You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2777 lines
79KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of the swscaler which has been written
  21. * by Michael Niedermayer can be used under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually but i didnt write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #include <inttypes.h>
  53. #include <string.h>
  54. #include <math.h>
  55. #include <stdio.h>
  56. #include <unistd.h>
  57. #include "config.h"
  58. #include <assert.h>
  59. #ifdef HAVE_MALLOC_H
  60. #include <malloc.h>
  61. #else
  62. #include <stdlib.h>
  63. #endif
  64. #ifdef HAVE_SYS_MMAN_H
  65. #include <sys/mman.h>
  66. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  67. #define MAP_ANONYMOUS MAP_ANON
  68. #endif
  69. #endif
  70. #include "swscale.h"
  71. #include "swscale_internal.h"
  72. #include "x86_cpu.h"
  73. #include "bswap.h"
  74. #include "rgb2rgb.h"
  75. #ifdef USE_FASTMEMCPY
  76. #include "libvo/fastmemcpy.h"
  77. #endif
  78. #undef MOVNTQ
  79. #undef PAVGB
  80. //#undef HAVE_MMX2
  81. //#define HAVE_3DNOW
  82. //#undef HAVE_MMX
  83. //#undef ARCH_X86
  84. //#define WORDS_BIGENDIAN
  85. #define DITHER1XBPP
  86. #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
  87. #define RET 0xC3 //near return opcode for X86
  88. #ifdef MP_DEBUG
  89. #define ASSERT(x) assert(x);
  90. #else
  91. #define ASSERT(x) ;
  92. #endif
  93. #ifdef M_PI
  94. #define PI M_PI
  95. #else
  96. #define PI 3.14159265358979323846
  97. #endif
  98. #define isSupportedIn(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
  99. || (x)==PIX_FMT_RGB32|| (x)==PIX_FMT_BGR24|| (x)==PIX_FMT_BGR565|| (x)==PIX_FMT_BGR555\
  100. || (x)==PIX_FMT_BGR32|| (x)==PIX_FMT_RGB24\
  101. || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P\
  102. || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P)
  103. #define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
  104. || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
  105. || isRGB(x) || isBGR(x)\
  106. || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21\
  107. || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P)
  108. #define isPacked(x) ((x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 ||isRGB(x) || isBGR(x))
  109. #define RGB2YUV_SHIFT 16
  110. #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
  111. #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
  112. #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
  113. #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
  114. #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
  115. #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
  116. #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
  117. #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
  118. #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
  119. extern const int32_t Inverse_Table_6_9[8][4];
  120. /*
  121. NOTES
  122. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  123. TODO
  124. more intelligent missalignment avoidance for the horizontal scaler
  125. write special vertical cubic upscale version
  126. Optimize C code (yv12 / minmax)
  127. add support for packed pixel yuv input & output
  128. add support for Y8 output
  129. optimize bgr24 & bgr32
  130. add BGR4 output support
  131. write special BGR->BGR scaler
  132. */
  133. #if defined(ARCH_X86) || defined(ARCH_X86_64)
  134. static uint64_t attribute_used __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
  135. static uint64_t attribute_used __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
  136. static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
  137. static uint64_t attribute_used __attribute__((aligned(8))) w02= 0x0002000200020002LL;
  138. static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
  139. static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
  140. static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
  141. static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
  142. static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
  143. static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
  144. static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
  145. static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
  146. static uint64_t __attribute__((aligned(8))) dither4[2]={
  147. 0x0103010301030103LL,
  148. 0x0200020002000200LL,};
  149. static uint64_t __attribute__((aligned(8))) dither8[2]={
  150. 0x0602060206020602LL,
  151. 0x0004000400040004LL,};
  152. static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
  153. static uint64_t attribute_used __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
  154. static uint64_t attribute_used __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
  155. static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
  156. static uint64_t attribute_used __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
  157. static uint64_t attribute_used __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
  158. static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
  159. static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
  160. static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
  161. #ifdef FAST_BGR2YV12
  162. static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
  163. static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
  164. static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
  165. #else
  166. static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
  167. static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
  168. static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
  169. #endif /* FAST_BGR2YV12 */
  170. static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
  171. static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
  172. static const uint64_t w1111 attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
  173. #endif /* defined(ARCH_X86) || defined(ARCH_X86_64) */
  174. // clipping helper table for C implementations:
  175. static unsigned char clip_table[768];
  176. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  177. extern const uint8_t dither_2x2_4[2][8];
  178. extern const uint8_t dither_2x2_8[2][8];
  179. extern const uint8_t dither_8x8_32[8][8];
  180. extern const uint8_t dither_8x8_73[8][8];
  181. extern const uint8_t dither_8x8_220[8][8];
  182. char *sws_format_name(enum PixelFormat format)
  183. {
  184. switch (format) {
  185. case PIX_FMT_YUV420P:
  186. return "yuv420p";
  187. case PIX_FMT_YUYV422:
  188. return "yuyv422";
  189. case PIX_FMT_RGB24:
  190. return "rgb24";
  191. case PIX_FMT_BGR24:
  192. return "bgr24";
  193. case PIX_FMT_YUV422P:
  194. return "yuv422p";
  195. case PIX_FMT_YUV444P:
  196. return "yuv444p";
  197. case PIX_FMT_RGB32:
  198. return "rgb32";
  199. case PIX_FMT_YUV410P:
  200. return "yuv410p";
  201. case PIX_FMT_YUV411P:
  202. return "yuv411p";
  203. case PIX_FMT_RGB565:
  204. return "rgb565";
  205. case PIX_FMT_RGB555:
  206. return "rgb555";
  207. case PIX_FMT_GRAY8:
  208. return "gray8";
  209. case PIX_FMT_MONOWHITE:
  210. return "mono white";
  211. case PIX_FMT_MONOBLACK:
  212. return "mono black";
  213. case PIX_FMT_PAL8:
  214. return "Palette";
  215. case PIX_FMT_YUVJ420P:
  216. return "yuvj420p";
  217. case PIX_FMT_YUVJ422P:
  218. return "yuvj422p";
  219. case PIX_FMT_YUVJ444P:
  220. return "yuvj444p";
  221. case PIX_FMT_XVMC_MPEG2_MC:
  222. return "xvmc_mpeg2_mc";
  223. case PIX_FMT_XVMC_MPEG2_IDCT:
  224. return "xvmc_mpeg2_idct";
  225. case PIX_FMT_UYVY422:
  226. return "uyvy422";
  227. case PIX_FMT_UYYVYY411:
  228. return "uyyvyy411";
  229. case PIX_FMT_RGB32_1:
  230. return "rgb32x";
  231. case PIX_FMT_BGR32_1:
  232. return "bgr32x";
  233. case PIX_FMT_BGR32:
  234. return "bgr32";
  235. case PIX_FMT_BGR565:
  236. return "bgr565";
  237. case PIX_FMT_BGR555:
  238. return "bgr555";
  239. case PIX_FMT_BGR8:
  240. return "bgr8";
  241. case PIX_FMT_BGR4:
  242. return "bgr4";
  243. case PIX_FMT_BGR4_BYTE:
  244. return "bgr4 byte";
  245. case PIX_FMT_RGB8:
  246. return "rgb8";
  247. case PIX_FMT_RGB4:
  248. return "rgb4";
  249. case PIX_FMT_RGB4_BYTE:
  250. return "rgb4 byte";
  251. case PIX_FMT_NV12:
  252. return "nv12";
  253. case PIX_FMT_NV21:
  254. return "nv21";
  255. default:
  256. return "Unknown format";
  257. }
  258. }
  259. #if defined(ARCH_X86) || defined(ARCH_X86_64)
  260. void in_asm_used_var_warning_killer()
  261. {
  262. volatile int i= bF8+bFC+w10+
  263. bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
  264. M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
  265. if(i) i=0;
  266. }
  267. #endif
  268. static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  269. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  270. uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
  271. {
  272. //FIXME Optimize (just quickly writen not opti..)
  273. int i;
  274. for(i=0; i<dstW; i++)
  275. {
  276. int val=1<<18;
  277. int j;
  278. for(j=0; j<lumFilterSize; j++)
  279. val += lumSrc[j][i] * lumFilter[j];
  280. dest[i]= FFMIN(FFMAX(val>>19, 0), 255);
  281. }
  282. if(uDest != NULL)
  283. for(i=0; i<chrDstW; i++)
  284. {
  285. int u=1<<18;
  286. int v=1<<18;
  287. int j;
  288. for(j=0; j<chrFilterSize; j++)
  289. {
  290. u += chrSrc[j][i] * chrFilter[j];
  291. v += chrSrc[j][i + 2048] * chrFilter[j];
  292. }
  293. uDest[i]= FFMIN(FFMAX(u>>19, 0), 255);
  294. vDest[i]= FFMIN(FFMAX(v>>19, 0), 255);
  295. }
  296. }
  297. static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  298. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  299. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  300. {
  301. //FIXME Optimize (just quickly writen not opti..)
