You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2849 lines
84KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. //#define DEBUG
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "dsputil.h"
  29. /*
  30. * TODO:
  31. * - in low precision mode, use more 16 bit multiplies in synth filter
  32. * - test lsf / mpeg25 extensively.
  33. */
  34. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  35. audio decoder */
  36. #ifdef CONFIG_MPEGAUDIO_HP
  37. # define USE_HIGHPRECISION
  38. #endif
  39. #include "mpegaudio.h"
  40. #include "mathops.h"
  41. #define FRAC_ONE (1 << FRAC_BITS)
  42. #define FIX(a) ((int)((a) * FRAC_ONE))
  43. /* WARNING: only correct for posititive numbers */
  44. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  45. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  46. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  47. /****************/
  48. #define HEADER_SIZE 4
  49. #define BACKSTEP_SIZE 512
  50. #define EXTRABYTES 24
  51. struct GranuleDef;
  52. typedef struct MPADecodeContext {
  53. DECLARE_ALIGNED_8(uint8_t, last_buf[2*BACKSTEP_SIZE + EXTRABYTES]);
  54. int last_buf_size;
  55. int frame_size;
  56. /* next header (used in free format parsing) */
  57. uint32_t free_format_next_header;
  58. int error_protection;
  59. int layer;
  60. int sample_rate;
  61. int sample_rate_index; /* between 0 and 8 */
  62. int bit_rate;
  63. GetBitContext gb;
  64. GetBitContext in_gb;
  65. int nb_channels;
  66. int mode;
  67. int mode_ext;
  68. int lsf;
  69. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  70. int synth_buf_offset[MPA_MAX_CHANNELS];
  71. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  72. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  73. #ifdef DEBUG
  74. int frame_count;
  75. #endif
  76. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  77. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  78. int dither_state;
  79. } MPADecodeContext;
  80. /**
  81. * Context for MP3On4 decoder
  82. */
  83. typedef struct MP3On4DecodeContext {
  84. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  85. int chan_cfg; ///< channel config number
  86. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  87. } MP3On4DecodeContext;
  88. /* layer 3 "granule" */
  89. typedef struct GranuleDef {
  90. uint8_t scfsi;
  91. int part2_3_length;
  92. int big_values;
  93. int global_gain;
  94. int scalefac_compress;
  95. uint8_t block_type;
  96. uint8_t switch_point;
  97. int table_select[3];
  98. int subblock_gain[3];
  99. uint8_t scalefac_scale;
  100. uint8_t count1table_select;
  101. int region_size[3]; /* number of huffman codes in each region */
  102. int preflag;
  103. int short_start, long_end; /* long/short band indexes */
  104. uint8_t scale_factors[40];
  105. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  106. } GranuleDef;
  107. #define MODE_EXT_MS_STEREO 2
  108. #define MODE_EXT_I_STEREO 1
  109. /* layer 3 huffman tables */
  110. typedef struct HuffTable {
  111. int xsize;
  112. const uint8_t *bits;
  113. const uint16_t *codes;
  114. } HuffTable;
  115. #include "mpegaudiodectab.h"
  116. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  117. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  118. /* vlc structure for decoding layer 3 huffman tables */
  119. static VLC huff_vlc[16];
  120. static VLC huff_quad_vlc[2];
  121. /* computed from band_size_long */
  122. static uint16_t band_index_long[9][23];
  123. /* XXX: free when all decoders are closed */
  124. #define TABLE_4_3_SIZE (8191 + 16)*4
  125. static int8_t *table_4_3_exp;
  126. static uint32_t *table_4_3_value;
  127. static uint32_t exp_table[512];
  128. static uint32_t expval_table[512][16];
  129. /* intensity stereo coef table */
  130. static int32_t is_table[2][16];
  131. static int32_t is_table_lsf[2][2][16];
  132. static int32_t csa_table[8][4];
  133. static float csa_table_float[8][4];
  134. static int32_t mdct_win[8][36];
  135. /* lower 2 bits: modulo 3, higher bits: shift */
  136. static uint16_t scale_factor_modshift[64];
  137. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  138. static int32_t scale_factor_mult[15][3];
  139. /* mult table for layer 2 group quantization */
  140. #define SCALE_GEN(v) \
  141. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  142. static const int32_t scale_factor_mult2[3][3] = {
  143. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  144. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  145. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  146. };
  147. static MPA_INT window[512] __attribute__((aligned(16)));
  148. /* layer 1 unscaling */
  149. /* n = number of bits of the mantissa minus 1 */
  150. static inline int l1_unscale(int n, int mant, int scale_factor)
  151. {
  152. int shift, mod;
  153. int64_t val;
  154. shift = scale_factor_modshift[scale_factor];
  155. mod = shift & 3;
  156. shift >>= 2;
  157. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  158. shift += n;
  159. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  160. return (int)((val + (1LL << (shift - 1))) >> shift);
  161. }
  162. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  163. {
  164. int shift, mod, val;
  165. shift = scale_factor_modshift[scale_factor];
  166. mod = shift & 3;
  167. shift >>= 2;
  168. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  169. /* NOTE: at this point, 0 <= shift <= 21 */
  170. if (shift > 0)
  171. val = (val + (1 << (shift - 1))) >> shift;
  172. return val;
  173. }
  174. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  175. static inline int l3_unscale(int value, int exponent)
  176. {
  177. unsigned int m;
  178. int e;
  179. e = table_4_3_exp [4*value + (exponent&3)];
  180. m = table_4_3_value[4*value + (exponent&3)];
  181. e -= (exponent >> 2);
  182. assert(e>=1);
  183. if (e > 31)
  184. return 0;
  185. m = (m + (1 << (e-1))) >> e;
  186. return m;
  187. }
  188. /* all integer n^(4/3) computation code */
  189. #define DEV_ORDER 13
  190. #define POW_FRAC_BITS 24
  191. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  192. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  193. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  194. static int dev_4_3_coefs[DEV_ORDER];
  195. #if 0 /* unused */
  196. static int pow_mult3[3] = {
  197. POW_FIX(1.0),
  198. POW_FIX(1.25992104989487316476),
  199. POW_FIX(1.58740105196819947474),
  200. };
  201. #endif
  202. static void int_pow_init(void)
  203. {
  204. int i, a;
  205. a = POW_FIX(1.0);
  206. for(i=0;i<DEV_ORDER;i++) {
  207. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  208. dev_4_3_coefs[i] = a;
  209. }
  210. }
  211. #if 0 /* unused, remove? */
  212. /* return the mantissa and the binary exponent */
  213. static int int_pow(int i, int *exp_ptr)
  214. {
  215. int e, er, eq, j;
  216. int a, a1;
  217. /* renormalize */
  218. a = i;
  219. e = POW_FRAC_BITS;
  220. while (a < (1 << (POW_FRAC_BITS - 1))) {
  221. a = a << 1;
  222. e--;
  223. }
  224. a -= (1 << POW_FRAC_BITS);
  225. a1 = 0;
  226. for(j = DEV_ORDER - 1; j >= 0; j--)
  227. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  228. a = (1 << POW_FRAC_BITS) + a1;
  229. /* exponent compute (exact) */
  230. e = e * 4;
  231. er = e % 3;
  232. eq = e / 3;
  233. a = POW_MULL(a, pow_mult3[er]);
  234. while (a >= 2 * POW_FRAC_ONE) {
  235. a = a >> 1;
  236. eq++;
  237. }
  238. /* convert to float */
  239. while (a < POW_FRAC_ONE) {
  240. a = a << 1;
  241. eq--;
  242. }
  243. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  244. #if POW_FRAC_BITS > FRAC_BITS
  245. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  246. /* correct overflow */
  247. if (a >= 2 * (1 << FRAC_BITS)) {
  248. a = a >> 1;
  249. eq++;
  250. }
  251. #endif
  252. *exp_ptr = eq;
  253. return a;
  254. }
  255. #endif
  256. static int decode_init(AVCodecContext * avctx)
  257. {
  258. MPADecodeContext *s = avctx->priv_data;
  259. static int init=0;
  260. int i, j, k;
  261. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  262. avctx->sample_fmt= SAMPLE_FMT_S32;
  263. #else
  264. avctx->sample_fmt= SAMPLE_FMT_S16;
  265. #endif
  266. if(avctx->antialias_algo != FF_AA_FLOAT)
  267. s->compute_antialias= compute_antialias_integer;
  268. else
  269. s->compute_antialias= compute_antialias_float;
  270. if (!init && !avctx->parse_only) {
  271. /* scale factors table for layer 1/2 */
