
  196. /* hardcoded tables */
  197. table = NULL;
  198. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  199. if (a < 3) {
  200. if (avctx->sample_rate >= 44100)
  201. table = exponent_band_44100[a];
  202. else if (avctx->sample_rate >= 32000)
  203. table = exponent_band_32000[a];
  204. else if (avctx->sample_rate >= 22050)
  205. table = exponent_band_22050[a];
  206. }
  207. if (table) {
  208. n = *table++;
  209. for (i = 0; i < n; i++)
  210. s->exponent_bands[k][i] = table[i];
  211. s->exponent_sizes[k] = n;
  212. } else {
  213. j = 0;
  214. lpos = 0;
  215. for (i = 0; i < 25; i++) {
  216. a = ff_wma_critical_freqs[i];
  217. b = avctx->sample_rate;
  218. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  219. pos <<= 2;
  220. if (pos > block_len)
  221. pos = block_len;
  222. if (pos > lpos)
  223. s->exponent_bands[k][j++] = pos - lpos;
  224. if (pos >= block_len)
  225. break;
  226. lpos = pos;
  227. }
  228. s->exponent_sizes[k] = j;
  229. }
  230. }
  231. /* max number of coefs */
  232. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  233. /* high freq computation */
  234. s->high_band_start[k] = (int) ((block_len * 2 * high_freq) /
  235. avctx->sample_rate + 0.5);
  236. n = s->exponent_sizes[k];
  237. j = 0;
  238. pos = 0;
  239. for (i = 0; i < n; i++) {
  240. int start, end;
  241. start = pos;
  242. pos += s->exponent_bands[k][i];
  243. end = pos;
  244. if (start < s->high_band_start[k])
  245. start = s->high_band_start[k];
  246. if (end > s->coefs_end[k])
  247. end = s->coefs_end[k];
  248. if (end > start)
  249. s->exponent_high_bands[k][j++] = end - start;
  250. }
  251. s->exponent_high_sizes[k] = j;
  252. #if 0
  253. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  254. s->frame_len >> k,
  255. s->coefs_end[k],
  256. s->high_band_start[k],
  257. s->exponent_high_sizes[k]);
  258. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  259. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  260. tprintf(s->avctx, "\n");
  261. #endif /* 0 */
  262. }
  263. }
  264. #ifdef TRACE
  265. {
  266. int i, j;
  267. for (i = 0; i < s->nb_block_sizes; i++) {
  268. tprintf(s->avctx, "%5d: n=%2d:",
  269. s->frame_len >> i,
  270. s->exponent_sizes[i]);
  271. for (j = 0; j < s->exponent_sizes[i]; j++)
  272. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  273. tprintf(s->avctx, "\n");
  274. }
  275. }
  276. #endif /* TRACE */
  277. /* init MDCT windows : simple sine window */
  278. for (i = 0; i < s->nb_block_sizes; i++) {
  279. ff_init_ff_sine_windows(s->frame_len_bits - i);
  280. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  281. }
  282. s->reset_block_lengths = 1;
  283. if (s->use_noise_coding) {
  284. /* init the noise generator */
  285. if (s->use_exp_vlc)
  286. s->noise_mult = 0.02;
  287. else
  288. s->noise_mult = 0.04;
  289. #ifdef TRACE
  290. for (i = 0; i < NOISE_TAB_SIZE; i++)
  291. s->noise_table[i] = 1.0 * s->noise_mult;
  292. #else
  293. {
  294. unsigned int seed;
  295. float norm;
  296. seed = 1;
  297. norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
  298. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  299. seed = seed * 314159 + 1;
  300. s->noise_table[i] = (float) ((int) seed) * norm;
  301. }
  302. }
  303. #endif /* TRACE */
  304. }
  305. /* choose the VLC tables for the coefficients */
  306. coef_vlc_table = 2;
  307. if (avctx->sample_rate >= 32000) {
  308. if (bps1 < 0.72)
  309. coef_vlc_table = 0;
  310. else if (bps1 < 1.16)
  311. coef_vlc_table = 1;
  312. }
  313. s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
  314. s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
  315. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  316. &s->int_table[0], s->coef_vlcs[0]);
  317. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  318. &s->int_table[1], s->coef_vlcs[1]);
  319. return 0;
  320. }
  321. int ff_wma_total_gain_to_bits(int total_gain)
  322. {
  323. if (total_gain < 15)
  324. return 13;
  325. else if (total_gain < 32)
  326. return 12;
  327. else if (total_gain < 40)
  328. return 11;
  329. else if (total_gain < 45)
  330. return 10;
  331. else
  332. return 9;
  333. }
  334. int ff_wma_end(AVCodecContext *avctx)
  335. {
  336. WMACodecContext *s = avctx->priv_data;
  337. int i;
  338. for (i = 0; i < s->nb_block_sizes; i++)
  339. ff_mdct_end(&s->mdct_ctx[i]);
  340. if (s->use_exp_vlc)
  341. ff_free_vlc(&s->exp_vlc);
  342. if (s->use_noise_coding)
  343. ff_free_vlc(&s->hgain_vlc);
  344. for (i = 0; i < 2; i++) {
  345. ff_free_vlc(&s->coef_vlc[i]);
  346. av_free(s->run_table[i]);
  347. av_free(s->level_table[i]);
  348. av_free(s->int_table[i]);
  349. }
  350. return 0;
  351. }
  352. /**
  353. * Decode an uncompressed coefficient.