  302. int i;
  303. for(i=0; i<dstW; i++)
  304. {
  305. int val=1<<18;
  306. int j;
  307. for(j=0; j<lumFilterSize; j++)
  308. val += lumSrc[j][i] * lumFilter[j];
  309. dest[i]= FFMIN(FFMAX(val>>19, 0), 255);
  310. }
  311. if(uDest == NULL)
  312. return;
  313. if(dstFormat == PIX_FMT_NV12)
  314. for(i=0; i<chrDstW; i++)
  315. {
  316. int u=1<<18;
  317. int v=1<<18;
  318. int j;
  319. for(j=0; j<chrFilterSize; j++)
  320. {
  321. u += chrSrc[j][i] * chrFilter[j];
  322. v += chrSrc[j][i + 2048] * chrFilter[j];
  323. }
  324. uDest[2*i]= FFMIN(FFMAX(u>>19, 0), 255);
  325. uDest[2*i+1]= FFMIN(FFMAX(v>>19, 0), 255);
  326. }
  327. else
  328. for(i=0; i<chrDstW; i++)
  329. {
  330. int u=1<<18;
  331. int v=1<<18;
  332. int j;
  333. for(j=0; j<chrFilterSize; j++)
  334. {
  335. u += chrSrc[j][i] * chrFilter[j];
  336. v += chrSrc[j][i + 2048] * chrFilter[j];
  337. }
  338. uDest[2*i]= FFMIN(FFMAX(v>>19, 0), 255);
  339. uDest[2*i+1]= FFMIN(FFMAX(u>>19, 0), 255);
  340. }
  341. }
  342. #define YSCALE_YUV_2_PACKEDX_C(type) \
  343. for(i=0; i<(dstW>>1); i++){\
  344. int j;\
  345. int Y1=1<<18;\
  346. int Y2=1<<18;\
  347. int U=1<<18;\
  348. int V=1<<18;\
  349. type *r, *b, *g;\
  350. const int i2= 2*i;\
  351. \
  352. for(j=0; j<lumFilterSize; j++)\
  353. {\
  354. Y1 += lumSrc[j][i2] * lumFilter[j];\
  355. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  356. }\
  357. for(j=0; j<chrFilterSize; j++)\
  358. {\
  359. U += chrSrc[j][i] * chrFilter[j];\
  360. V += chrSrc[j][i+2048] * chrFilter[j];\
  361. }\
  362. Y1>>=19;\
  363. Y2>>=19;\
  364. U >>=19;\
  365. V >>=19;\
  366. if((Y1|Y2|U|V)&256)\
  367. {\
  368. if(Y1>255) Y1=255;\
  369. else if(Y1<0)Y1=0;\
  370. if(Y2>255) Y2=255;\
  371. else if(Y2<0)Y2=0;\
  372. if(U>255) U=255;\
  373. else if(U<0) U=0;\
  374. if(V>255) V=255;\
  375. else if(V<0) V=0;\
  376. }
  377. #define YSCALE_YUV_2_RGBX_C(type) \
  378. YSCALE_YUV_2_PACKEDX_C(type)\
  379. r = c->table_rV[V];\
  380. g = c->table_gU[U] + c->table_gV[V];\
  381. b = c->table_bU[U];\
  382. #define YSCALE_YUV_2_PACKED2_C \
  383. for(i=0; i<(dstW>>1); i++){\
  384. const int i2= 2*i;\
  385. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19;\
  386. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
  387. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19;\
  388. int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
  389. #define YSCALE_YUV_2_RGB2_C(type) \
  390. YSCALE_YUV_2_PACKED2_C\
  391. type *r, *b, *g;\
  392. r = c->table_rV[V];\
  393. g = c->table_gU[U] + c->table_gV[V];\
  394. b = c->table_bU[U];\
  395. #define YSCALE_YUV_2_PACKED1_C \
  396. for(i=0; i<(dstW>>1); i++){\
  397. const int i2= 2*i;\
  398. int Y1= buf0[i2 ]>>7;\
  399. int Y2= buf0[i2+1]>>7;\
  400. int U= (uvbuf1[i ])>>7;\
  401. int V= (uvbuf1[i+2048])>>7;\
  402. #define YSCALE_YUV_2_RGB1_C(type) \
  403. YSCALE_YUV_2_PACKED1_C\
  404. type *r, *b, *g;\
  405. r = c->table_rV[V];\
  406. g = c->table_gU[U] + c->table_gV[V];\
  407. b = c->table_bU[U];\
  408. #define YSCALE_YUV_2_PACKED1B_C \
  409. for(i=0; i<(dstW>>1); i++){\
  410. const int i2= 2*i;\
  411. int Y1= buf0[i2 ]>>7;\
  412. int Y2= buf0[i2+1]>>7;\
  413. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  414. int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
  415. #define YSCALE_YUV_2_RGB1B_C(type) \
  416. YSCALE_YUV_2_PACKED1B_C\
  417. type *r, *b, *g;\
  418. r = c->table_rV[V];\
  419. g = c->table_gU[U] + c->table_gV[V];\
  420. b = c->table_bU[U];\
  421. #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
  422. switch(c->dstFormat)\
  423. {\
  424. case PIX_FMT_RGB32:\
  425. case PIX_FMT_BGR32:\
  426. func(uint32_t)\
  427. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  428. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  429. } \
  430. break;\
  431. case PIX_FMT_RGB24:\
  432. func(uint8_t)\
  433. ((uint8_t*)dest)[0]= r[Y1];\
  434. ((uint8_t*)dest)[1]= g[Y1];\
  435. ((uint8_t*)dest)[2]= b[Y1];\
  436. ((uint8_t*)dest)[3]= r[Y2];\
  437. ((uint8_t*)dest)[4]= g[Y2];\
  438. ((uint8_t*)dest)[5]= b[Y2];\
  439. dest+=6;\
  440. }\
  441. break;\
  442. case PIX_FMT_BGR24:\
  443. func(uint8_t)\
  444. ((uint8_t*)dest)[0]= b[Y1];\
  445. ((uint8_t*)dest)[1]= g[Y1];\
  446. ((uint8_t*)dest)[2]= r[Y1];\
  447. ((uint8_t*)dest)[3]= b[Y2];\
  448. ((uint8_t*)dest)[4]= g[Y2];\
  449. ((uint8_t*)dest)[5]= r[Y2];\
  450. dest+=6;\
  451. }\
  452. break;\
  453. case PIX_FMT_RGB565:\
  454. case PIX_FMT_BGR565:\
  455. {\
  456. const int dr1= dither_2x2_8[y&1 ][0];\
  457. const int dg1= dither_2x2_4[y&1 ][0];\
  458. const int db1= dither_2x2_8[(y&1)^1][0];\
  459. const int dr2= dither_2x2_8[y&1 ][1];\
  460. const int dg2= dither_2x2_4[y&1 ][1];\
  461. const int db2= dither_2x2_8[(y&1)^1][1];\
  462. func(uint16_t)\
  463. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  464. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  465. }\
  466. }\
  467. break;\
  468. case PIX_FMT_RGB555:\
  469. case PIX_FMT_BGR555:\
  470. {\
  471. const int dr1= dither_2x2_8[y&1 ][0];\
  472. const int dg1= dither_2x2_8[y&1 ][1];\
  473. const int db1= dither_2x2_8[(y&1)^1][0];\
  474. const int dr2= dither_2x2_8[y&1 ][1];\
  475. const int dg2= dither_2x2_8[y&1 ][0];\
  476. const int db2= dither_2x2_8[(y&1)^1][1];\
  477. func(uint16_t)\
  478. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  479. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  480. }\
  481. }\
  482. break;\
  483. case PIX_FMT_RGB8:\
  484. case PIX_FMT_BGR8:\
  485. {\
  486. const uint8_t * const d64= dither_8x8_73[y&7];\
  487. const uint8_t * const d32= dither_8x8_32[y&7];\
  488. func(uint8_t)\
  489. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  490. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  491. }\
  492. }\
  493. break;\
  494. case PIX_FMT_RGB4:\
  495. case PIX_FMT_BGR4:\
  496. {\
  497. const uint8_t * const d64= dither_8x8_73 [y&7];\
  498. const uint8_t * const d128=dither_8x8_220[y&7];\
  499. func(uint8_t)\
  500. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  501. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  502. }\
  503. }\
  504. break;\
  505. case PIX_FMT_RGB4_BYTE:\
  506. case PIX_FMT_BGR4_BYTE:\
  507. {\
  508. const uint8_t * const d64= dither_8x8_73 [y&7];\
  509. const uint8_t * const d128=dither_8x8_220[y&7];\
  510. func(uint8_t)\
  511. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  512. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  513. }\
  514. }\
  515. break;\
  516. case PIX_FMT_MONOBLACK:\
  517. {\
  518. const uint8_t * const d128=dither_8x8_220[y&7];\
  519. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  520. for(i=0; i<dstW-7; i+=8){\
  521. int acc;\
  522. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  523. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  524. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  525. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  526. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  527. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  528. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  529. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  530. ((uint8_t*)dest)[0]= acc;\
  531. dest++;\
  532. }\
  533. \
  534. /*\
  535. ((uint8_t*)dest)-= dstW>>4;\
  536. {\
  537. int acc=0;\
  538. int left=0;\
  539. static int top[1024];\
  540. static int last_new[1024][1024];\
  541. static int last_in3[1024][1024];\
  542. static int drift[1024][1024];\
  543. int topLeft=0;\
  544. int shift=0;\
  545. int count=0;\
  546. const uint8_t * const d128=dither_8x8_220[y&7];\
  547. int error_new=0;\
  548. int error_in3=0;\
  549. int f=0;\
  550. \
  551. for(i=dstW>>1; i<dstW; i++){\
  552. int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
  553. int in2 = (76309 * (in - 16) + 32768) >> 16;\
  554. int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
  555. int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
  556. + (last_new[y][i] - in3)*f/256;\
  557. int new= old> 128 ? 255 : 0;\
  558. \
  559. error_new+= ABS(last_new[y][i] - new);\
  560. error_in3+= ABS(last_in3[y][i] - in3);\
  561. f= error_new - error_in3*4;\
  562. if(f<0) f=0;\
  563. if(f>256) f=256;\
  564. \
  565. topLeft= top[i];\
  566. left= top[i]= old - new;\
  567. last_new[y][i]= new;\
  568. last_in3[y][i]= in3;\
  569. \
  570. acc+= acc + (new&1);\
  571. if((i&7)==6){\
  572. ((uint8_t*)dest)[0]= acc;\
  573. ((uint8_t*)dest)++;\
  574. }\
  575. }\
  576. }\
  577. */\
  578. }\
  579. break;\
  580. case PIX_FMT_YUYV422:\
  581. func2\
  582. ((uint8_t*)dest)[2*i2+0]= Y1;\
  583. ((uint8_t*)dest)[2*i2+1]= U;\
  584. ((uint8_t*)dest)[2*i2+2]= Y2;\
  585. ((uint8_t*)dest)[2*i2+3]= V;\
  586. } \
  587. break;\
  588. case PIX_FMT_UYVY422:\
  589. func2\
  590. ((uint8_t*)dest)[2*i2+0]= U;\
  591. ((uint8_t*)dest)[2*i2+1]= Y1;\
  592. ((uint8_t*)dest)[2*i2+2]= V;\
  593. ((uint8_t*)dest)[2*i2+3]= Y2;\
  594. } \
  595. break;\
  596. }\
  597. static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  598. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  599. uint8_t *dest, int dstW, int y)
  600. {
  601. int i;
  602. switch(c->dstFormat)
  603. {
  604. case PIX_FMT_BGR32:
  605. case PIX_FMT_RGB32:
  606. YSCALE_YUV_2_RGBX_C(uint32_t)
  607. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
  608. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
  609. }
  610. break;
  611. case PIX_FMT_RGB24:
  612. YSCALE_YUV_2_RGBX_C(uint8_t)
  613. ((uint8_t*)dest)[0]= r[Y1];
  614. ((uint8_t*)dest)[1]= g[Y1];
  615. ((uint8_t*)dest)[2]= b[Y1];
  616. ((uint8_t*)dest)[3]= r[Y2];
  617. ((uint8_t*)dest)[4]= g[Y2];
  618. ((uint8_t*)dest)[5]= b[Y2];
  619. dest+=6;
  620. }
  621. break;
  622. case PIX_FMT_BGR24:
  623. YSCALE_YUV_2_RGBX_C(uint8_t)
  624. ((uint8_t*)dest)[0]= b[Y1];
  625. ((uint8_t*)dest)[1]= g[Y1];
  626. ((uint8_t*)dest)[2]= r[Y1];
  627. ((uint8_t*)dest)[3]= b[Y2];
  628. ((uint8_t*)dest)[4]= g[Y2];
  629. ((uint8_t*)dest)[5]= r[Y2];
  630. dest+=6;
  631. }
  632. break;
  633. case PIX_FMT_RGB565:
  634. case PIX_FMT_BGR565:
  635. {
  636. const int dr1= dither_2x2_8[y&1 ][0];
  637. const int dg1= dither_2x2_4[y&1 ][0];
  638. const int db1= dither_2x2_8[(y&1)^1][0];
  639. const int dr2= dither_2x2_8[y&1 ][1];
  640. const int dg2= dither_2x2_4[y&1 ][1];
  641. const int db2= dither_2x2_8[(y&1)^1][1];
  642. YSCALE_YUV_2_RGBX_C(uint16_t)
  643. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
  644. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
  645. }
  646. }