  272. for(i=0;i<64;i++) {
  273. int shift, mod;
  274. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  275. shift = (i / 3);
  276. mod = i % 3;
  277. scale_factor_modshift[i] = mod | (shift << 2);
  278. }
  279. /* scale factor multiply for layer 1 */
  280. for(i=0;i<15;i++) {
  281. int n, norm;
  282. n = i + 2;
  283. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  284. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  285. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  286. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  287. dprintf("%d: norm=%x s=%x %x %x\n",
  288. i, norm,
  289. scale_factor_mult[i][0],
  290. scale_factor_mult[i][1],
  291. scale_factor_mult[i][2]);
  292. }
  293. ff_mpa_synth_init(window);
  294. /* huffman decode tables */
  295. for(i=1;i<16;i++) {
  296. const HuffTable *h = &mpa_huff_tables[i];
  297. int xsize, x, y;
  298. unsigned int n;
  299. uint8_t tmp_bits [512];
  300. uint16_t tmp_codes[512];
  301. memset(tmp_bits , 0, sizeof(tmp_bits ));
  302. memset(tmp_codes, 0, sizeof(tmp_codes));
  303. xsize = h->xsize;
  304. n = xsize * xsize;
  305. j = 0;
  306. for(x=0;x<xsize;x++) {
  307. for(y=0;y<xsize;y++){
  308. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  309. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  310. }
  311. }
  312. /* XXX: fail test */
  313. init_vlc(&huff_vlc[i], 7, 512,
  314. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  315. }
  316. for(i=0;i<2;i++) {
  317. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  318. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  319. }
  320. for(i=0;i<9;i++) {
  321. k = 0;
  322. for(j=0;j<22;j++) {
  323. band_index_long[i][j] = k;
  324. k += band_size_long[i][j];
  325. }
  326. band_index_long[i][22] = k;
  327. }
  328. /* compute n ^ (4/3) and store it in mantissa/exp format */
  329. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  330. if(!table_4_3_exp)
  331. return -1;
  332. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  333. if(!table_4_3_value)
  334. return -1;
  335. int_pow_init();
  336. for(i=1;i<TABLE_4_3_SIZE;i++) {
  337. double f, fm;
  338. int e, m;
  339. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  340. fm = frexp(f, &e);
  341. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  342. e+= FRAC_BITS - 31 + 5 - 100;
  343. /* normalized to FRAC_BITS */
  344. table_4_3_value[i] = m;
  345. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  346. table_4_3_exp[i] = -e;
  347. }
  348. for(i=0; i<512*16; i++){
  349. int exponent= (i>>4);
  350. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  351. expval_table[exponent][i&15]= llrint(f);
  352. if((i&15)==1)
  353. exp_table[exponent]= llrint(f);
  354. }
  355. for(i=0;i<7;i++) {
  356. float f;
  357. int v;
  358. if (i != 6) {
  359. f = tan((double)i * M_PI / 12.0);
  360. v = FIXR(f / (1.0 + f));
  361. } else {
  362. v = FIXR(1.0);
  363. }
  364. is_table[0][i] = v;
  365. is_table[1][6 - i] = v;
  366. }
  367. /* invalid values */
  368. for(i=7;i<16;i++)
  369. is_table[0][i] = is_table[1][i] = 0.0;
  370. for(i=0;i<16;i++) {
  371. double f;
  372. int e, k;
  373. for(j=0;j<2;j++) {
  374. e = -(j + 1) * ((i + 1) >> 1);
  375. f = pow(2.0, e / 4.0);
  376. k = i & 1;
  377. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  378. is_table_lsf[j][k][i] = FIXR(1.0);
  379. dprintf("is_table_lsf %d %d: %x %x\n",
  380. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  381. }
  382. }
  383. for(i=0;i<8;i++) {
  384. float ci, cs, ca;
  385. ci = ci_table[i];
  386. cs = 1.0 / sqrt(1.0 + ci * ci);
  387. ca = cs * ci;
  388. csa_table[i][0] = FIXHR(cs/4);
  389. csa_table[i][1] = FIXHR(ca/4);
  390. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  391. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  392. csa_table_float[i][0] = cs;
  393. csa_table_float[i][1] = ca;
  394. csa_table_float[i][2] = ca + cs;
  395. csa_table_float[i][3] = ca - cs;
  396. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  397. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  398. }
  399. /* compute mdct windows */
  400. for(i=0;i<36;i++) {
  401. for(j=0; j<4; j++){
  402. double d;
  403. if(j==2 && i%3 != 1)
  404. continue;
  405. d= sin(M_PI * (i + 0.5) / 36.0);
  406. if(j==1){
  407. if (i>=30) d= 0;
  408. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  409. else if(i>=18) d= 1;
  410. }else if(j==3){
  411. if (i< 6) d= 0;
  412. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  413. else if(i< 18) d= 1;
  414. }
  415. //merge last stage of imdct into the window coefficients
  416. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  417. if(j==2)
  418. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  419. else
  420. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  421. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  422. }
  423. }
  424. /* NOTE: we do frequency inversion adter the MDCT by changing
  425. the sign of the right window coefs */
  426. for(j=0;j<4;j++) {
  427. for(i=0;i<36;i+=2) {
  428. mdct_win[j + 4][i] = mdct_win[j][i];
  429. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  430. }
  431. }
  432. #if defined(DEBUG)
  433. for(j=0;j<8;j++) {
  434. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  435. for(i=0;i<36;i++)
  436. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  437. av_log(avctx, AV_LOG_DEBUG, "\n");
  438. }
  439. #endif
  440. init = 1;
  441. }
  442. #ifdef DEBUG
  443. s->frame_count = 0;
  444. #endif
  445. if (avctx->codec_id == CODEC_ID_MP3ADU)
  446. s->adu_mode = 1;
  447. return 0;
  448. }
  449. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  450. /* cos(i*pi/64) */
  451. #define COS0_0 FIXHR(0.50060299823519630134/2)
  452. #define COS0_1 FIXHR(0.50547095989754365998/2)
  453. #define COS0_2 FIXHR(0.51544730992262454697/2)
  454. #define COS0_3 FIXHR(0.53104259108978417447/2)
  455. #define COS0_4 FIXHR(0.55310389603444452782/2)
  456. #define COS0_5 FIXHR(0.58293496820613387367/2)
  457. #define COS0_6 FIXHR(0.62250412303566481615/2)
  458. #define COS0_7 FIXHR(0.67480834145500574602/2)
  459. #define COS0_8 FIXHR(0.74453627100229844977/2)
  460. #define COS0_9 FIXHR(0.83934964541552703873/2)
  461. #define COS0_10 FIXHR(0.97256823786196069369/2)
  462. #define COS0_11 FIXHR(1.16943993343288495515/4)
  463. #define COS0_12 FIXHR(1.48416461631416627724/4)
  464. #define COS0_13 FIXHR(2.05778100995341155085/8)
  465. #define COS0_14 FIXHR(3.40760841846871878570/8)
  466. #define COS0_15 FIXHR(10.19000812354805681150/32)
  467. #define COS1_0 FIXHR(0.50241928618815570551/2)
  468. #define COS1_1 FIXHR(0.52249861493968888062/2)
  469. #define COS1_2 FIXHR(0.56694403481635770368/2)
  470. #define COS1_3 FIXHR(0.64682178335999012954/2)
  471. #define COS1_4 FIXHR(0.78815462345125022473/2)
  472. #define COS1_5 FIXHR(1.06067768599034747134/4)
  473. #define COS1_6 FIXHR(1.72244709823833392782/4)
  474. #define COS1_7 FIXHR(5.10114861868916385802/16)
  475. #define COS2_0 FIXHR(0.50979557910415916894/2)
  476. #define COS2_1 FIXHR(0.60134488693504528054/2)
  477. #define COS2_2 FIXHR(0.89997622313641570463/2)
  478. #define COS2_3 FIXHR(2.56291544774150617881/8)
  479. #define COS3_0 FIXHR(0.54119610014619698439/2)
  480. #define COS3_1 FIXHR(1.30656296487637652785/4)
  481. #define COS4_0 FIXHR(0.70710678118654752439/2)
  482. /* butterfly operator */
  483. #define BF(a, b, c, s)\
  484. {\
  485. tmp0 = tab[a] + tab[b];\
  486. tmp1 = tab[a] - tab[b];\
  487. tab[a] = tmp0;\
  488. tab[b] = MULH(tmp1<<(s), c);\
  489. }
  490. #define BF1(a, b, c, d)\
  491. {\
  492. BF(a, b, COS4_0, 1);\
  493. BF(c, d,-COS4_0, 1);\
  494. tab[c] += tab[d];\
  495. }
  496. #define BF2(a, b, c, d)\
  497. {\
  498. BF(a, b, COS4_0, 1);\
  499. BF(c, d,-COS4_0, 1);\
  500. tab[c] += tab[d];\
  501. tab[a] += tab[c];\
  502. tab[c] += tab[b];\
  503. tab[b] += tab[d];\
  504. }
  505. #define ADD(a, b) tab[a] += tab[b]
  506. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  507. static void dct32(int32_t *out, int32_t *tab)
  508. {
  509. int tmp0, tmp1;
  510. /* pass 1 */
  511. BF( 0, 31, COS0_0 , 1);
  512. BF(15, 16, COS0_15, 5);
  513. /* pass 2 */
  514. BF( 0, 15, COS1_0 , 1);
  515. BF(16, 31,-COS1_0 , 1);
  516. /* pass 1 */
  517. BF( 7, 24, COS0_7 , 1);
  518. BF( 8, 23, COS0_8 , 1);
  519. /* pass 2 */
  520. BF( 7, 8, COS1_7 , 4);