  354. * @param gb GetBitContext
  355. * @return the decoded coefficient
  356. */
  357. unsigned int ff_wma_get_large_val(GetBitContext *gb)
  358. {
  359. /** consumes up to 34 bits */
  360. int n_bits = 8;
  361. /** decode length */
  362. if (get_bits1(gb)) {
  363. n_bits += 8;
  364. if (get_bits1(gb)) {
  365. n_bits += 8;
  366. if (get_bits1(gb))
  367. n_bits += 7;
  368. }
  369. }
  370. return get_bits_long(gb, n_bits);
  371. }
  372. /**
  373. * Decode run level compressed coefficients.
  374. * @param avctx codec context
  375. * @param gb bitstream reader context
  376. * @param vlc vlc table for get_vlc2
  377. * @param level_table level codes
  378. * @param run_table run codes
  379. * @param version 0 for wma1,2 1 for wmapro
  380. * @param ptr output buffer
  381. * @param offset offset in the output buffer
  382. * @param num_coefs number of input coefficents
  383. * @param block_len input buffer length (2^n)
  384. * @param frame_len_bits number of bits for escaped run codes
  385. * @param coef_nb_bits number of bits for escaped level codes
  386. * @return 0 on success, -1 otherwise
  387. */
  388. int ff_wma_run_level_decode(AVCodecContext *avctx, GetBitContext *gb,
  389. VLC *vlc, const float *level_table,
  390. const uint16_t *run_table, int version,
  391. WMACoef *ptr, int offset, int num_coefs,
  392. int block_len, int frame_len_bits,
  393. int coef_nb_bits)
  394. {
  395. int code, level, sign;
  396. const uint32_t *ilvl = (const uint32_t *) level_table;
  397. uint32_t *iptr = (uint32_t *) ptr;
  398. const unsigned int coef_mask = block_len - 1;
  399. for (; offset < num_coefs; offset++) {
  400. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  401. if (code > 1) {
  402. /** normal code */
  403. offset += run_table[code];
  404. sign = get_bits1(gb) - 1;
  405. iptr[offset & coef_mask] = ilvl[code] ^ sign << 31;
  406. } else if (code == 1) {
  407. /** EOB */
  408. break;
  409. } else {
  410. /** escape */
  411. if (!version) {
  412. level = get_bits(gb, coef_nb_bits);
  413. /** NOTE: this is rather suboptimal. reading
  414. * block_len_bits would be better */
  415. offset += get_bits(gb, frame_len_bits);
  416. } else {
  417. level = ff_wma_get_large_val(gb);
  418. /** escape decode */
  419. if (get_bits1(gb)) {
  420. if (get_bits1(gb)) {
  421. if (get_bits1(gb)) {
  422. av_log(avctx, AV_LOG_ERROR,
  423. "broken escape sequence\n");
  424. return -1;
  425. } else
  426. offset += get_bits(gb, frame_len_bits) + 4;
  427. } else
  428. offset += get_bits(gb, 2) + 1;
  429. }
  430. }
  431. sign = get_bits1(gb) - 1;
  432. ptr[offset & coef_mask] = (level ^ sign) - sign;
  433. }
  434. }
  435. /** NOTE: EOB can be omitted */
  436. if (offset > num_coefs) {
  437. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  438. return -1;
  439. }
  440. return 0;
  441. }