  647. break;
  648. case PIX_FMT_RGB555:
  649. case PIX_FMT_BGR555:
  650. {
  651. const int dr1= dither_2x2_8[y&1 ][0];
  652. const int dg1= dither_2x2_8[y&1 ][1];
  653. const int db1= dither_2x2_8[(y&1)^1][0];
  654. const int dr2= dither_2x2_8[y&1 ][1];
  655. const int dg2= dither_2x2_8[y&1 ][0];
  656. const int db2= dither_2x2_8[(y&1)^1][1];
  657. YSCALE_YUV_2_RGBX_C(uint16_t)
  658. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
  659. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
  660. }
  661. }
  662. break;
  663. case PIX_FMT_RGB8:
  664. case PIX_FMT_BGR8:
  665. {
  666. const uint8_t * const d64= dither_8x8_73[y&7];
  667. const uint8_t * const d32= dither_8x8_32[y&7];
  668. YSCALE_YUV_2_RGBX_C(uint8_t)
  669. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
  670. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
  671. }
  672. }
  673. break;
  674. case PIX_FMT_RGB4:
  675. case PIX_FMT_BGR4:
  676. {
  677. const uint8_t * const d64= dither_8x8_73 [y&7];
  678. const uint8_t * const d128=dither_8x8_220[y&7];
  679. YSCALE_YUV_2_RGBX_C(uint8_t)
  680. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
  681. +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
  682. }
  683. }
  684. break;
  685. case PIX_FMT_RGB4_BYTE:
  686. case PIX_FMT_BGR4_BYTE:
  687. {
  688. const uint8_t * const d64= dither_8x8_73 [y&7];
  689. const uint8_t * const d128=dither_8x8_220[y&7];
  690. YSCALE_YUV_2_RGBX_C(uint8_t)
  691. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
  692. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
  693. }
  694. }
  695. break;
  696. case PIX_FMT_MONOBLACK:
  697. {
  698. const uint8_t * const d128=dither_8x8_220[y&7];
  699. uint8_t *g= c->table_gU[128] + c->table_gV[128];
  700. int acc=0;
  701. for(i=0; i<dstW-1; i+=2){
  702. int j;
  703. int Y1=1<<18;
  704. int Y2=1<<18;
  705. for(j=0; j<lumFilterSize; j++)
  706. {
  707. Y1 += lumSrc[j][i] * lumFilter[j];
  708. Y2 += lumSrc[j][i+1] * lumFilter[j];
  709. }
  710. Y1>>=19;
  711. Y2>>=19;
  712. if((Y1|Y2)&256)
  713. {
  714. if(Y1>255) Y1=255;
  715. else if(Y1<0)Y1=0;
  716. if(Y2>255) Y2=255;
  717. else if(Y2<0)Y2=0;
  718. }
  719. acc+= acc + g[Y1+d128[(i+0)&7]];
  720. acc+= acc + g[Y2+d128[(i+1)&7]];
  721. if((i&7)==6){
  722. ((uint8_t*)dest)[0]= acc;
  723. dest++;
  724. }
  725. }
  726. }
  727. break;
  728. case PIX_FMT_YUYV422:
  729. YSCALE_YUV_2_PACKEDX_C(void)
  730. ((uint8_t*)dest)[2*i2+0]= Y1;
  731. ((uint8_t*)dest)[2*i2+1]= U;
  732. ((uint8_t*)dest)[2*i2+2]= Y2;
  733. ((uint8_t*)dest)[2*i2+3]= V;
  734. }
  735. break;
  736. case PIX_FMT_UYVY422:
  737. YSCALE_YUV_2_PACKEDX_C(void)
  738. ((uint8_t*)dest)[2*i2+0]= U;
  739. ((uint8_t*)dest)[2*i2+1]= Y1;
  740. ((uint8_t*)dest)[2*i2+2]= V;
  741. ((uint8_t*)dest)[2*i2+3]= Y2;
  742. }
  743. break;
  744. }
  745. }
  746. //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
  747. //Plain C versions
  748. #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
  749. #define COMPILE_C
  750. #endif
  751. #ifdef ARCH_POWERPC
  752. #if defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)
  753. #define COMPILE_ALTIVEC
  754. #endif //HAVE_ALTIVEC
  755. #endif //ARCH_POWERPC
  756. #if defined(ARCH_X86) || defined(ARCH_X86_64)
  757. #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
  758. #define COMPILE_MMX
  759. #endif
  760. #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
  761. #define COMPILE_MMX2
  762. #endif
  763. #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
  764. #define COMPILE_3DNOW
  765. #endif
  766. #endif //ARCH_X86 || ARCH_X86_64
  767. #undef HAVE_MMX
  768. #undef HAVE_MMX2
  769. #undef HAVE_3DNOW
  770. #ifdef COMPILE_C
  771. #undef HAVE_MMX
  772. #undef HAVE_MMX2
  773. #undef HAVE_3DNOW
  774. #undef HAVE_ALTIVEC
  775. #define RENAME(a) a ## _C
  776. #include "swscale_template.c"
  777. #endif
  778. #ifdef ARCH_POWERPC
  779. #ifdef COMPILE_ALTIVEC
  780. #undef RENAME
  781. #define HAVE_ALTIVEC
  782. #define RENAME(a) a ## _altivec
  783. #include "swscale_template.c"
  784. #endif
  785. #endif //ARCH_POWERPC
  786. #if defined(ARCH_X86) || defined(ARCH_X86_64)
  787. //X86 versions
  788. /*
  789. #undef RENAME
  790. #undef HAVE_MMX
  791. #undef HAVE_MMX2
  792. #undef HAVE_3DNOW
  793. #define ARCH_X86
  794. #define RENAME(a) a ## _X86
  795. #include "swscale_template.c"
  796. */
  797. //MMX versions
  798. #ifdef COMPILE_MMX
  799. #undef RENAME
  800. #define HAVE_MMX
  801. #undef HAVE_MMX2
  802. #undef HAVE_3DNOW
  803. #define RENAME(a) a ## _MMX
  804. #include "swscale_template.c"
  805. #endif
  806. //MMX2 versions
  807. #ifdef COMPILE_MMX2
  808. #undef RENAME
  809. #define HAVE_MMX
  810. #define HAVE_MMX2
  811. #undef HAVE_3DNOW
  812. #define RENAME(a) a ## _MMX2
  813. #include "swscale_template.c"
  814. #endif
  815. //3DNOW versions
  816. #ifdef COMPILE_3DNOW
  817. #undef RENAME
  818. #define HAVE_MMX
  819. #undef HAVE_MMX2
  820. #define HAVE_3DNOW
  821. #define RENAME(a) a ## _3DNow
  822. #include "swscale_template.c"
  823. #endif
  824. #endif //ARCH_X86 || ARCH_X86_64
  825. // minor note: the HAVE_xyz is messed up after that line so don't use it
  826. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  827. {
  828. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  829. if(dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  830. else return getSplineCoeff( 0.0,
  831. b+ 2.0*c + 3.0*d,
  832. c + 3.0*d,
  833. -b- 3.0*c - 6.0*d,
  834. dist-1.0);
  835. }
  836. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  837. int srcW, int dstW, int filterAlign, int one, int flags,
  838. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  839. {
  840. int i;
  841. int filterSize;
  842. int filter2Size;
  843. int minFilterSize;
  844. double *filter=NULL;
  845. double *filter2=NULL;
  846. #if defined(ARCH_X86) || defined(ARCH_X86_64)
  847. if(flags & SWS_CPU_CAPS_MMX)
  848. asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
  849. #endif
  850. // Note the +1 is for the MMXscaler which reads over the end
  851. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  852. if(ABS(xInc - 0x10000) <10) // unscaled
  853. {
  854. int i;
  855. filterSize= 1;
  856. filter= av_malloc(dstW*sizeof(double)*filterSize);
  857. for(i=0; i<dstW*filterSize; i++) filter[i]=0;
  858. for(i=0; i<dstW; i++)
  859. {
  860. filter[i*filterSize]=1;
  861. (*filterPos)[i]=i;
  862. }
  863. }
  864. else if(flags&SWS_POINT) // lame looking point sampling mode
  865. {
  866. int i;
  867. int xDstInSrc;
  868. filterSize= 1;
  869. filter= av_malloc(dstW*sizeof(double)*filterSize);
  870. xDstInSrc= xInc/2 - 0x8000;
  871. for(i=0; i<dstW; i++)
  872. {
  873. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  874. (*filterPos)[i]= xx;
  875. filter[i]= 1.0;
  876. xDstInSrc+= xInc;
  877. }
  878. }
  879. else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  880. {
  881. int i;
  882. int xDstInSrc;
  883. if (flags&SWS_BICUBIC) filterSize= 4;
  884. else if(flags&SWS_X ) filterSize= 4;
  885. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  886. filter= av_malloc(dstW*sizeof(double)*filterSize);
  887. xDstInSrc= xInc/2 - 0x8000;
  888. for(i=0; i<dstW; i++)
  889. {
  890. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  891. int j;
  892. (*filterPos)[i]= xx;
  893. //Bilinear upscale / linear interpolate / Area averaging
  894. for(j=0; j<filterSize; j++)
  895. {
  896. double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
  897. double coeff= 1.0 - d;
  898. if(coeff<0) coeff=0;
  899. filter[i*filterSize + j]= coeff;
  900. xx++;
  901. }
  902. xDstInSrc+= xInc;
  903. }
  904. }
  905. else
  906. {
  907. double xDstInSrc;
  908. double sizeFactor, filterSizeInSrc;
  909. const double xInc1= (double)xInc / (double)(1<<16);
  910. if (flags&SWS_BICUBIC) sizeFactor= 4.0;
  911. else if(flags&SWS_X) sizeFactor= 8.0;
  912. else if(flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
  913. else if(flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
  914. else if(flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
  915. else if(flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
  916. else if(flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
  917. else if(flags&SWS_BILINEAR) sizeFactor= 2.0;
  918. else {
  919. sizeFactor= 0.0; //GCC warning killer
  920. ASSERT(0)
  921. }
  922. if(xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
  923. else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
  924. filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
  925. if(filterSize > srcW-2) filterSize=srcW-2;
  926. filter= av_malloc(dstW*sizeof(double)*filterSize);
  927. xDstInSrc= xInc1 / 2.0 - 0.5;
  928. for(i=0; i<dstW; i++)
  929. {
  930. int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
  931. int j;
  932. (*filterPos)[i]= xx;
  933. for(j=0; j<filterSize; j++)
  934. {
  935. double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
  936. double coeff;
  937. if(flags & SWS_BICUBIC)
  938. {
  939. double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
  940. double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
  941. if(d<1.0)
  942. coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
  943. else if(d<2.0)
  944. coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
  945. else
  946. coeff=0.0;
  947. }
  948. /* else if(flags & SWS_X)
  949. {
  950. double p= param ? param*0.01 : 0.3;
  951. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  952. coeff*= pow(2.0, - p*d*d);
  953. }*/
  954. else if(flags & SWS_X)
  955. {
  956. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  957. if(d<1.0)
  958. coeff = cos(d*PI);
  959. else
  960. coeff=-1.0;
  961. if(coeff<0.0) coeff= -pow(-coeff, A);
  962. else coeff= pow( coeff, A);
  963. coeff= coeff*0.5 + 0.5;
  964. }
  965. else if(flags & SWS_AREA)
  966. {
  967. double srcPixelSize= 1.0/xInc1;
  968. if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
  969. else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
  970. else coeff=0.0;
  971. }
  972. else if(flags & SWS_GAUSS)
  973. {
  974. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  975. coeff = pow(2.0, - p*d*d);
  976. }
  977. else if(flags & SWS_SINC)
  978. {
  979. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  980. }
  981. else if(flags & SWS_LANCZOS)
  982. {
  983. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  984. coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
  985. if(d>p) coeff=0;
  986. }
  987. else if(flags & SWS_BILINEAR)