  521. BF(23, 24,-COS1_7 , 4);
  522. /* pass 3 */
  523. BF( 0, 7, COS2_0 , 1);
  524. BF( 8, 15,-COS2_0 , 1);
  525. BF(16, 23, COS2_0 , 1);
  526. BF(24, 31,-COS2_0 , 1);
  527. /* pass 1 */
  528. BF( 3, 28, COS0_3 , 1);
  529. BF(12, 19, COS0_12, 2);
  530. /* pass 2 */
  531. BF( 3, 12, COS1_3 , 1);
  532. BF(19, 28,-COS1_3 , 1);
  533. /* pass 1 */
  534. BF( 4, 27, COS0_4 , 1);
  535. BF(11, 20, COS0_11, 2);
  536. /* pass 2 */
  537. BF( 4, 11, COS1_4 , 1);
  538. BF(20, 27,-COS1_4 , 1);
  539. /* pass 3 */
  540. BF( 3, 4, COS2_3 , 3);
  541. BF(11, 12,-COS2_3 , 3);
  542. BF(19, 20, COS2_3 , 3);
  543. BF(27, 28,-COS2_3 , 3);
  544. /* pass 4 */
  545. BF( 0, 3, COS3_0 , 1);
  546. BF( 4, 7,-COS3_0 , 1);
  547. BF( 8, 11, COS3_0 , 1);
  548. BF(12, 15,-COS3_0 , 1);
  549. BF(16, 19, COS3_0 , 1);
  550. BF(20, 23,-COS3_0 , 1);
  551. BF(24, 27, COS3_0 , 1);
  552. BF(28, 31,-COS3_0 , 1);
  553. /* pass 1 */
  554. BF( 1, 30, COS0_1 , 1);
  555. BF(14, 17, COS0_14, 3);
  556. /* pass 2 */
  557. BF( 1, 14, COS1_1 , 1);
  558. BF(17, 30,-COS1_1 , 1);
  559. /* pass 1 */
  560. BF( 6, 25, COS0_6 , 1);
  561. BF( 9, 22, COS0_9 , 1);
  562. /* pass 2 */
  563. BF( 6, 9, COS1_6 , 2);
  564. BF(22, 25,-COS1_6 , 2);
  565. /* pass 3 */
  566. BF( 1, 6, COS2_1 , 1);
  567. BF( 9, 14,-COS2_1 , 1);
  568. BF(17, 22, COS2_1 , 1);
  569. BF(25, 30,-COS2_1 , 1);
  570. /* pass 1 */
  571. BF( 2, 29, COS0_2 , 1);
  572. BF(13, 18, COS0_13, 3);
  573. /* pass 2 */
  574. BF( 2, 13, COS1_2 , 1);
  575. BF(18, 29,-COS1_2 , 1);
  576. /* pass 1 */
  577. BF( 5, 26, COS0_5 , 1);
  578. BF(10, 21, COS0_10, 1);
  579. /* pass 2 */
  580. BF( 5, 10, COS1_5 , 2);
  581. BF(21, 26,-COS1_5 , 2);
  582. /* pass 3 */
  583. BF( 2, 5, COS2_2 , 1);
  584. BF(10, 13,-COS2_2 , 1);
  585. BF(18, 21, COS2_2 , 1);
  586. BF(26, 29,-COS2_2 , 1);
  587. /* pass 4 */
  588. BF( 1, 2, COS3_1 , 2);
  589. BF( 5, 6,-COS3_1 , 2);
  590. BF( 9, 10, COS3_1 , 2);
  591. BF(13, 14,-COS3_1 , 2);
  592. BF(17, 18, COS3_1 , 2);
  593. BF(21, 22,-COS3_1 , 2);
  594. BF(25, 26, COS3_1 , 2);
  595. BF(29, 30,-COS3_1 , 2);
  596. /* pass 5 */
  597. BF1( 0, 1, 2, 3);
  598. BF2( 4, 5, 6, 7);
  599. BF1( 8, 9, 10, 11);
  600. BF2(12, 13, 14, 15);
  601. BF1(16, 17, 18, 19);
  602. BF2(20, 21, 22, 23);
  603. BF1(24, 25, 26, 27);
  604. BF2(28, 29, 30, 31);
  605. /* pass 6 */
  606. ADD( 8, 12);
  607. ADD(12, 10);
  608. ADD(10, 14);
  609. ADD(14, 9);
  610. ADD( 9, 13);
  611. ADD(13, 11);
  612. ADD(11, 15);
  613. out[ 0] = tab[0];
  614. out[16] = tab[1];
  615. out[ 8] = tab[2];
  616. out[24] = tab[3];
  617. out[ 4] = tab[4];
  618. out[20] = tab[5];
  619. out[12] = tab[6];
  620. out[28] = tab[7];
  621. out[ 2] = tab[8];
  622. out[18] = tab[9];
  623. out[10] = tab[10];
  624. out[26] = tab[11];
  625. out[ 6] = tab[12];
  626. out[22] = tab[13];
  627. out[14] = tab[14];
  628. out[30] = tab[15];
  629. ADD(24, 28);
  630. ADD(28, 26);
  631. ADD(26, 30);
  632. ADD(30, 25);
  633. ADD(25, 29);
  634. ADD(29, 27);
  635. ADD(27, 31);
  636. out[ 1] = tab[16] + tab[24];
  637. out[17] = tab[17] + tab[25];
  638. out[ 9] = tab[18] + tab[26];
  639. out[25] = tab[19] + tab[27];
  640. out[ 5] = tab[20] + tab[28];
  641. out[21] = tab[21] + tab[29];
  642. out[13] = tab[22] + tab[30];
  643. out[29] = tab[23] + tab[31];
  644. out[ 3] = tab[24] + tab[20];
  645. out[19] = tab[25] + tab[21];
  646. out[11] = tab[26] + tab[22];
  647. out[27] = tab[27] + tab[23];
  648. out[ 7] = tab[28] + tab[18];
  649. out[23] = tab[29] + tab[19];
  650. out[15] = tab[30] + tab[17];
  651. out[31] = tab[31];
  652. }
  653. #if FRAC_BITS <= 15
  654. static inline int round_sample(int *sum)
  655. {
  656. int sum1;
  657. sum1 = (*sum) >> OUT_SHIFT;
  658. *sum &= (1<<OUT_SHIFT)-1;
  659. if (sum1 < OUT_MIN)
  660. sum1 = OUT_MIN;
  661. else if (sum1 > OUT_MAX)
  662. sum1 = OUT_MAX;
  663. return sum1;
  664. }
  665. /* signed 16x16 -> 32 multiply add accumulate */
  666. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  667. /* signed 16x16 -> 32 multiply */
  668. #define MULS(ra, rb) MUL16(ra, rb)
  669. #else
  670. static inline int round_sample(int64_t *sum)
  671. {
  672. int sum1;
  673. sum1 = (int)((*sum) >> OUT_SHIFT);
  674. *sum &= (1<<OUT_SHIFT)-1;
  675. if (sum1 < OUT_MIN)
  676. sum1 = OUT_MIN;
  677. else if (sum1 > OUT_MAX)
  678. sum1 = OUT_MAX;
  679. return sum1;
  680. }
  681. # define MULS(ra, rb) MUL64(ra, rb)
  682. #endif
  683. #define SUM8(sum, op, w, p) \
  684. { \
  685. sum op MULS((w)[0 * 64], p[0 * 64]);\
  686. sum op MULS((w)[1 * 64], p[1 * 64]);\
  687. sum op MULS((w)[2 * 64], p[2 * 64]);\
  688. sum op MULS((w)[3 * 64], p[3 * 64]);\
  689. sum op MULS((w)[4 * 64], p[4 * 64]);\
  690. sum op MULS((w)[5 * 64], p[5 * 64]);\
  691. sum op MULS((w)[6 * 64], p[6 * 64]);\
  692. sum op MULS((w)[7 * 64], p[7 * 64]);\
  693. }
  694. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  695. { \
  696. int tmp;\
  697. tmp = p[0 * 64];\
  698. sum1 op1 MULS((w1)[0 * 64], tmp);\
  699. sum2 op2 MULS((w2)[0 * 64], tmp);\
  700. tmp = p[1 * 64];\
  701. sum1 op1 MULS((w1)[1 * 64], tmp);\
  702. sum2 op2 MULS((w2)[1 * 64], tmp);\
  703. tmp = p[2 * 64];\
  704. sum1 op1 MULS((w1)[2 * 64], tmp);\
  705. sum2 op2 MULS((w2)[2 * 64], tmp);\
  706. tmp = p[3 * 64];\
  707. sum1 op1 MULS((w1)[3 * 64], tmp);\
  708. sum2 op2 MULS((w2)[3 * 64], tmp);\
  709. tmp = p[4 * 64];\
  710. sum1 op1 MULS((w1)[4 * 64], tmp);\
  711. sum2 op2 MULS((w2)[4 * 64], tmp);\
  712. tmp = p[5 * 64];\
  713. sum1 op1 MULS((w1)[5 * 64], tmp);\
  714. sum2 op2 MULS((w2)[5 * 64], tmp);\
  715. tmp = p[6 * 64];\
  716. sum1 op1 MULS((w1)[6 * 64], tmp);\
  717. sum2 op2 MULS((w2)[6 * 64], tmp);\
  718. tmp = p[7 * 64];\
  719. sum1 op1 MULS((w1)[7 * 64], tmp);\
  720. sum2 op2 MULS((w2)[7 * 64], tmp);\
  721. }
  722. void ff_mpa_synth_init(MPA_INT *window)
  723. {
  724. int i;
  725. /* max = 18760, max sum over all 16 coefs : 44736 */
  726. for(i=0;i<257;i++) {
  727. int v;
  728. v = mpa_enwindow[i];
  729. #if WFRAC_BITS < 16
  730. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  731. #endif
  732. window[i] = v;
  733. if ((i & 63) != 0)
  734. v = -v;
  735. if (i != 0)
  736. window[512 - i] = v;
  737. }
  738. }
  739. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  740. 32 samples. */
  741. /* XXX: optimize by avoiding ring buffer usage */
  742. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  743. MPA_INT *window, int *dither_state,
  744. OUT_INT *samples, int incr,
  745. int32_t sb_samples[SBLIMIT])
  746. {
  747. int32_t tmp[32];
  748. register MPA_INT *synth_buf;
  749. register const MPA_INT *w, *w2, *p;
  750. int j, offset, v;
  751. OUT_INT *samples2;
  752. #if FRAC_BITS <= 15
  753. int sum, sum2;
  754. #else
  755. int64_t sum, sum2;
  756. #endif
  757. dct32(tmp, sb_samples);
  758. offset = *synth_buf_offset;
  759. synth_buf = synth_buf_ptr + offset;
  760. for(j=0;j<32;j++) {
  761. v = tmp[j];
  762. #if FRAC_BITS <= 15
  763. /* NOTE: can cause a loss in precision if very high amplitude
  764. sound */
  765. if (v > 32767)
  766. v = 32767;
  767. else if (v < -32768)
  768. v = -32768;
  769. #endif
  770. synth_buf[j] = v;
  771. }
  772. /* copy to avoid wrap */
  773. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  774. samples2 = samples + 31 * incr;
  775. w = window;
  776. w2 = window + 31;
  777. sum = *dither_state;
  778. p = synth_buf + 16;
  779. SUM8(sum, +=, w, p);
  780. p = synth_buf + 48;
  781. SUM8(sum, -=, w + 32, p);
  782. *samples = round_sample(&sum);
  783. samples += incr;
  784. w++;
  785. /* we calculate two samples at the same time to avoid one memory
  786. access per two sample */
  787. for(j=1;j<16;j++) {
  788. sum2 = 0;
  789. p = synth_buf + 16 + j;
  790. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  791. p = synth_buf + 48 - j;
  792. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  793. *samples = round_sample(&sum);
  794. samples += incr;
  795. sum += sum2;
  796. *samples2 = round_sample(&sum);
  797. samples2 -= incr;
  798. w++;
  799. w2--;
  800. }
  801. p = synth_buf + 32;
  802. SUM8(sum, -=, w + 32, p);
  803. *samples = round_sample(&sum);
  804. *dither_state= sum;
  805. offset = (offset - 32) & 511;
  806. *synth_buf_offset = offset;
  807. }
  808. #define C3 FIXHR(0.86602540378443864676/2)
  809. /* 0.5 / cos(pi*(2*i+1)/36) */
  810. static const int icos36[9] = {