  988. {
  989. coeff= 1.0 - d;
  990. if(coeff<0) coeff=0;
  991. }
  992. else if(flags & SWS_SPLINE)
  993. {
  994. double p=-2.196152422706632;
  995. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
  996. }
  997. else {
  998. coeff= 0.0; //GCC warning killer
  999. ASSERT(0)
  1000. }
  1001. filter[i*filterSize + j]= coeff;
  1002. xx++;
  1003. }
  1004. xDstInSrc+= xInc1;
  1005. }
  1006. }
  1007. /* apply src & dst Filter to filter -> filter2
  1008. av_free(filter);
  1009. */
  1010. ASSERT(filterSize>0)
  1011. filter2Size= filterSize;
  1012. if(srcFilter) filter2Size+= srcFilter->length - 1;
  1013. if(dstFilter) filter2Size+= dstFilter->length - 1;
  1014. ASSERT(filter2Size>0)
  1015. filter2= av_malloc(filter2Size*dstW*sizeof(double));
  1016. for(i=0; i<dstW; i++)
  1017. {
  1018. int j;
  1019. SwsVector scaleFilter;
  1020. SwsVector *outVec;
  1021. scaleFilter.coeff= filter + i*filterSize;
  1022. scaleFilter.length= filterSize;
  1023. if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
  1024. else outVec= &scaleFilter;
  1025. ASSERT(outVec->length == filter2Size)
  1026. //FIXME dstFilter
  1027. for(j=0; j<outVec->length; j++)
  1028. {
  1029. filter2[i*filter2Size + j]= outVec->coeff[j];
  1030. }
  1031. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1032. if(outVec != &scaleFilter) sws_freeVec(outVec);
  1033. }
  1034. av_free(filter); filter=NULL;
  1035. /* try to reduce the filter-size (step1 find size and shift left) */
  1036. // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
  1037. minFilterSize= 0;
  1038. for(i=dstW-1; i>=0; i--)
  1039. {
  1040. int min= filter2Size;
  1041. int j;
  1042. double cutOff=0.0;
  1043. /* get rid off near zero elements on the left by shifting left */
  1044. for(j=0; j<filter2Size; j++)
  1045. {
  1046. int k;
  1047. cutOff += ABS(filter2[i*filter2Size]);
  1048. if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  1049. /* preserve Monotonicity because the core can't handle the filter otherwise */
  1050. if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1051. // Move filter coeffs left
  1052. for(k=1; k<filter2Size; k++)
  1053. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1054. filter2[i*filter2Size + k - 1]= 0.0;
  1055. (*filterPos)[i]++;
  1056. }
  1057. cutOff=0.0;
  1058. /* count near zeros on the right */
  1059. for(j=filter2Size-1; j>0; j--)
  1060. {
  1061. cutOff += ABS(filter2[i*filter2Size + j]);
  1062. if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  1063. min--;
  1064. }
  1065. if(min>minFilterSize) minFilterSize= min;
  1066. }
  1067. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1068. // we can handle the special case 4,
  1069. // so we don't want to go to the full 8
  1070. if (minFilterSize < 5)
  1071. filterAlign = 4;
  1072. // we really don't want to waste our time
  1073. // doing useless computation, so fall-back on
  1074. // the scalar C code for very small filter.
  1075. // vectorizing is worth it only if you have
  1076. // decent-sized vector.
  1077. if (minFilterSize < 3)
  1078. filterAlign = 1;
  1079. }
  1080. if (flags & SWS_CPU_CAPS_MMX) {
  1081. // special case for unscaled vertical filtering
  1082. if(minFilterSize == 1 && filterAlign == 2)
  1083. filterAlign= 1;
  1084. }
  1085. ASSERT(minFilterSize > 0)
  1086. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1087. ASSERT(filterSize > 0)
  1088. filter= av_malloc(filterSize*dstW*sizeof(double));
  1089. if(filterSize >= MAX_FILTER_SIZE)
  1090. return -1;
  1091. *outFilterSize= filterSize;
  1092. if(flags&SWS_PRINT_INFO)
  1093. MSG_V("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1094. /* try to reduce the filter-size (step2 reduce it) */
  1095. for(i=0; i<dstW; i++)
  1096. {
  1097. int j;
  1098. for(j=0; j<filterSize; j++)
  1099. {
  1100. if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
  1101. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1102. }
  1103. }
  1104. av_free(filter2); filter2=NULL;
  1105. //FIXME try to align filterpos if possible
  1106. //fix borders
  1107. for(i=0; i<dstW; i++)
  1108. {
  1109. int j;
  1110. if((*filterPos)[i] < 0)
  1111. {
  1112. // Move filter coeffs left to compensate for filterPos
  1113. for(j=1; j<filterSize; j++)
  1114. {
  1115. int left= FFMAX(j + (*filterPos)[i], 0);
  1116. filter[i*filterSize + left] += filter[i*filterSize + j];
  1117. filter[i*filterSize + j]=0;
  1118. }
  1119. (*filterPos)[i]= 0;
  1120. }
  1121. if((*filterPos)[i] + filterSize > srcW)
  1122. {
  1123. int shift= (*filterPos)[i] + filterSize - srcW;
  1124. // Move filter coeffs right to compensate for filterPos
  1125. for(j=filterSize-2; j>=0; j--)
  1126. {
  1127. int right= FFMIN(j + shift, filterSize-1);
  1128. filter[i*filterSize +right] += filter[i*filterSize +j];
  1129. filter[i*filterSize +j]=0;
  1130. }
  1131. (*filterPos)[i]= srcW - filterSize;
  1132. }
  1133. }
  1134. // Note the +1 is for the MMXscaler which reads over the end
  1135. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1136. *outFilter= av_malloc(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1137. memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
  1138. /* Normalize & Store in outFilter */
  1139. for(i=0; i<dstW; i++)
  1140. {
  1141. int j;
  1142. double error=0;
  1143. double sum=0;
  1144. double scale= one;
  1145. for(j=0; j<filterSize; j++)
  1146. {
  1147. sum+= filter[i*filterSize + j];
  1148. }
  1149. scale/= sum;
  1150. for(j=0; j<*outFilterSize; j++)
  1151. {
  1152. double v= filter[i*filterSize + j]*scale + error;
  1153. int intV= floor(v + 0.5);
  1154. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1155. error = v - intV;
  1156. }
  1157. }
  1158. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1159. for(i=0; i<*outFilterSize; i++)
  1160. {
  1161. int j= dstW*(*outFilterSize);
  1162. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1163. }
  1164. av_free(filter);
  1165. return 0;
  1166. }
  1167. #ifdef COMPILE_MMX2
  1168. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1169. {
  1170. uint8_t *fragmentA;
  1171. long imm8OfPShufW1A;
  1172. long imm8OfPShufW2A;
  1173. long fragmentLengthA;
  1174. uint8_t *fragmentB;
  1175. long imm8OfPShufW1B;
  1176. long imm8OfPShufW2B;
  1177. long fragmentLengthB;
  1178. int fragmentPos;
  1179. int xpos, i;
  1180. // create an optimized horizontal scaling routine
  1181. //code fragment
  1182. asm volatile(
  1183. "jmp 9f \n\t"
  1184. // Begin
  1185. "0: \n\t"
  1186. "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
  1187. "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
  1188. "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
  1189. "punpcklbw %%mm7, %%mm1 \n\t"
  1190. "punpcklbw %%mm7, %%mm0 \n\t"
  1191. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1192. "1: \n\t"
  1193. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1194. "2: \n\t"
  1195. "psubw %%mm1, %%mm0 \n\t"
  1196. "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
  1197. "pmullw %%mm3, %%mm0 \n\t"
  1198. "psllw $7, %%mm1 \n\t"
  1199. "paddw %%mm1, %%mm0 \n\t"
  1200. "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
  1201. "add $8, %%"REG_a" \n\t"
  1202. // End
  1203. "9: \n\t"
  1204. // "int $3\n\t"
  1205. "lea 0b, %0 \n\t"
  1206. "lea 1b, %1 \n\t"
  1207. "lea 2b, %2 \n\t"
  1208. "dec %1 \n\t"
  1209. "dec %2 \n\t"
  1210. "sub %0, %1 \n\t"
  1211. "sub %0, %2 \n\t"
  1212. "lea 9b, %3 \n\t"
  1213. "sub %0, %3 \n\t"
  1214. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1215. "=r" (fragmentLengthA)
  1216. );
  1217. asm volatile(
  1218. "jmp 9f \n\t"
  1219. // Begin
  1220. "0: \n\t"
  1221. "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
  1222. "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
  1223. "punpcklbw %%mm7, %%mm0 \n\t"
  1224. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1225. "1: \n\t"
  1226. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1227. "2: \n\t"
  1228. "psubw %%mm1, %%mm0 \n\t"
  1229. "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
  1230. "pmullw %%mm3, %%mm0 \n\t"
  1231. "psllw $7, %%mm1 \n\t"
  1232. "paddw %%mm1, %%mm0 \n\t"
  1233. "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
  1234. "add $8, %%"REG_a" \n\t"
  1235. // End
  1236. "9: \n\t"
  1237. // "int $3\n\t"
  1238. "lea 0b, %0 \n\t"
  1239. "lea 1b, %1 \n\t"
  1240. "lea 2b, %2 \n\t"
  1241. "dec %1 \n\t"
  1242. "dec %2 \n\t"
  1243. "sub %0, %1 \n\t"
  1244. "sub %0, %2 \n\t"
  1245. "lea 9b, %3 \n\t"
  1246. "sub %0, %3 \n\t"
  1247. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1248. "=r" (fragmentLengthB)
  1249. );
  1250. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1251. fragmentPos=0;
  1252. for(i=0; i<dstW/numSplits; i++)
  1253. {
  1254. int xx=xpos>>16;
  1255. if((i&3) == 0)
  1256. {
  1257. int a=0;
  1258. int b=((xpos+xInc)>>16) - xx;
  1259. int c=((xpos+xInc*2)>>16) - xx;
  1260. int d=((xpos+xInc*3)>>16) - xx;
  1261. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1262. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1263. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1264. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1265. filterPos[i/2]= xx;
  1266. if(d+1<4)
  1267. {
  1268. int maxShift= 3-(d+1);
  1269. int shift=0;
  1270. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1271. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1272. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1273. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1274. a | (b<<2) | (c<<4) | (d<<6);
  1275. if(i+3>=dstW) shift=maxShift; //avoid overread
  1276. else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1277. if(shift && i>=shift)
  1278. {
  1279. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1280. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1281. filterPos[i/2]-=shift;
  1282. }
  1283. fragmentPos+= fragmentLengthB;
  1284. }
  1285. else
  1286. {
  1287. int maxShift= 3-d;
  1288. int shift=0;
  1289. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1290. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1291. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1292. a | (b<<2) | (c<<4) | (d<<6);
  1293. if(i+4>=dstW) shift=maxShift; //avoid overread
  1294. else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1295. if(shift && i>=shift)
  1296. {
  1297. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1298. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1299. filterPos[i/2]-=shift;
  1300. }
  1301. fragmentPos+= fragmentLengthA;
  1302. }
  1303. funnyCode[fragmentPos]= RET;
  1304. }
  1305. xpos+=xInc;
  1306. }
  1307. filterPos[i/2]= xpos>>16; // needed to jump to the next part
  1308. }
  1309. #endif /* COMPILE_MMX2 */
  1310. static void globalInit(void){
  1311. // generating tables:
  1312. int i;
  1313. for(i=0; i<768; i++){
  1314. int c= FFMIN(FFMAX(i-256, 0), 255);
  1315. clip_table[i]=c;
  1316. }
  1317. }
  1318. static SwsFunc getSwsFunc(int flags){
  1319. #ifdef RUNTIME_CPUDETECT
  1320. #if defined(ARCH_X86) || defined(ARCH_X86_64)
  1321. // ordered per speed fasterst first
  1322. if(flags & SWS_CPU_CAPS_MMX2)
  1323. return swScale_MMX2;
  1324. else if(flags & SWS_CPU_CAPS_3DNOW)
  1325. return swScale_3DNow;
  1326. else if(flags & SWS_CPU_CAPS_MMX)
  1327. return swScale_MMX;
  1328. else
  1329. return swScale_C;
  1330. #else
  1331. #ifdef ARCH_POWERPC
  1332. if(flags & SWS_CPU_CAPS_ALTIVEC)
  1333. return swScale_altivec;
  1334. else
  1335. return swScale_C;
  1336. #endif
  1337. return swScale_C;
  1338. #endif /* defined(ARCH_X86) || defined(ARCH_X86_64) */
  1339. #else //RUNTIME_CPUDETECT
  1340. #ifdef HAVE_MMX2
  1341. return swScale_MMX2;
  1342. #elif defined (HAVE_3DNOW)
  1343. return swScale_3DNow;
  1344. #elif defined (HAVE_MMX)
  1345. return swScale_MMX;
  1346. #elif defined (HAVE_ALTIVEC)
  1347. return swScale_altivec;
  1348. #else
  1349. return swScale_C;
  1350. #endif
  1351. #endif //!RUNTIME_CPUDETECT
  1352. }
  1353. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1354. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1355. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1356. /* Copy Y plane */
  1357. if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1358. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1359. else
  1360. {
  1361. int i;
  1362. uint8_t *srcPtr= src[0];
  1363. uint8_t *dstPtr= dst;
  1364. for(i=0; i<srcSliceH; i++)
  1365. {
  1366. memcpy(dstPtr, srcPtr, c->srcW);
  1367. srcPtr+= srcStride[0];
  1368. dstPtr+= dstStride[0];
  1369. }
  1370. }
  1371. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1372. if (c->dstFormat == PIX_FMT_NV12)
  1373. interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
  1374. else
  1375. interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
  1376. return srcSliceH;
  1377. }
  1378. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1379. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1380. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1381. yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
  1382. return srcSliceH;
  1383. }
  1384. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1385. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1386. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1387. yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
  1388. return srcSliceH;
  1389. }
  1390. /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
  1391. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1392. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1393. const int srcFormat= c->srcFormat;
  1394. const int dstFormat= c->dstFormat;
  1395. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1396. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1397. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1398. const int dstId= fmt_depth(dstFormat) >> 2;
  1399. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1400. /* BGR -> BGR */
  1401. if( (isBGR(srcFormat) && isBGR(dstFormat))
  1402. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1403. switch(srcId | (dstId<<4)){
  1404. case 0x34: conv= rgb16to15; break;
  1405. case 0x36: conv= rgb24to15; break;
  1406. case 0x38: conv= rgb32to15; break;
  1407. case 0x43: conv= rgb15to16; break;
  1408. case 0x46: conv= rgb24to16; break;
  1409. case 0x48: conv= rgb32to16; break;
  1410. case 0x63: conv= rgb15to24; break;
  1411. case 0x64: conv= rgb16to24; break;
  1412. case 0x68: conv= rgb32to24; break;
  1413. case 0x83: conv= rgb15to32; break;
  1414. case 0x84: conv= rgb16to32; break;
  1415. case 0x86: conv= rgb24to32; break;
  1416. default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
  1417. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1418. }
  1419. }else if( (isBGR(srcFormat) && isRGB(dstFormat))
  1420. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1421. switch(srcId | (dstId<<4)){
  1422. case 0x33: conv= rgb15tobgr15; break;
  1423. case 0x34: conv= rgb16tobgr15; break;
  1424. case 0x36: conv= rgb24tobgr15; break;
  1425. case 0x38: conv= rgb32tobgr15; break;
  1426. case 0x43: conv= rgb15tobgr16; break;
  1427. case 0x44: conv= rgb16tobgr16; break;
  1428. case 0x46: conv= rgb24tobgr16; break;
  1429. case 0x48: conv= rgb32tobgr16; break;
  1430. case 0x63: conv= rgb15tobgr24; break;
  1431. case 0x64: conv= rgb16tobgr24; break;
  1432. case 0x66: conv= rgb24tobgr24; break;
  1433. case 0x68: conv= rgb32tobgr24; break;
  1434. case 0x83: conv= rgb15tobgr32; break;
  1435. case 0x84: conv= rgb16tobgr32; break;
  1436. case 0x86: conv= rgb24tobgr32; break;
  1437. case 0x88: conv= rgb32tobgr32; break;
  1438. default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
  1439. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1440. }
  1441. }else{
  1442. MSG_ERR("swScaler: internal error %s -> %s converter\n",
  1443. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1444. }
  1445. if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
  1446. conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1447. else
  1448. {
  1449. int i;
  1450. uint8_t *srcPtr= src[0];
  1451. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1452. for(i=0; i<srcSliceH; i++)
  1453. {
  1454. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1455. srcPtr+= srcStride[0];
  1456. dstPtr+= dstStride[0];
  1457. }
  1458. }
  1459. return srcSliceH;
  1460. }
  1461. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1462. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1463. rgb24toyv12(
  1464. src[0],
  1465. dst[0]+ srcSliceY *dstStride[0],
  1466. dst[1]+(srcSliceY>>1)*dstStride[1],
  1467. dst[2]+(srcSliceY>>1)*dstStride[2],
  1468. c->srcW, srcSliceH,
  1469. dstStride[0], dstStride[1], srcStride[0]);
  1470. return srcSliceH;
  1471. }
  1472. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1473. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1474. int i;
  1475. /* copy Y */
  1476. if(srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1477. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1478. else{
  1479. uint8_t *srcPtr= src[0];
  1480. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1481. for(i=0; i<srcSliceH; i++)
  1482. {
  1483. memcpy(dstPtr, srcPtr, c->srcW);
  1484. srcPtr+= srcStride[0];
  1485. dstPtr+= dstStride[0];
  1486. }
  1487. }
  1488. if(c->dstFormat==PIX_FMT_YUV420P){
  1489. planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
  1490. planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
  1491. }else{
  1492. planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
  1493. planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
  1494. }
  1495. return srcSliceH;
  1496. }
  1497. /* unscaled copy like stuff (assumes nearly identical formats) */
  1498. static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1499. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1500. if(isPacked(c->srcFormat))
  1501. {
  1502. if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1503. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1504. else
  1505. {
  1506. int i;
  1507. uint8_t *srcPtr= src[0];
  1508. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1509. int length=0;
  1510. /* universal length finder */
  1511. while(length+c->srcW <= ABS(dstStride[0])
  1512. && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
  1513. ASSERT(length!=0);
  1514. for(i=0; i<srcSliceH; i++)
  1515. {
  1516. memcpy(dstPtr, srcPtr, length);
  1517. srcPtr+= srcStride[0];
  1518. dstPtr+= dstStride[0];
  1519. }
  1520. }
  1521. }
  1522. else
  1523. { /* Planar YUV or gray */
  1524. int plane;
  1525. for(plane=0; plane<3; plane++)
  1526. {
  1527. int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1528. int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1529. int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1530. if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
  1531. {
  1532. if(!isGray(c->dstFormat))
  1533. memset(dst[plane], 128, dstStride[plane]*height);
  1534. }
  1535. else
  1536. {
  1537. if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  1538. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1539. else
  1540. {
  1541. int i;
  1542. uint8_t *srcPtr= src[plane];
  1543. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1544. for(i=0; i<height; i++)
  1545. {
  1546. memcpy(dstPtr, srcPtr, length);
  1547. srcPtr+= srcStride[plane];
  1548. dstPtr+= dstStride[plane];
  1549. }
  1550. }
  1551. }
  1552. }
  1553. }
  1554. return srcSliceH;
  1555. }
  1556. static void getSubSampleFactors(int *h, int *v, int format){
  1557. switch(format){
  1558. case PIX_FMT_UYVY422:
  1559. case PIX_FMT_YUYV422:
  1560. *h=1;
  1561. *v=0;
  1562. break;
  1563. case PIX_FMT_YUV420P:
  1564. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  1565. case PIX_FMT_NV12:
  1566. case PIX_FMT_NV21:
  1567. *h=1;
  1568. *v=1;
  1569. break;
  1570. case PIX_FMT_YUV410P:
  1571. *h=2;
  1572. *v=2;
  1573. break;
  1574. case PIX_FMT_YUV444P:
  1575. *h=0;
  1576. *v=0;
  1577. break;
  1578. case PIX_FMT_YUV422P:
  1579. *h=1;
  1580. *v=0;
  1581. break;
  1582. case PIX_FMT_YUV411P:
  1583. *h=2;
  1584. *v=0;
  1585. break;
  1586. default:
  1587. *h=0;
  1588. *v=0;
  1589. break;
  1590. }
  1591. }
  1592. static uint16_t roundToInt16(int64_t f){
  1593. int r= (f + (1<<15))>>16;
  1594. if(r<-0x7FFF) return 0x8000;
  1595. else if(r> 0x7FFF) return 0x7FFF;
  1596. else return r;
  1597. }
  1598. /**
  1599. * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
  1600. * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
  1601. * @return -1 if not supported
  1602. */
  1603. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  1604. int64_t crv = inv_table[0];
  1605. int64_t cbu = inv_table[1];
  1606. int64_t cgu = -inv_table[2];
  1607. int64_t cgv = -inv_table[3];
  1608. int64_t cy = 1<<16;
  1609. int64_t oy = 0;
  1610. if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1611. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  1612. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  1613. c->brightness= brightness;
  1614. c->contrast = contrast;