  811. FIXR(0.50190991877167369479),
  812. FIXR(0.51763809020504152469), //0
  813. FIXR(0.55168895948124587824),
  814. FIXR(0.61038729438072803416),
  815. FIXR(0.70710678118654752439), //1
  816. FIXR(0.87172339781054900991),
  817. FIXR(1.18310079157624925896),
  818. FIXR(1.93185165257813657349), //2
  819. FIXR(5.73685662283492756461),
  820. };
  821. /* 0.5 / cos(pi*(2*i+1)/36) */
  822. static const int icos36h[9] = {
  823. FIXHR(0.50190991877167369479/2),
  824. FIXHR(0.51763809020504152469/2), //0
  825. FIXHR(0.55168895948124587824/2),
  826. FIXHR(0.61038729438072803416/2),
  827. FIXHR(0.70710678118654752439/2), //1
  828. FIXHR(0.87172339781054900991/2),
  829. FIXHR(1.18310079157624925896/4),
  830. FIXHR(1.93185165257813657349/4), //2
  831. // FIXHR(5.73685662283492756461),
  832. };
  833. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  834. cases. */
  835. static void imdct12(int *out, int *in)
  836. {
  837. int in0, in1, in2, in3, in4, in5, t1, t2;
  838. in0= in[0*3];
  839. in1= in[1*3] + in[0*3];
  840. in2= in[2*3] + in[1*3];
  841. in3= in[3*3] + in[2*3];
  842. in4= in[4*3] + in[3*3];
  843. in5= in[5*3] + in[4*3];
  844. in5 += in3;
  845. in3 += in1;
  846. in2= MULH(2*in2, C3);
  847. in3= MULH(4*in3, C3);
  848. t1 = in0 - in4;
  849. t2 = MULH(2*(in1 - in5), icos36h[4]);
  850. out[ 7]=
  851. out[10]= t1 + t2;
  852. out[ 1]=
  853. out[ 4]= t1 - t2;
  854. in0 += in4>>1;
  855. in4 = in0 + in2;
  856. in5 += 2*in1;
  857. in1 = MULH(in5 + in3, icos36h[1]);
  858. out[ 8]=
  859. out[ 9]= in4 + in1;
  860. out[ 2]=
  861. out[ 3]= in4 - in1;
  862. in0 -= in2;
  863. in5 = MULH(2*(in5 - in3), icos36h[7]);
  864. out[ 0]=
  865. out[ 5]= in0 - in5;
  866. out[ 6]=
  867. out[11]= in0 + in5;
  868. }
  869. /* cos(pi*i/18) */
  870. #define C1 FIXHR(0.98480775301220805936/2)
  871. #define C2 FIXHR(0.93969262078590838405/2)
  872. #define C3 FIXHR(0.86602540378443864676/2)
  873. #define C4 FIXHR(0.76604444311897803520/2)
  874. #define C5 FIXHR(0.64278760968653932632/2)
  875. #define C6 FIXHR(0.5/2)
  876. #define C7 FIXHR(0.34202014332566873304/2)
  877. #define C8 FIXHR(0.17364817766693034885/2)
  878. /* using Lee like decomposition followed by hand coded 9 points DCT */
  879. static void imdct36(int *out, int *buf, int *in, int *win)
  880. {
  881. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  882. int tmp[18], *tmp1, *in1;
  883. for(i=17;i>=1;i--)
  884. in[i] += in[i-1];
  885. for(i=17;i>=3;i-=2)
  886. in[i] += in[i-2];
  887. for(j=0;j<2;j++) {
  888. tmp1 = tmp + j;
  889. in1 = in + j;
  890. #if 0
  891. //more accurate but slower
  892. int64_t t0, t1, t2, t3;
  893. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  894. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  895. t1 = in1[2*0] - in1[2*6];
  896. tmp1[ 6] = t1 - (t2>>1);
  897. tmp1[16] = t1 + t2;
  898. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  899. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  900. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  901. tmp1[10] = (t3 - t0 - t2) >> 32;
  902. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  903. tmp1[14] = (t3 + t2 - t1) >> 32;
  904. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  905. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  906. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  907. t0 = MUL64(2*in1[2*3], C3);
  908. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  909. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  910. tmp1[12] = (t2 + t1 - t0) >> 32;
  911. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  912. #else
  913. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  914. t3 = in1[2*0] + (in1[2*6]>>1);
  915. t1 = in1[2*0] - in1[2*6];
  916. tmp1[ 6] = t1 - (t2>>1);
  917. tmp1[16] = t1 + t2;
  918. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  919. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  920. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  921. tmp1[10] = t3 - t0 - t2;
  922. tmp1[ 2] = t3 + t0 + t1;
  923. tmp1[14] = t3 + t2 - t1;
  924. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  925. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  926. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  927. t0 = MULH(2*in1[2*3], C3);
  928. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  929. tmp1[ 0] = t2 + t3 + t0;
  930. tmp1[12] = t2 + t1 - t0;
  931. tmp1[ 8] = t3 - t1 - t0;
  932. #endif
  933. }
  934. i = 0;
  935. for(j=0;j<4;j++) {
  936. t0 = tmp[i];
  937. t1 = tmp[i + 2];
  938. s0 = t1 + t0;
  939. s2 = t1 - t0;
  940. t2 = tmp[i + 1];
  941. t3 = tmp[i + 3];
  942. s1 = MULH(2*(t3 + t2), icos36h[j]);
  943. s3 = MULL(t3 - t2, icos36[8 - j]);
  944. t0 = s0 + s1;
  945. t1 = s0 - s1;
  946. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  947. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  948. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  949. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  950. t0 = s2 + s3;
  951. t1 = s2 - s3;
  952. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  953. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  954. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  955. buf[ + j] = MULH(t0, win[18 + j]);
  956. i += 4;
  957. }
  958. s0 = tmp[16];
  959. s1 = MULH(2*tmp[17], icos36h[4]);
  960. t0 = s0 + s1;
  961. t1 = s0 - s1;
  962. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  963. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  964. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  965. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  966. }
  967. /* header decoding. MUST check the header before because no
  968. consistency check is done there. Return 1 if free format found and
  969. that the frame size must be computed externally */
  970. static int decode_header(MPADecodeContext *s, uint32_t header)
  971. {
  972. int sample_rate, frame_size, mpeg25, padding;
  973. int sample_rate_index, bitrate_index;
  974. if (header & (1<<20)) {
  975. s->lsf = (header & (1<<19)) ? 0 : 1;
  976. mpeg25 = 0;
  977. } else {
  978. s->lsf = 1;
  979. mpeg25 = 1;
  980. }
  981. s->layer = 4 - ((header >> 17) & 3);
  982. /* extract frequency */
  983. sample_rate_index = (header >> 10) & 3;
  984. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  985. sample_rate_index += 3 * (s->lsf + mpeg25);
  986. s->sample_rate_index = sample_rate_index;
  987. s->error_protection = ((header >> 16) & 1) ^ 1;
  988. s->sample_rate = sample_rate;
  989. bitrate_index = (header >> 12) & 0xf;
  990. padding = (header >> 9) & 1;
  991. //extension = (header >> 8) & 1;
  992. s->mode = (header >> 6) & 3;
  993. s->mode_ext = (header >> 4) & 3;
  994. //copyright = (header >> 3) & 1;
  995. //original = (header >> 2) & 1;
  996. //emphasis = header & 3;
  997. if (s->mode == MPA_MONO)
  998. s->nb_channels = 1;
  999. else
  1000. s->nb_channels = 2;
  1001. if (bitrate_index != 0) {
  1002. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1003. s->bit_rate = frame_size * 1000;
  1004. switch(s->layer) {
  1005. case 1:
  1006. frame_size = (frame_size * 12000) / sample_rate;
  1007. frame_size = (frame_size + padding) * 4;
  1008. break;
  1009. case 2:
  1010. frame_size = (frame_size * 144000) / sample_rate;
  1011. frame_size += padding;
  1012. break;
  1013. default:
  1014. case 3:
  1015. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1016. frame_size += padding;
  1017. break;
  1018. }
  1019. s->frame_size = frame_size;
  1020. } else {
  1021. /* if no frame size computed, signal it */
  1022. return 1;
  1023. }
  1024. #if defined(DEBUG)
  1025. dprintf("layer%d, %d Hz, %d kbits/s, ",
  1026. s->layer, s->sample_rate, s->bit_rate);
  1027. if (s->nb_channels == 2) {
  1028. if (s->layer == 3) {
  1029. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1030. dprintf("ms-");
  1031. if (s->mode_ext & MODE_EXT_I_STEREO)
  1032. dprintf("i-");
  1033. }
  1034. dprintf("stereo");
  1035. } else {
  1036. dprintf("mono");
  1037. }
  1038. dprintf("\n");
  1039. #endif
  1040. return 0;
  1041. }
  1042. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1043. header, otherwise the coded frame size in bytes */
  1044. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1045. {
  1046. MPADecodeContext s1, *s = &s1;
  1047. if (ff_mpa_check_header(head) != 0)
  1048. return -1;
  1049. if (decode_header(s, head) != 0) {
  1050. return -1;
  1051. }
  1052. switch(s->layer) {
  1053. case 1:
  1054. avctx->frame_size = 384;
  1055. break;
  1056. case 2:
  1057. avctx->frame_size = 1152;
  1058. break;
  1059. default:
  1060. case 3:
  1061. if (s->lsf)
  1062. avctx->frame_size = 576;
  1063. else
  1064. avctx->frame_size = 1152;
  1065. break;
  1066. }
  1067. avctx->sample_rate = s->sample_rate;
  1068. avctx->channels = s->nb_channels;
  1069. avctx->bit_rate = s->bit_rate;
  1070. avctx->sub_id = s->layer;
  1071. return s->frame_size;
  1072. }
  1073. /* return the number of decoded frames */
  1074. static int mp_decode_layer1(MPADecodeContext *s)
  1075. {
  1076. int bound, i, v, n, ch, j, mant;
  1077. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1078. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1079. if (s->mode == MPA_JSTEREO)
  1080. bound = (s->mode_ext + 1) * 4;
  1081. else
  1082. bound = SBLIMIT;
  1083. /* allocation bits */
  1084. for(i=0;i<bound;i++) {
  1085. for(ch=0;ch<s->nb_channels;ch++) {
  1086. allocation[ch][i] = get_bits(&s->gb, 4);
  1087. }
  1088. }
  1089. for(i=bound;i<SBLIMIT;i++) {
  1090. allocation[0][i] = get_bits(&s->gb, 4);
  1091. }
  1092. /* scale factors */
  1093. for(i=0;i<bound;i++) {
  1094. for(ch=0;ch<s->nb_channels;ch++) {
  1095. if (allocation[ch][i])
  1096. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1097. }
  1098. }
  1099. for(i=bound;i<SBLIMIT;i++) {
  1100. if (allocation[0][i]) {
  1101. scale_factors[0][i] = get_bits(&s->gb, 6);
  1102. scale_factors[1][i] = get_bits(&s->gb, 6);
  1103. }
  1104. }
  1105. /* compute samples */
  1106. for(j=0;j<12;j++) {
  1107. for(i=0;i<bound;i++) {
  1108. for(ch=0;ch<s->nb_channels;ch++) {
  1109. n = allocation[ch][i];
  1110. if (n) {
  1111. mant = get_bits(&s->gb, n + 1);
  1112. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1113. } else {
  1114. v = 0;
  1115. }
  1116. s->sb_samples[ch][j][i] = v;
  1117. }
  1118. }
  1119. for(i=bound;i<SBLIMIT;i++) {
  1120. n = allocation[0][i];
  1121. if (n) {
  1122. mant = get_bits(&s->gb, n + 1);
  1123. v = l1_unscale(n, mant, scale_factors[0][i]);
  1124. s->sb_samples[0][j][i] = v;
  1125. v = l1_unscale(n, mant, scale_factors[1][i]);
  1126. s->sb_samples[1][j][i] = v;
  1127. } else {
  1128. s->sb_samples[0][j][i] = 0;
  1129. s->sb_samples[1][j][i] = 0;
  1130. }
  1131. }
  1132. }
  1133. return 12;
  1134. }
  1135. /* bitrate is in kb/s */
  1136. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1137. {
  1138. int ch_bitrate, table;
  1139. ch_bitrate = bitrate / nb_channels;
  1140. if (!lsf) {
  1141. if ((freq == 48000 && ch_bitrate >= 56) ||
  1142. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1143. table = 0;
  1144. else if (freq != 48000 && ch_bitrate >= 96)
  1145. table = 1;
  1146. else if (freq != 32000 && ch_bitrate <= 48)
  1147. table = 2;
  1148. else
  1149. table = 3;
  1150. } else {
  1151. table = 4;
  1152. }
  1153. return table;
  1154. }
  1155. static int mp_decode_layer2(MPADecodeContext *s)
  1156. {
  1157. int sblimit; /* number of used subbands */
  1158. const unsigned char *alloc_table;
  1159. int table, bit_alloc_bits, i, j, ch, bound, v;
  1160. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1161. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1162. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1163. int scale, qindex, bits, steps, k, l, m, b;
  1164. /* select decoding table */
  1165. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1166. s->sample_rate, s->lsf);
  1167. sblimit = sblimit_table[table];
  1168. alloc_table = alloc_tables[table];
  1169. if (s->mode == MPA_JSTEREO)
  1170. bound = (s->mode_ext + 1) * 4;
  1171. else
  1172. bound = sblimit;
  1173. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1174. /* sanity check */
  1175. if( bound > sblimit ) bound = sblimit;
  1176. /* parse bit allocation */
  1177. j = 0;
  1178. for(i=0;i<bound;i++) {
  1179. bit_alloc_bits = alloc_table[j];
  1180. for(ch=0;ch<s->nb_channels;ch++) {
  1181. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1182. }
  1183. j += 1 << bit_alloc_bits;
  1184. }
  1185. for(i=bound;i<sblimit;i++) {
  1186. bit_alloc_bits = alloc_table[j];
  1187. v = get_bits(&s->gb, bit_alloc_bits);
  1188. bit_alloc[0][i] = v;
  1189. bit_alloc[1][i] = v;
  1190. j += 1 << bit_alloc_bits;
  1191. }
  1192. #ifdef DEBUG
  1193. {
  1194. for(ch=0;ch<s->nb_channels;ch++) {
  1195. for(i=0;i<sblimit;i++)
  1196. dprintf(" %d", bit_alloc[ch][i]);
  1197. dprintf("\n");
  1198. }
  1199. }
  1200. #endif
  1201. /* scale codes */
  1202. for(i=0;i<sblimit;i++) {
  1203. for(ch=0;ch<s->nb_channels;ch++) {
  1204. if (bit_alloc[ch][i])
  1205. scale_code[ch][i] = get_bits(&s->gb, 2);
  1206. }
  1207. }
  1208. /* scale factors */
  1209. for(i=0;i<sblimit;i++) {
  1210. for(ch=0;ch<s->nb_channels;ch++) {
  1211. if (bit_alloc[ch][i]) {
  1212. sf = scale_factors[ch][i];
  1213. switch(scale_code[ch][i]) {
  1214. default:
  1215. case 0:
  1216. sf[0] = get_bits(&s->gb, 6);
  1217. sf[1] = get_bits(&s->gb, 6);
  1218. sf[2] = get_bits(&s->gb, 6);
  1219. break;
  1220. case 2:
  1221. sf[0] = get_bits(&s->gb, 6);
  1222. sf[1] = sf[0];
  1223. sf[2] = sf[0];
  1224. break;
  1225. case 1:
  1226. sf[0] = get_bits(&s->gb, 6);
  1227. sf[2] = get_bits(&s->gb, 6);
  1228. sf[1] = sf[0];
  1229. break;
  1230. case 3:
  1231. sf[0] = get_bits(&s->gb, 6);
  1232. sf[2] = get_bits(&s->gb, 6);
  1233. sf[1] = sf[2];
  1234. break;
  1235. }
  1236. }
  1237. }
  1238. }
  1239. #ifdef DEBUG
  1240. for(ch=0;ch<s->nb_channels;ch++) {
  1241. for(i=0;i<sblimit;i++) {
  1242. if (bit_alloc[ch][i]) {
  1243. sf = scale_factors[ch][i];
  1244. dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
  1245. } else {
  1246. dprintf(" -");
  1247. }
  1248. }
  1249. dprintf("\n");
  1250. }
  1251. #endif
  1252. /* samples */
  1253. for(k=0;k<3;k++) {
  1254. for(l=0;l<12;l+=3) {
  1255. j = 0;
  1256. for(i=0;i<bound;i++) {
  1257. bit_alloc_bits = alloc_table[j];
  1258. for(ch=0;ch<s->nb_channels;ch++) {
  1259. b = bit_alloc[ch][i];
  1260. if (b) {
  1261. scale = scale_factors[ch][i][k];
  1262. qindex = alloc_table[j+b];
  1263. bits = quant_bits[qindex];
  1264. if (bits < 0) {
  1265. /* 3 values at the same time */
  1266. v = get_bits(&s->gb, -bits);
  1267. steps = quant_steps[qindex];
  1268. s->sb_samples[ch][k * 12 + l + 0][i] =
  1269. l2_unscale_group(steps, v % steps, scale);
  1270. v = v / steps;
  1271. s->sb_samples[ch][k * 12 + l + 1][i] =
  1272. l2_unscale_group(steps, v % steps, scale);
  1273. v = v / steps;
  1274. s->sb_samples[ch][k * 12 + l + 2][i] =
  1275. l2_unscale_group(steps, v, scale);
  1276. } else {
  1277. for(m=0;m<3;m++) {
  1278. v = get_bits(&s->gb, bits);
  1279. v = l1_unscale(bits - 1, v, scale);
  1280. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1281. }
  1282. }
  1283. } else {
  1284. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1285. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1286. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1287. }
  1288. }
  1289. /* next subband in alloc table */
  1290. j += 1 << bit_alloc_bits;
  1291. }
  1292. /* XXX: find a way to avoid this duplication of code */
  1293. for(i=bound;i<sblimit;i++) {
  1294. bit_alloc_bits = alloc_table[j];
  1295. b = bit_alloc[0][i];
  1296. if (b) {
  1297. int mant, scale0, scale1;
  1298. scale0 = scale_factors[0][i][k];
  1299. scale1 = scale_factors[1][i][k];
  1300. qindex = alloc_table[j+b];
  1301. bits = quant_bits[qindex];
  1302. if (bits < 0) {
  1303. /* 3 values at the same time */
  1304. v = get_bits(&s->gb, -bits);
  1305. steps = quant_steps[qindex];
  1306. mant = v % steps;
  1307. v = v / steps;
  1308. s->sb_samples[0][k * 12 + l + 0][i] =
  1309. l2_unscale_group(steps, mant, scale0);
  1310. s->sb_samples[1][k * 12 + l + 0][i] =
  1311. l2_unscale_group(steps, mant, scale1);
  1312. mant = v % steps;
  1313. v = v / steps;
  1314. s->sb_samples[0][k * 12 + l + 1][i] =
  1315. l2_unscale_group(steps, mant, scale0);
  1316. s->sb_samples[1][k * 12 + l + 1][i] =
  1317. l2_unscale_group(steps, mant, scale1);
  1318. s->sb_samples[0][k * 12 + l + 2][i] =
  1319. l2_unscale_group(steps, v, scale0);
  1320. s->sb_samples[1][k * 12 + l + 2][i] =
  1321. l2_unscale_group(steps, v, scale1);
  1322. } else {
  1323. for(m=0;m<3;m++) {
  1324. mant = get_bits(&s->gb, bits);
  1325. s->sb_samples[0][k * 12 + l + m][i] =