  1615. c->saturation= saturation;
  1616. c->srcRange = srcRange;
  1617. c->dstRange = dstRange;
  1618. c->uOffset= 0x0400040004000400LL;
  1619. c->vOffset= 0x0400040004000400LL;
  1620. if(!srcRange){
  1621. cy= (cy*255) / 219;
  1622. oy= 16<<16;
  1623. }
  1624. cy = (cy *contrast )>>16;
  1625. crv= (crv*contrast * saturation)>>32;
  1626. cbu= (cbu*contrast * saturation)>>32;
  1627. cgu= (cgu*contrast * saturation)>>32;
  1628. cgv= (cgv*contrast * saturation)>>32;
  1629. oy -= 256*brightness;
  1630. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  1631. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  1632. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  1633. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  1634. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  1635. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  1636. yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  1637. //FIXME factorize
  1638. #ifdef COMPILE_ALTIVEC
  1639. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  1640. yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
  1641. #endif
  1642. return 0;
  1643. }
  1644. /**
  1645. * @return -1 if not supported
  1646. */
  1647. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  1648. if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1649. *inv_table = c->srcColorspaceTable;
  1650. *table = c->dstColorspaceTable;
  1651. *srcRange = c->srcRange;
  1652. *dstRange = c->dstRange;
  1653. *brightness= c->brightness;
  1654. *contrast = c->contrast;
  1655. *saturation= c->saturation;
  1656. return 0;
  1657. }
  1658. static int handle_jpeg(int *format)
  1659. {
  1660. switch (*format) {
  1661. case PIX_FMT_YUVJ420P:
  1662. *format = PIX_FMT_YUV420P;
  1663. return 1;
  1664. case PIX_FMT_YUVJ422P:
  1665. *format = PIX_FMT_YUV422P;
  1666. return 1;
  1667. case PIX_FMT_YUVJ444P:
  1668. *format = PIX_FMT_YUV444P;
  1669. return 1;
  1670. default:
  1671. return 0;
  1672. }
  1673. }
  1674. SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
  1675. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
  1676. SwsContext *c;
  1677. int i;
  1678. int usesVFilter, usesHFilter;
  1679. int unscaled, needsDither;
  1680. int srcRange, dstRange;
  1681. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  1682. #if defined(ARCH_X86) || defined(ARCH_X86_64)
  1683. if(flags & SWS_CPU_CAPS_MMX)
  1684. asm volatile("emms\n\t"::: "memory");
  1685. #endif
  1686. #ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
  1687. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
  1688. #ifdef HAVE_MMX2
  1689. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  1690. #elif defined (HAVE_3DNOW)
  1691. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  1692. #elif defined (HAVE_MMX)
  1693. flags |= SWS_CPU_CAPS_MMX;
  1694. #elif defined (HAVE_ALTIVEC)
  1695. flags |= SWS_CPU_CAPS_ALTIVEC;
  1696. #endif
  1697. #endif /* RUNTIME_CPUDETECT */
  1698. if(clip_table[512] != 255) globalInit();
  1699. if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
  1700. unscaled = (srcW == dstW && srcH == dstH);
  1701. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  1702. && (fmt_depth(dstFormat))<24
  1703. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  1704. srcRange = handle_jpeg(&srcFormat);
  1705. dstRange = handle_jpeg(&dstFormat);
  1706. if(!isSupportedIn(srcFormat))
  1707. {
  1708. MSG_ERR("swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
  1709. return NULL;
  1710. }
  1711. if(!isSupportedOut(dstFormat))
  1712. {
  1713. MSG_ERR("swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
  1714. return NULL;
  1715. }
  1716. /* sanity check */
  1717. if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  1718. {
  1719. MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  1720. srcW, srcH, dstW, dstH);
  1721. return NULL;
  1722. }
  1723. if(!dstFilter) dstFilter= &dummyFilter;
  1724. if(!srcFilter) srcFilter= &dummyFilter;
  1725. c= av_malloc(sizeof(SwsContext));
  1726. memset(c, 0, sizeof(SwsContext));
  1727. c->srcW= srcW;
  1728. c->srcH= srcH;
  1729. c->dstW= dstW;
  1730. c->dstH= dstH;
  1731. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  1732. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  1733. c->flags= flags;
  1734. c->dstFormat= dstFormat;
  1735. c->srcFormat= srcFormat;
  1736. c->vRounder= 4* 0x0001000100010001ULL;
  1737. usesHFilter= usesVFilter= 0;
  1738. if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
  1739. if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
  1740. if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
  1741. if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
  1742. if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
  1743. if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
  1744. if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
  1745. if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
  1746. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  1747. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  1748. // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
  1749. if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  1750. // drop some chroma lines if the user wants it
  1751. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  1752. c->chrSrcVSubSample+= c->vChrDrop;
  1753. // drop every 2. pixel for chroma calculation unless user wants full chroma
  1754. if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP))
  1755. c->chrSrcHSubSample=1;
  1756. if(param){
  1757. c->param[0] = param[0];
  1758. c->param[1] = param[1];
  1759. }else{
  1760. c->param[0] =
  1761. c->param[1] = SWS_PARAM_DEFAULT;
  1762. }
  1763. c->chrIntHSubSample= c->chrDstHSubSample;
  1764. c->chrIntVSubSample= c->chrSrcVSubSample;
  1765. // note the -((-x)>>y) is so that we allways round toward +inf
  1766. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  1767. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  1768. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  1769. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  1770. sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  1771. /* unscaled special Cases */
  1772. if(unscaled && !usesHFilter && !usesVFilter)
  1773. {
  1774. /* yv12_to_nv12 */
  1775. if(srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  1776. {
  1777. c->swScale= PlanarToNV12Wrapper;
  1778. }
  1779. /* yuv2bgr */
  1780. if((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
  1781. {
  1782. c->swScale= yuv2rgb_get_func_ptr(c);
  1783. }
  1784. if( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
  1785. {
  1786. c->swScale= yvu9toyv12Wrapper;
  1787. }
  1788. /* bgr24toYV12 */
  1789. if(srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
  1790. c->swScale= bgr24toyv12Wrapper;
  1791. /* rgb/bgr -> rgb/bgr (no dither needed forms) */
  1792. if( (isBGR(srcFormat) || isRGB(srcFormat))
  1793. && (isBGR(dstFormat) || isRGB(dstFormat))
  1794. && !needsDither)
  1795. c->swScale= rgb2rgbWrapper;
  1796. /* LQ converters if -sws 0 or -sws 4*/
  1797. if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  1798. /* rgb/bgr -> rgb/bgr (dither needed forms) */
  1799. if( (isBGR(srcFormat) || isRGB(srcFormat))
  1800. && (isBGR(dstFormat) || isRGB(dstFormat))
  1801. && needsDither)
  1802. c->swScale= rgb2rgbWrapper;
  1803. /* yv12_to_yuy2 */
  1804. if(srcFormat == PIX_FMT_YUV420P &&
  1805. (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
  1806. {
  1807. if (dstFormat == PIX_FMT_YUYV422)
  1808. c->swScale= PlanarToYuy2Wrapper;
  1809. else
  1810. c->swScale= PlanarToUyvyWrapper;
  1811. }
  1812. }
  1813. #ifdef COMPILE_ALTIVEC
  1814. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  1815. ((srcFormat == PIX_FMT_YUV420P &&
  1816. (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
  1817. // unscaled YV12 -> packed YUV, we want speed
  1818. if (dstFormat == PIX_FMT_YUYV422)
  1819. c->swScale= yv12toyuy2_unscaled_altivec;
  1820. else
  1821. c->swScale= yv12touyvy_unscaled_altivec;
  1822. }
  1823. #endif
  1824. /* simple copy */
  1825. if( srcFormat == dstFormat
  1826. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  1827. || (isPlanarYUV(dstFormat) && isGray(srcFormat))
  1828. )
  1829. {
  1830. c->swScale= simpleCopy;
  1831. }
  1832. if(c->swScale){
  1833. if(flags&SWS_PRINT_INFO)
  1834. MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n",
  1835. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1836. return c;
  1837. }
  1838. }
  1839. if(flags & SWS_CPU_CAPS_MMX2)
  1840. {
  1841. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  1842. if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  1843. {
  1844. if(flags&SWS_PRINT_INFO)
  1845. MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
  1846. }
  1847. if(usesHFilter) c->canMMX2BeUsed=0;
  1848. }
  1849. else
  1850. c->canMMX2BeUsed=0;
  1851. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  1852. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  1853. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  1854. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  1855. // n-2 is the last chrominance sample available
  1856. // this is not perfect, but noone shuld notice the difference, the more correct variant
  1857. // would be like the vertical one, but that would require some special code for the
  1858. // first and last pixel
  1859. if(flags&SWS_FAST_BILINEAR)
  1860. {
  1861. if(c->canMMX2BeUsed)
  1862. {
  1863. c->lumXInc+= 20;
  1864. c->chrXInc+= 20;
  1865. }
  1866. //we don't use the x86asm scaler if mmx is available
  1867. else if(flags & SWS_CPU_CAPS_MMX)
  1868. {
  1869. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  1870. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  1871. }
  1872. }
  1873. /* precalculate horizontal scaler filter coefficients */
  1874. {
  1875. const int filterAlign=
  1876. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  1877. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  1878. 1;
  1879. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  1880. srcW , dstW, filterAlign, 1<<14,
  1881. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  1882. srcFilter->lumH, dstFilter->lumH, c->param);
  1883. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  1884. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  1885. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  1886. srcFilter->chrH, dstFilter->chrH, c->param);
  1887. #define MAX_FUNNY_CODE_SIZE 10000
  1888. #if defined(COMPILE_MMX2)
  1889. // can't downscale !!!