  1326. l1_unscale(bits - 1, mant, scale0);
  1327. s->sb_samples[1][k * 12 + l + m][i] =
  1328. l1_unscale(bits - 1, mant, scale1);
  1329. }
  1330. }
  1331. } else {
  1332. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1333. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1334. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1335. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1336. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1337. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1338. }
  1339. /* next subband in alloc table */
  1340. j += 1 << bit_alloc_bits;
  1341. }
  1342. /* fill remaining samples to zero */
  1343. for(i=sblimit;i<SBLIMIT;i++) {
  1344. for(ch=0;ch<s->nb_channels;ch++) {
  1345. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1346. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1347. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1348. }
  1349. }
  1350. }
  1351. }
  1352. return 3 * 12;
  1353. }
  1354. static inline void lsf_sf_expand(int *slen,
  1355. int sf, int n1, int n2, int n3)
  1356. {
  1357. if (n3) {
  1358. slen[3] = sf % n3;
  1359. sf /= n3;
  1360. } else {
  1361. slen[3] = 0;
  1362. }
  1363. if (n2) {
  1364. slen[2] = sf % n2;
  1365. sf /= n2;
  1366. } else {
  1367. slen[2] = 0;
  1368. }
  1369. slen[1] = sf % n1;
  1370. sf /= n1;
  1371. slen[0] = sf;
  1372. }
  1373. static void exponents_from_scale_factors(MPADecodeContext *s,
  1374. GranuleDef *g,
  1375. int16_t *exponents)
  1376. {
  1377. const uint8_t *bstab, *pretab;
  1378. int len, i, j, k, l, v0, shift, gain, gains[3];
  1379. int16_t *exp_ptr;
  1380. exp_ptr = exponents;
  1381. gain = g->global_gain - 210;
  1382. shift = g->scalefac_scale + 1;
  1383. bstab = band_size_long[s->sample_rate_index];
  1384. pretab = mpa_pretab[g->preflag];
  1385. for(i=0;i<g->long_end;i++) {
  1386. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1387. len = bstab[i];
  1388. for(j=len;j>0;j--)
  1389. *exp_ptr++ = v0;
  1390. }
  1391. if (g->short_start < 13) {
  1392. bstab = band_size_short[s->sample_rate_index];
  1393. gains[0] = gain - (g->subblock_gain[0] << 3);
  1394. gains[1] = gain - (g->subblock_gain[1] << 3);
  1395. gains[2] = gain - (g->subblock_gain[2] << 3);
  1396. k = g->long_end;
  1397. for(i=g->short_start;i<13;i++) {
  1398. len = bstab[i];
  1399. for(l=0;l<3;l++) {
  1400. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1401. for(j=len;j>0;j--)
  1402. *exp_ptr++ = v0;
  1403. }
  1404. }
  1405. }
  1406. }
  1407. /* handle n = 0 too */
  1408. static inline int get_bitsz(GetBitContext *s, int n)
  1409. {
  1410. if (n == 0)
  1411. return 0;
  1412. else
  1413. return get_bits(s, n);
  1414. }
  1415. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1416. int16_t *exponents, int end_pos2)
  1417. {
  1418. int s_index;
  1419. int i;
  1420. int last_pos, bits_left;
  1421. VLC *vlc;
  1422. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1423. /* low frequencies (called big values) */
  1424. s_index = 0;
  1425. for(i=0;i<3;i++) {
  1426. int j, k, l, linbits;
  1427. j = g->region_size[i];
  1428. if (j == 0)
  1429. continue;
  1430. /* select vlc table */
  1431. k = g->table_select[i];
  1432. l = mpa_huff_data[k][0];
  1433. linbits = mpa_huff_data[k][1];
  1434. vlc = &huff_vlc[l];
  1435. if(!l){
  1436. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1437. s_index += 2*j;
  1438. continue;
  1439. }
  1440. /* read huffcode and compute each couple */
  1441. for(;j>0;j--) {
  1442. int exponent, x, y, v;
  1443. int pos= get_bits_count(&s->gb);
  1444. if (pos >= end_pos){
  1445. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1446. if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
  1447. s->gb= s->in_gb;
  1448. s->in_gb.buffer=NULL;
  1449. assert((get_bits_count(&s->gb) & 7) == 0);
  1450. skip_bits_long(&s->gb, pos - end_pos);
  1451. end_pos2=
  1452. end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
  1453. pos= get_bits_count(&s->gb);
  1454. }
  1455. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1456. if(pos >= end_pos)
  1457. break;
  1458. }
  1459. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1460. if(!y){
  1461. g->sb_hybrid[s_index ] =
  1462. g->sb_hybrid[s_index+1] = 0;
  1463. s_index += 2;
  1464. continue;
  1465. }
  1466. exponent= exponents[s_index];
  1467. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1468. i, g->region_size[i] - j, x, y, exponent);
  1469. if(y&16){
  1470. x = y >> 5;
  1471. y = y & 0x0f;
  1472. if (x < 15){
  1473. v = expval_table[ exponent ][ x ];
  1474. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1475. }else{
  1476. x += get_bitsz(&s->gb, linbits);
  1477. v = l3_unscale(x, exponent);
  1478. }
  1479. if (get_bits1(&s->gb))
  1480. v = -v;
  1481. g->sb_hybrid[s_index] = v;
  1482. if (y < 15){
  1483. v = expval_table[ exponent ][ y ];
  1484. }else{
  1485. y += get_bitsz(&s->gb, linbits);
  1486. v = l3_unscale(y, exponent);
  1487. }
  1488. if (get_bits1(&s->gb))
  1489. v = -v;
  1490. g->sb_hybrid[s_index+1] = v;
  1491. }else{
  1492. x = y >> 5;
  1493. y = y & 0x0f;
  1494. x += y;
  1495. if (x < 15){
  1496. v = expval_table[ exponent ][ x ];
  1497. }else{
  1498. x += get_bitsz(&s->gb, linbits);
  1499. v = l3_unscale(x, exponent);
  1500. }
  1501. if (get_bits1(&s->gb))
  1502. v = -v;
  1503. g->sb_hybrid[s_index+!!y] = v;
  1504. g->sb_hybrid[s_index+ !y] = 0;
  1505. }
  1506. s_index+=2;
  1507. }
  1508. }
  1509. /* high frequencies */
  1510. vlc = &huff_quad_vlc[g->count1table_select];
  1511. last_pos=0;
  1512. while (s_index <= 572) {
  1513. int pos, code;
  1514. pos = get_bits_count(&s->gb);
  1515. if (pos >= end_pos) {
  1516. if (pos > end_pos2 && last_pos){
  1517. /* some encoders generate an incorrect size for this
  1518. part. We must go back into the data */
  1519. s_index -= 4;
  1520. skip_bits_long(&s->gb, last_pos - pos);
  1521. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1522. break;
  1523. }
  1524. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1525. if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
  1526. s->gb= s->in_gb;
  1527. s->in_gb.buffer=NULL;
  1528. assert((get_bits_count(&s->gb) & 7) == 0);
  1529. skip_bits_long(&s->gb, pos - end_pos);
  1530. end_pos2=
  1531. end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
  1532. pos= get_bits_count(&s->gb);
  1533. }
  1534. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1535. if(pos >= end_pos)
  1536. break;
  1537. }
  1538. last_pos= pos;
  1539. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1540. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1541. g->sb_hybrid[s_index+0]=
  1542. g->sb_hybrid[s_index+1]=
  1543. g->sb_hybrid[s_index+2]=
  1544. g->sb_hybrid[s_index+3]= 0;
  1545. while(code){
  1546. const static int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1547. int v;
  1548. int pos= s_index+idxtab[code];
  1549. code ^= 8>>idxtab[code];
  1550. v = exp_table[ exponents[pos] ];
  1551. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1552. if(get_bits1(&s->gb))
  1553. v = -v;
  1554. g->sb_hybrid[pos] = v;
  1555. }
  1556. s_index+=4;
  1557. }
  1558. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1559. /* skip extension bits */
  1560. bits_left = end_pos - get_bits_count(&s->gb);
  1561. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1562. if (bits_left < 0) {
  1563. dprintf("bits_left=%d\n", bits_left);
  1564. return -1;
  1565. }
  1566. skip_bits_long(&s->gb, bits_left);
  1567. return 0;
  1568. }
  1569. /* Reorder short blocks from bitstream order to interleaved order. It
  1570. would be faster to do it in parsing, but the code would be far more
  1571. complicated */
  1572. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1573. {
  1574. int i, j, len;
  1575. int32_t *ptr, *dst, *ptr1;
  1576. int32_t tmp[576];
  1577. if (g->block_type != 2)
  1578. return;
  1579. if (g->switch_point) {
  1580. if (s->sample_rate_index != 8) {
  1581. ptr = g->sb_hybrid + 36;
  1582. } else {
  1583. ptr = g->sb_hybrid + 48;
  1584. }
  1585. } else {
  1586. ptr = g->sb_hybrid;
  1587. }
  1588. for(i=g->short_start;i<13;i++) {
  1589. len = band_size_short[s->sample_rate_index][i];
  1590. ptr1 = ptr;
  1591. dst = tmp;
  1592. for(j=len;j>0;j--) {
  1593. *dst++ = ptr[0*len];
  1594. *dst++ = ptr[1*len];
  1595. *dst++ = ptr[2*len];
  1596. ptr++;
  1597. }