  1890. if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  1891. {
  1892. #ifdef MAP_ANONYMOUS
  1893. c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  1894. c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  1895. #else
  1896. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  1897. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  1898. #endif
  1899. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  1900. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  1901. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  1902. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  1903. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  1904. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  1905. }
  1906. #endif /* defined(COMPILE_MMX2) */
  1907. } // Init Horizontal stuff
  1908. /* precalculate vertical scaler filter coefficients */
  1909. {
  1910. const int filterAlign=
  1911. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  1912. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  1913. 1;
  1914. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  1915. srcH , dstH, filterAlign, (1<<12)-4,
  1916. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  1917. srcFilter->lumV, dstFilter->lumV, c->param);
  1918. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  1919. c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
  1920. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  1921. srcFilter->chrV, dstFilter->chrV, c->param);
  1922. #ifdef HAVE_ALTIVEC
  1923. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  1924. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  1925. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  1926. int j;
  1927. short *p = (short *)&c->vYCoeffsBank[i];
  1928. for (j=0;j<8;j++)
  1929. p[j] = c->vLumFilter[i];
  1930. }
  1931. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  1932. int j;
  1933. short *p = (short *)&c->vCCoeffsBank[i];
  1934. for (j=0;j<8;j++)
  1935. p[j] = c->vChrFilter[i];
  1936. }
  1937. #endif
  1938. }
  1939. // Calculate Buffer Sizes so that they won't run out while handling these damn slices
  1940. c->vLumBufSize= c->vLumFilterSize;
  1941. c->vChrBufSize= c->vChrFilterSize;
  1942. for(i=0; i<dstH; i++)
  1943. {
  1944. int chrI= i*c->chrDstH / dstH;
  1945. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  1946. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  1947. nextSlice>>= c->chrSrcVSubSample;
  1948. nextSlice<<= c->chrSrcVSubSample;
  1949. if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  1950. c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
  1951. if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  1952. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  1953. }
  1954. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  1955. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  1956. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  1957. //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
  1958. /* align at 16 bytes for AltiVec */
  1959. for(i=0; i<c->vLumBufSize; i++)
  1960. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_malloc(4000);
  1961. for(i=0; i<c->vChrBufSize; i++)
  1962. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
  1963. //try to avoid drawing green stuff between the right end and the stride end
  1964. for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
  1965. for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
  1966. ASSERT(c->chrDstH <= dstH)
  1967. if(flags&SWS_PRINT_INFO)
  1968. {
  1969. #ifdef DITHER1XBPP
  1970. char *dither= " dithered";
  1971. #else
  1972. char *dither= "";
  1973. #endif
  1974. if(flags&SWS_FAST_BILINEAR)
  1975. MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
  1976. else if(flags&SWS_BILINEAR)
  1977. MSG_INFO("\nSwScaler: BILINEAR scaler, ");
  1978. else if(flags&SWS_BICUBIC)
  1979. MSG_INFO("\nSwScaler: BICUBIC scaler, ");
  1980. else if(flags&SWS_X)
  1981. MSG_INFO("\nSwScaler: Experimental scaler, ");
  1982. else if(flags&SWS_POINT)
  1983. MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
  1984. else if(flags&SWS_AREA)
  1985. MSG_INFO("\nSwScaler: Area Averageing scaler, ");
  1986. else if(flags&SWS_BICUBLIN)
  1987. MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
  1988. else if(flags&SWS_GAUSS)
  1989. MSG_INFO("\nSwScaler: Gaussian scaler, ");
  1990. else if(flags&SWS_SINC)
  1991. MSG_INFO("\nSwScaler: Sinc scaler, ");
  1992. else if(flags&SWS_LANCZOS)
  1993. MSG_INFO("\nSwScaler: Lanczos scaler, ");
  1994. else if(flags&SWS_SPLINE)
  1995. MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
  1996. else
  1997. MSG_INFO("\nSwScaler: ehh flags invalid?! ");
  1998. if(dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  1999. MSG_INFO("from %s to%s %s ",
  2000. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2001. else
  2002. MSG_INFO("from %s to %s ",
  2003. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2004. if(flags & SWS_CPU_CAPS_MMX2)
  2005. MSG_INFO("using MMX2\n");
  2006. else if(flags & SWS_CPU_CAPS_3DNOW)
  2007. MSG_INFO("using 3DNOW\n");
  2008. else if(flags & SWS_CPU_CAPS_MMX)
  2009. MSG_INFO("using MMX\n");
  2010. else if(flags & SWS_CPU_CAPS_ALTIVEC)
  2011. MSG_INFO("using AltiVec\n");
  2012. else
  2013. MSG_INFO("using C\n");
  2014. }
  2015. if(flags & SWS_PRINT_INFO)
  2016. {
  2017. if(flags & SWS_CPU_CAPS_MMX)
  2018. {
  2019. if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2020. MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2021. else
  2022. {
  2023. if(c->hLumFilterSize==4)
  2024. MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
  2025. else if(c->hLumFilterSize==8)
  2026. MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
  2027. else
  2028. MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
  2029. if(c->hChrFilterSize==4)
  2030. MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2031. else if(c->hChrFilterSize==8)
  2032. MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2033. else
  2034. MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
  2035. }
  2036. }
  2037. else
  2038. {
  2039. #if defined(ARCH_X86) || defined(ARCH_X86_64)
  2040. MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
  2041. #else
  2042. if(flags & SWS_FAST_BILINEAR)
  2043. MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
  2044. else
  2045. MSG_V("SwScaler: using C scaler for horizontal scaling\n");
  2046. #endif
  2047. }
  2048. if(isPlanarYUV(dstFormat))
  2049. {
  2050. if(c->vLumFilterSize==1)
  2051. MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2052. else
  2053. MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2054. }
  2055. else
  2056. {
  2057. if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2058. MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2059. "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2060. else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2061. MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2062. else
  2063. MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2064. }
  2065. if(dstFormat==PIX_FMT_BGR24)
  2066. MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
  2067. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2068. else if(dstFormat==PIX_FMT_RGB32)
  2069. MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2070. else if(dstFormat==PIX_FMT_BGR565)
  2071. MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2072. else if(dstFormat==PIX_FMT_BGR555)
  2073. MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2074. MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2075. }
  2076. if(flags & SWS_PRINT_INFO)
  2077. {
  2078. MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2079. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2080. MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2081. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2082. }
  2083. c->swScale= getSwsFunc(flags);
  2084. return c;
  2085. }
  2086. /**
  2087. * swscale warper, so we don't need to export the SwsContext.
  2088. * assumes planar YUV to be in YUV order instead of YVU
  2089. */
  2090. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2091. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2092. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2093. MSG_ERR("swScaler: slices start in the middle!\n");
  2094. return 0;
  2095. }
  2096. if (c->sliceDir == 0) {
  2097. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2098. }
  2099. // copy strides, so they can safely be modified
  2100. if (c->sliceDir == 1) {
  2101. // slices go from top to bottom
  2102. int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
  2103. int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
  2104. return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
  2105. } else {
  2106. // slices go from bottom to top => we flip the image internally
  2107. uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
  2108. src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
  2109. src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
  2110. };
  2111. uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
  2112. dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
  2113. dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
  2114. int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
  2115. int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
  2116. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2117. }
  2118. }
  2119. /**
  2120. * swscale warper, so we don't need to export the SwsContext
  2121. */
  2122. int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStride[], int srcSliceY,
  2123. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  2124. uint8_t *src[3];
  2125. uint8_t *dst[3];
  2126. src[0] = srcParam[0]; src[1] = srcParam[1]; src[2] = srcParam[2];
  2127. dst[0] = dstParam[0]; dst[1] = dstParam[1]; dst[2] = dstParam[2];
  2128. //printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
  2129. return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2130. }
  2131. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2132. float lumaSharpen, float chromaSharpen,
  2133. float chromaHShift, float chromaVShift,
  2134. int verbose)
  2135. {
  2136. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2137. if(lumaGBlur!=0.0){
  2138. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2139. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2140. }else{
  2141. filter->lumH= sws_getIdentityVec();
  2142. filter->lumV= sws_getIdentityVec();
  2143. }
  2144. if(chromaGBlur!=0.0){
  2145. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2146. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2147. }else{
  2148. filter->chrH= sws_getIdentityVec();
  2149. filter->chrV= sws_getIdentityVec();
  2150. }
  2151. if(chromaSharpen!=0.0){
  2152. SwsVector *id= sws_getIdentityVec();
  2153. sws_scaleVec(filter->chrH, -chromaSharpen);
  2154. sws_scaleVec(filter->chrV, -chromaSharpen);
  2155. sws_addVec(filter->chrH, id);
  2156. sws_addVec(filter->chrV, id);
  2157. sws_freeVec(id);
  2158. }
  2159. if(lumaSharpen!=0.0){
  2160. SwsVector *id= sws_getIdentityVec();
  2161. sws_scaleVec(filter->lumH, -lumaSharpen);
  2162. sws_scaleVec(filter->lumV, -lumaSharpen);
  2163. sws_addVec(filter->lumH, id);
  2164. sws_addVec(filter->lumV, id);
  2165. sws_freeVec(id);
  2166. }
  2167. if(chromaHShift != 0.0)
  2168. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2169. if(chromaVShift != 0.0)
  2170. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2171. sws_normalizeVec(filter->chrH, 1.0);
  2172. sws_normalizeVec(filter->chrV, 1.0);
  2173. sws_normalizeVec(filter->lumH, 1.0);
  2174. sws_normalizeVec(filter->lumV, 1.0);
  2175. if(verbose) sws_printVec(filter->chrH);
  2176. if(verbose) sws_printVec(filter->lumH);
  2177. return filter;
  2178. }
  2179. /**
  2180. * returns a normalized gaussian curve used to filter stuff
  2181. * quality=3 is high quality, lowwer is lowwer quality
  2182. */
  2183. SwsVector *sws_getGaussianVec(double variance, double quality){
  2184. const int length= (int)(variance*quality + 0.5) | 1;
  2185. int i;
  2186. double *coeff= av_malloc(length*sizeof(double));
  2187. double middle= (length-1)*0.5;
  2188. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2189. vec->coeff= coeff;
  2190. vec->length= length;
  2191. for(i=0; i<length; i++)
  2192. {
  2193. double dist= i-middle;
  2194. coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
  2195. }
  2196. sws_normalizeVec(vec, 1.0);
  2197. return vec;
  2198. }
  2199. SwsVector *sws_getConstVec(double c, int length){
  2200. int i;
  2201. double *coeff= av_malloc(length*sizeof(double));
  2202. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2203. vec->coeff= coeff;
  2204. vec->length= length;
  2205. for(i=0; i<length; i++)
  2206. coeff[i]= c;
  2207. return vec;
  2208. }
  2209. SwsVector *sws_getIdentityVec(void){
  2210. return sws_getConstVec(1.0, 1);
  2211. }
  2212. double sws_dcVec(SwsVector *a){
  2213. int i;
  2214. double sum=0;
  2215. for(i=0; i<a->length; i++)
  2216. sum+= a->coeff[i];
  2217. return sum;
  2218. }
  2219. void sws_scaleVec(SwsVector *a, double scalar){
  2220. int i;
  2221. for(i=0; i<a->length; i++)
  2222. a->coeff[i]*= scalar;
  2223. }
  2224. void sws_normalizeVec(SwsVector *a, double height){
  2225. sws_scaleVec(a, height/sws_dcVec(a));
  2226. }
  2227. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2228. int length= a->length + b->length - 1;
  2229. double *coeff= av_malloc(length*sizeof(double));
  2230. int i, j;
  2231. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2232. vec->coeff= coeff;
  2233. vec->length= length;
  2234. for(i=0; i<length; i++) coeff[i]= 0.0;
  2235. for(i=0; i<a->length; i++)
  2236. {
  2237. for(j=0; j<b->length; j++)
  2238. {
  2239. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2240. }
  2241. }
  2242. return vec;
  2243. }
  2244. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2245. int length= FFMAX(a->length, b->length);
  2246. double *coeff= av_malloc(length*sizeof(double));
  2247. int i;
  2248. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2249. vec->coeff= coeff;
  2250. vec->length= length;
  2251. for(i=0; i<length; i++) coeff[i]= 0.0;
  2252. for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2253. for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2254. return vec;
  2255. }
  2256. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2257. int length= FFMAX(a->length, b->length);
  2258. double *coeff= av_malloc(length*sizeof(double));
  2259. int i;
  2260. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2261. vec->coeff= coeff;
  2262. vec->length= length;
  2263. for(i=0; i<length; i++) coeff[i]= 0.0;
  2264. for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2265. for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2266. return vec;
  2267. }
  2268. /* shift left / or right if "shift" is negative */
  2269. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2270. int length= a->length + ABS(shift)*2;
  2271. double *coeff= av_malloc(length*sizeof(double));
  2272. int i;
  2273. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2274. vec->coeff= coeff;
  2275. vec->length= length;
  2276. for(i=0; i<length; i++) coeff[i]= 0.0;
  2277. for(i=0; i<a->length; i++)
  2278. {
  2279. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2280. }
  2281. return vec;
  2282. }
  2283. void sws_shiftVec(SwsVector *a, int shift){
  2284. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2285. av_free(a->coeff);
  2286. a->coeff= shifted->coeff;
  2287. a->length= shifted->length;
  2288. av_free(shifted);
  2289. }
  2290. void sws_addVec(SwsVector *a, SwsVector *b){
  2291. SwsVector *sum= sws_sumVec(a, b);
  2292. av_free(a->coeff);
  2293. a->coeff= sum->coeff;
  2294. a->length= sum->length;
  2295. av_free(sum);
  2296. }
  2297. void sws_subVec(SwsVector *a, SwsVector *b){
  2298. SwsVector *diff= sws_diffVec(a, b);
  2299. av_free(a->coeff);
  2300. a->coeff= diff->coeff;
  2301. a->length= diff->length;
  2302. av_free(diff);
  2303. }
  2304. void sws_convVec(SwsVector *a, SwsVector *b){
  2305. SwsVector *conv= sws_getConvVec(a, b);
  2306. av_free(a->coeff);
  2307. a->coeff= conv->coeff;
  2308. a->length= conv->length;
  2309. av_free(conv);
  2310. }
  2311. SwsVector *sws_cloneVec(SwsVector *a){
  2312. double *coeff= av_malloc(a->length*sizeof(double));
  2313. int i;
  2314. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2315. vec->coeff= coeff;
  2316. vec->length= a->length;
  2317. for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2318. return vec;
  2319. }
  2320. void sws_printVec(SwsVector *a){
  2321. int i;
  2322. double max=0;
  2323. double min=0;
  2324. double range;
  2325. for(i=0; i<a->length; i++)
  2326. if(a->coeff[i]>max) max= a->coeff[i];
  2327. for(i=0; i<a->length; i++)
  2328. if(a->coeff[i]<min) min= a->coeff[i];
  2329. range= max - min;
  2330. for(i=0; i<a->length; i++)
  2331. {
  2332. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2333. MSG_DBG2("%1.3f ", a->coeff[i]);
  2334. for(;x>0; x--) MSG_DBG2(" ");
  2335. MSG_DBG2("|\n");
  2336. }
  2337. }
  2338. void sws_freeVec(SwsVector *a){
  2339. if(!a) return;
  2340. av_free(a->coeff);
  2341. a->coeff=NULL;
  2342. a->length=0;
  2343. av_free(a);
  2344. }
  2345. void sws_freeFilter(SwsFilter *filter){
  2346. if(!filter) return;
  2347. if(filter->lumH) sws_freeVec(filter->lumH);
  2348. if(filter->lumV) sws_freeVec(filter->lumV);
  2349. if(filter->chrH) sws_freeVec(filter->chrH);
  2350. if(filter->chrV) sws_freeVec(filter->chrV);
  2351. av_free(filter);
  2352. }
  2353. void sws_freeContext(SwsContext *c){
  2354. int i;
  2355. if(!c) return;
  2356. if(c->lumPixBuf)
  2357. {
  2358. for(i=0; i<c->vLumBufSize; i++)
  2359. {
  2360. av_free(c->lumPixBuf[i]);
  2361. c->lumPixBuf[i]=NULL;
  2362. }
  2363. av_free(c->lumPixBuf);
  2364. c->lumPixBuf=NULL;
  2365. }
  2366. if(c->chrPixBuf)
  2367. {
  2368. for(i=0; i<c->vChrBufSize; i++)
  2369. {
  2370. av_free(c->chrPixBuf[i]);
  2371. c->chrPixBuf[i]=NULL;
  2372. }
  2373. av_free(c->chrPixBuf);
  2374. c->chrPixBuf=NULL;
  2375. }
  2376. av_free(c->vLumFilter);
  2377. c->vLumFilter = NULL;
  2378. av_free(c->vChrFilter);
  2379. c->vChrFilter = NULL;
  2380. av_free(c->hLumFilter);
  2381. c->hLumFilter = NULL;
  2382. av_free(c->hChrFilter);
  2383. c->hChrFilter = NULL;
  2384. #ifdef HAVE_ALTIVEC
  2385. av_free(c->vYCoeffsBank);
  2386. c->vYCoeffsBank = NULL;
  2387. av_free(c->vCCoeffsBank);
  2388. c->vCCoeffsBank = NULL;
  2389. #endif
  2390. av_free(c->vLumFilterPos);
  2391. c->vLumFilterPos = NULL;
  2392. av_free(c->vChrFilterPos);
  2393. c->vChrFilterPos = NULL;
  2394. av_free(c->hLumFilterPos);
  2395. c->hLumFilterPos = NULL;
  2396. av_free(c->hChrFilterPos);
  2397. c->hChrFilterPos = NULL;
  2398. #if defined(ARCH_X86) || defined(ARCH_X86_64)
  2399. #ifdef MAP_ANONYMOUS
  2400. if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
  2401. if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  2402. #else
  2403. av_free(c->funnyYCode);
  2404. av_free(c->funnyUVCode);
  2405. #endif
  2406. c->funnyYCode=NULL;
  2407. c->funnyUVCode=NULL;
  2408. #endif /* defined(ARCH_X86) || defined(ARCH_X86_64) */
  2409. av_free(c->lumMmx2Filter);
  2410. c->lumMmx2Filter=NULL;
  2411. av_free(c->chrMmx2Filter);
  2412. c->chrMmx2Filter=NULL;
  2413. av_free(c->lumMmx2FilterPos);
  2414. c->lumMmx2FilterPos=NULL;
  2415. av_free(c->chrMmx2FilterPos);
  2416. c->chrMmx2FilterPos=NULL;
  2417. av_free(c->yuvTable);
  2418. c->yuvTable=NULL;
  2419. av_free(c);
  2420. }
  2421. /**
  2422. * Checks if context is valid or reallocs a new one instead.
  2423. * If context is NULL, just calls sws_getContext() to get a new one.
  2424. * Otherwise, checks if the parameters are the same already saved in context.
  2425. * If that is the case, returns the current context.
  2426. * Otherwise, frees context and gets a new one.
  2427. *
  2428. * Be warned that srcFilter, dstFilter are not checked, they are
  2429. * asumed to remain valid.
  2430. */
  2431. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  2432. int srcW, int srcH, int srcFormat,
  2433. int dstW, int dstH, int dstFormat, int flags,
  2434. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
  2435. {
  2436. if (context != NULL) {
  2437. if ((context->srcW != srcW) || (context->srcH != srcH) ||
  2438. (context->srcFormat != srcFormat) ||
  2439. (context->dstW != dstW) || (context->dstH != dstH) ||
  2440. (context->dstFormat != dstFormat) || (context->flags != flags) ||
  2441. (context->param != param))
  2442. {
  2443. sws_freeContext(context);
  2444. context = NULL;
  2445. }
  2446. }
  2447. if (context == NULL) {
  2448. return sws_getContext(srcW, srcH, srcFormat,
  2449. dstW, dstH, dstFormat, flags,
  2450. srcFilter, dstFilter, param);
  2451. }
  2452. return context;
  2453. }