  1598. ptr+=2*len;
  1599. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1600. }
  1601. }
  1602. #define ISQRT2 FIXR(0.70710678118654752440)
  1603. static void compute_stereo(MPADecodeContext *s,
  1604. GranuleDef *g0, GranuleDef *g1)
  1605. {
  1606. int i, j, k, l;
  1607. int32_t v1, v2;
  1608. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1609. int32_t (*is_tab)[16];
  1610. int32_t *tab0, *tab1;
  1611. int non_zero_found_short[3];
  1612. /* intensity stereo */
  1613. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1614. if (!s->lsf) {
  1615. is_tab = is_table;
  1616. sf_max = 7;
  1617. } else {
  1618. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1619. sf_max = 16;
  1620. }
  1621. tab0 = g0->sb_hybrid + 576;
  1622. tab1 = g1->sb_hybrid + 576;
  1623. non_zero_found_short[0] = 0;
  1624. non_zero_found_short[1] = 0;
  1625. non_zero_found_short[2] = 0;
  1626. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1627. for(i = 12;i >= g1->short_start;i--) {
  1628. /* for last band, use previous scale factor */
  1629. if (i != 11)
  1630. k -= 3;
  1631. len = band_size_short[s->sample_rate_index][i];
  1632. for(l=2;l>=0;l--) {
  1633. tab0 -= len;
  1634. tab1 -= len;
  1635. if (!non_zero_found_short[l]) {
  1636. /* test if non zero band. if so, stop doing i-stereo */
  1637. for(j=0;j<len;j++) {
  1638. if (tab1[j] != 0) {
  1639. non_zero_found_short[l] = 1;
  1640. goto found1;
  1641. }
  1642. }
  1643. sf = g1->scale_factors[k + l];
  1644. if (sf >= sf_max)
  1645. goto found1;
  1646. v1 = is_tab[0][sf];
  1647. v2 = is_tab[1][sf];
  1648. for(j=0;j<len;j++) {
  1649. tmp0 = tab0[j];
  1650. tab0[j] = MULL(tmp0, v1);
  1651. tab1[j] = MULL(tmp0, v2);
  1652. }
  1653. } else {
  1654. found1:
  1655. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1656. /* lower part of the spectrum : do ms stereo
  1657. if enabled */
  1658. for(j=0;j<len;j++) {
  1659. tmp0 = tab0[j];
  1660. tmp1 = tab1[j];
  1661. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1662. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1663. }
  1664. }
  1665. }
  1666. }
  1667. }
  1668. non_zero_found = non_zero_found_short[0] |
  1669. non_zero_found_short[1] |
  1670. non_zero_found_short[2];
  1671. for(i = g1->long_end - 1;i >= 0;i--) {
  1672. len = band_size_long[s->sample_rate_index][i];
  1673. tab0 -= len;
  1674. tab1 -= len;
  1675. /* test if non zero band. if so, stop doing i-stereo */
  1676. if (!non_zero_found) {
  1677. for(j=0;j<len;j++) {
  1678. if (tab1[j] != 0) {
  1679. non_zero_found = 1;
  1680. goto found2;
  1681. }
  1682. }
  1683. /* for last band, use previous scale factor */
  1684. k = (i == 21) ? 20 : i;
  1685. sf = g1->scale_factors[k];
  1686. if (sf >= sf_max)
  1687. goto found2;
  1688. v1 = is_tab[0][sf];
  1689. v2 = is_tab[1][sf];
  1690. for(j=0;j<len;j++) {
  1691. tmp0 = tab0[j];
  1692. tab0[j] = MULL(tmp0, v1);
  1693. tab1[j] = MULL(tmp0, v2);
  1694. }
  1695. } else {
  1696. found2:
  1697. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1698. /* lower part of the spectrum : do ms stereo
  1699. if enabled */
  1700. for(j=0;j<len;j++) {
  1701. tmp0 = tab0[j];
  1702. tmp1 = tab1[j];
  1703. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1704. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1705. }
  1706. }
  1707. }
  1708. }
  1709. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1710. /* ms stereo ONLY */
  1711. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1712. global gain */
  1713. tab0 = g0->sb_hybrid;
  1714. tab1 = g1->sb_hybrid;
  1715. for(i=0;i<576;i++) {
  1716. tmp0 = tab0[i];
  1717. tmp1 = tab1[i];
  1718. tab0[i] = tmp0 + tmp1;
  1719. tab1[i] = tmp0 - tmp1;
  1720. }
  1721. }
  1722. }
  1723. static void compute_antialias_integer(MPADecodeContext *s,
  1724. GranuleDef *g)
  1725. {
  1726. int32_t *ptr, *csa;
  1727. int n, i;
  1728. /* we antialias only "long" bands */
  1729. if (g->block_type == 2) {
  1730. if (!g->switch_point)
  1731. return;
  1732. /* XXX: check this for 8000Hz case */
  1733. n = 1;
  1734. } else {
  1735. n = SBLIMIT - 1;
  1736. }
  1737. ptr = g->sb_hybrid + 18;
  1738. for(i = n;i > 0;i--) {
  1739. int tmp0, tmp1, tmp2;
  1740. csa = &csa_table[0][0];
  1741. #define INT_AA(j) \
  1742. tmp0 = ptr[-1-j];\
  1743. tmp1 = ptr[ j];\
  1744. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1745. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1746. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1747. INT_AA(0)
  1748. INT_AA(1)
  1749. INT_AA(2)
  1750. INT_AA(3)
  1751. INT_AA(4)
  1752. INT_AA(5)
  1753. INT_AA(6)
  1754. INT_AA(7)
  1755. ptr += 18;
  1756. }
  1757. }
  1758. static void compute_antialias_float(MPADecodeContext *s,
  1759. GranuleDef *g)
  1760. {
  1761. int32_t *ptr;
  1762. int n, i;
  1763. /* we antialias only "long" bands */
  1764. if (g->block_type == 2) {
  1765. if (!g->switch_point)
  1766. return;
  1767. /* XXX: check this for 8000Hz case */
  1768. n = 1;
  1769. } else {
  1770. n = SBLIMIT - 1;
  1771. }
  1772. ptr = g->sb_hybrid + 18;
  1773. for(i = n;i > 0;i--) {
  1774. float tmp0, tmp1;
  1775. float *csa = &csa_table_float[0][0];
  1776. #define FLOAT_AA(j)\
  1777. tmp0= ptr[-1-j];\
  1778. tmp1= ptr[ j];\
  1779. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1780. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1781. FLOAT_AA(0)
  1782. FLOAT_AA(1)
  1783. FLOAT_AA(2)
  1784. FLOAT_AA(3)
  1785. FLOAT_AA(4)
  1786. FLOAT_AA(5)
  1787. FLOAT_AA(6)
  1788. FLOAT_AA(7)
  1789. ptr += 18;
  1790. }
  1791. }
  1792. static void compute_imdct(MPADecodeContext *s,
  1793. GranuleDef *g,
  1794. int32_t *sb_samples,
  1795. int32_t *mdct_buf)
  1796. {
  1797. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1798. int32_t out2[12];
  1799. int i, j, mdct_long_end, v, sblimit;
  1800. /* find last non zero block */
  1801. ptr = g->sb_hybrid + 576;
  1802. ptr1 = g->sb_hybrid + 2 * 18;
  1803. while (ptr >= ptr1) {
  1804. ptr -= 6;
  1805. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1806. if (v != 0)
  1807. break;
  1808. }
  1809. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1810. if (g->block_type == 2) {
  1811. /* XXX: check for 8000 Hz */
  1812. if (g->switch_point)
  1813. mdct_long_end = 2;
  1814. else
  1815. mdct_long_end = 0;
  1816. } else {
  1817. mdct_long_end = sblimit;
  1818. }
  1819. buf = mdct_buf;
  1820. ptr = g->sb_hybrid;
  1821. for(j=0;j<mdct_long_end;j++) {
  1822. /* apply window & overlap with previous buffer */
  1823. out_ptr = sb_samples + j;
  1824. /* select window */
  1825. if (g->switch_point && j < 2)
  1826. win1 = mdct_win[0];
  1827. else
  1828. win1 = mdct_win[g->block_type];
  1829. /* select frequency inversion */
  1830. win = win1 + ((4 * 36) & -(j & 1));
  1831. imdct36(out_ptr, buf, ptr, win);
  1832. out_ptr += 18*SBLIMIT;
  1833. ptr += 18;
  1834. buf += 18;
  1835. }
  1836. for(j=mdct_long_end;j<sblimit;j++) {
  1837. /* select frequency inversion */
  1838. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1839. out_ptr = sb_samples + j;
  1840. for(i=0; i<6; i++){
  1841. *out_ptr = buf[i];
  1842. out_ptr += SBLIMIT;
  1843. }
  1844. imdct12(out2, ptr + 0);
  1845. for(i=0;i<6;i++) {
  1846. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1847. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1848. out_ptr += SBLIMIT;
  1849. }
  1850. imdct12(out2, ptr + 1);
  1851. for(i=0;i<6;i++) {
  1852. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1853. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1854. out_ptr += SBLIMIT;
  1855. }
  1856. imdct12(out2, ptr + 2);
  1857. for(i=0;i<6;i++) {
  1858. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1859. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1860. buf[i + 6*2] = 0;
  1861. }
  1862. ptr += 18;
  1863. buf += 18;
  1864. }
  1865. /* zero bands */
  1866. for(j=sblimit;j<SBLIMIT;j++) {
  1867. /* overlap */
  1868. out_ptr = sb_samples + j;
  1869. for(i=0;i<18;i++) {
  1870. *out_ptr = buf[i];
  1871. buf[i] = 0;
  1872. out_ptr += SBLIMIT;
  1873. }
  1874. buf += 18;
  1875. }
  1876. }
  1877. #if defined(DEBUG)
  1878. void sample_dump(int fnum, int32_t *tab, int n)
  1879. {
  1880. static FILE *files[16], *f;
  1881. char buf[512];
  1882. int i;
  1883. int32_t v;
  1884. f = files[fnum];
  1885. if (!f) {
  1886. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1887. fnum,
  1888. #ifdef USE_HIGHPRECISION
  1889. "hp"
  1890. #else
  1891. "lp"
  1892. #endif
  1893. );
  1894. f = fopen(buf, "w");
  1895. if (!f)
  1896. return;
  1897. files[fnum] = f;
  1898. }
  1899. if (fnum == 0) {
  1900. static int pos = 0;
  1901. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1902. for(i=0;i<n;i++) {
  1903. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1904. if ((i % 18) == 17)
  1905. av_log(NULL, AV_LOG_DEBUG, "\n");
  1906. }
  1907. pos += n;
  1908. }
  1909. for(i=0;i<n;i++) {
  1910. /* normalize to 23 frac bits */
  1911. v = tab[i] << (23 - FRAC_BITS);
  1912. fwrite(&v, 1, sizeof(int32_t), f);
  1913. }
  1914. }
  1915. #endif
  1916. /* main layer3 decoding function */
  1917. static int mp_decode_layer3(MPADecodeContext *s)
  1918. {
  1919. int nb_granules, main_data_begin, private_bits;
  1920. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1921. GranuleDef granules[2][2], *g;
  1922. int16_t exponents[576];
  1923. /* read side info */
  1924. if (s->lsf) {
  1925. main_data_begin = get_bits(&s->gb, 8);
  1926. private_bits = get_bits(&s->gb, s->nb_channels);
  1927. nb_granules = 1;
  1928. } else {
  1929. main_data_begin = get_bits(&s->gb, 9);
  1930. if (s->nb_channels == 2)
  1931. private_bits = get_bits(&s->gb, 3);
  1932. else
  1933. private_bits = get_bits(&s->gb, 5);
  1934. nb_granules = 2;
  1935. for(ch=0;ch<s->nb_channels;ch++) {
  1936. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1937. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1938. }
  1939. }
  1940. for(gr=0;gr<nb_granules;gr++) {
  1941. for(ch=0;ch<s->nb_channels;ch++) {
  1942. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1943. g = &granules[ch][gr];
  1944. g->part2_3_length = get_bits(&s->gb, 12);
  1945. g->big_values = get_bits(&s->gb, 9);
  1946. g->global_gain = get_bits(&s->gb, 8);
  1947. /* if MS stereo only is selected, we precompute the
  1948. 1/sqrt(2) renormalization factor */
  1949. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1950. MODE_EXT_MS_STEREO)
  1951. g->global_gain -= 2;
  1952. if (s->lsf)
  1953. g->scalefac_compress = get_bits(&s->gb, 9);
  1954. else
  1955. g->scalefac_compress = get_bits(&s->gb, 4);
  1956. blocksplit_flag = get_bits(&s->gb, 1);
  1957. if (blocksplit_flag) {
  1958. g->block_type = get_bits(&s->gb, 2);
  1959. if (g->block_type == 0)
  1960. return -1;
  1961. g->switch_point = get_bits(&s->gb, 1);
  1962. for(i=0;i<2;i++)
  1963. g->table_select[i] = get_bits(&s->gb, 5);
  1964. for(i=0;i<3;i++)
  1965. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1966. /* compute huffman coded region sizes */
  1967. if (g->block_type == 2)
  1968. g->region_size[0] = (36 / 2);
  1969. else {
  1970. if (s->sample_rate_index <= 2)
  1971. g->region_size[0] = (36 / 2);
  1972. else if (s->sample_rate_index != 8)
  1973. g->region_size[0] = (54 / 2);
  1974. else
  1975. g->region_size[0] = (108 / 2);
  1976. }
  1977. g->region_size[1] = (576 / 2);
  1978. } else {
  1979. int region_address1, region_address2, l;
  1980. g->block_type = 0;
  1981. g->switch_point = 0;
  1982. for(i=0;i<3;i++)
  1983. g->table_select[i] = get_bits(&s->gb, 5);
  1984. /* compute huffman coded region sizes */
  1985. region_address1 = get_bits(&s->gb, 4);
  1986. region_address2 = get_bits(&s->gb, 3);
  1987. dprintf("region1=%d region2=%d\n",
  1988. region_address1, region_address2);
  1989. g->region_size[0] =
  1990. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1991. l = region_address1 + region_address2 + 2;
  1992. /* should not overflow */
  1993. if (l > 22)
  1994. l = 22;
  1995. g->region_size[1] =
  1996. band_index_long[s->sample_rate_index][l] >> 1;
  1997. }
  1998. /* convert region offsets to region sizes and truncate
  1999. size to big_values */
  2000. g->region_size[2] = (576 / 2);
  2001. j = 0;
  2002. for(i=0;i<3;i++) {
  2003. k = FFMIN(g->region_size[i], g->big_values);
  2004. g->region_size[i] = k - j;
  2005. j = k;
  2006. }
  2007. /* compute band indexes */
  2008. if (g->block_type == 2) {
  2009. if (g->switch_point) {
  2010. /* if switched mode, we handle the 36 first samples as
  2011. long blocks. For 8000Hz, we handle the 48 first
  2012. exponents as long blocks (XXX: check this!) */
  2013. if (s->sample_rate_index <= 2)
  2014. g->long_end = 8;
  2015. else if (s->sample_rate_index != 8)
  2016. g->long_end = 6;
  2017. else
  2018. g->long_end = 4; /* 8000 Hz */
  2019. g->short_start = 2 + (s->sample_rate_index != 8);
  2020. } else {
  2021. g->long_end = 0;
  2022. g->short_start = 0;
  2023. }
  2024. } else {
  2025. g->short_start = 13;
  2026. g->long_end = 22;
  2027. }
  2028. g->preflag = 0;
  2029. if (!s->lsf)
  2030. g->preflag = get_bits(&s->gb, 1);
  2031. g->scalefac_scale = get_bits(&s->gb, 1);
  2032. g->count1table_select = get_bits(&s->gb, 1);
  2033. dprintf("block_type=%d switch_point=%d\n",
  2034. g->block_type, g->switch_point);
  2035. }
  2036. }
  2037. if (!s->adu_mode) {
  2038. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  2039. assert((get_bits_count(&s->gb) & 7) == 0);
  2040. /* now we get bits from the main_data_begin offset */
  2041. dprintf("seekback: %d\n", main_data_begin);
  2042. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2043. if(main_data_begin > s->last_buf_size){
  2044. av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2045. s->last_buf_size= main_data_begin;
  2046. }
  2047. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  2048. s->in_gb= s->gb;
  2049. init_get_bits(&s->gb, s->last_buf + s->last_buf_size - main_data_begin, main_data_begin*8);
  2050. }
  2051. for(gr=0;gr<nb_granules;gr++) {
  2052. for(ch=0;ch<s->nb_channels;ch++) {
  2053. g = &granules[ch][gr];
  2054. bits_pos = get_bits_count(&s->gb);
  2055. if (!s->lsf) {
  2056. uint8_t *sc;
  2057. int slen, slen1, slen2;
  2058. /* MPEG1 scale factors */
  2059. slen1 = slen_table[0][g->scalefac_compress];
  2060. slen2 = slen_table[1][g->scalefac_compress];
  2061. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2062. if (g->block_type == 2) {
  2063. n = g->switch_point ? 17 : 18;
  2064. j = 0;
  2065. if(slen1){
  2066. for(i=0;i<n;i++)
  2067. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  2068. }else{
  2069. for(i=0;i<n;i++)
  2070. g->scale_factors[j++] = 0;
  2071. }
  2072. if(slen2){
  2073. for(i=0;i<18;i++)
  2074. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  2075. for(i=0;i<3;i++)
  2076. g->scale_factors[j++] = 0;
  2077. }else{
  2078. for(i=0;i<21;i++)
  2079. g->scale_factors[j++] = 0;
  2080. }
  2081. } else {
  2082. sc = granules[ch][0].scale_factors;
  2083. j = 0;
  2084. for(k=0;k<4;k++) {
  2085. n = (k == 0 ? 6 : 5);
  2086. if ((g->scfsi & (0x8 >> k)) == 0) {
  2087. slen = (k < 2) ? slen1 : slen2;
  2088. if(slen){
  2089. for(i=0;i<n;i++)
  2090. g->scale_factors[j++] = get_bits(&s->gb, slen);
  2091. }else{
  2092. for(i=0;i<n;i++)
  2093. g->scale_factors[j++] = 0;
  2094. }
  2095. } else {
  2096. /* simply copy from last granule */
  2097. for(i=0;i<n;i++) {
  2098. g->scale_factors[j] = sc[j];
  2099. j++;
  2100. }
  2101. }
  2102. }
  2103. g->scale_factors[j++] = 0;
  2104. }
  2105. #if defined(DEBUG)
  2106. {
  2107. dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2108. g->scfsi, gr, ch);
  2109. for(i=0;i<j;i++)
  2110. dprintf(" %d", g->scale_factors[i]);
  2111. dprintf("\n");
  2112. }
  2113. #endif
  2114. } else {
  2115. int tindex, tindex2, slen[4], sl, sf;
  2116. /* LSF scale factors */
  2117. if (g->block_type == 2) {
  2118. tindex = g->switch_point ? 2 : 1;
  2119. } else {
  2120. tindex = 0;
  2121. }
  2122. sf = g->scalefac_compress;
  2123. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2124. /* intensity stereo case */
  2125. sf >>= 1;
  2126. if (sf < 180) {
  2127. lsf_sf_expand(slen, sf, 6, 6, 0);
  2128. tindex2 = 3;
  2129. } else if (sf < 244) {
  2130. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2131. tindex2 = 4;
  2132. } else {
  2133. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2134. tindex2 = 5;
  2135. }
  2136. } else {
  2137. /* normal case */
  2138. if (sf < 400) {
  2139. lsf_sf_expand(slen, sf, 5, 4, 4);
  2140. tindex2 = 0;
  2141. } else if (sf < 500) {
  2142. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2143. tindex2 = 1;
  2144. } else {
  2145. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2146. tindex2 = 2;
  2147. g->preflag = 1;
  2148. }
  2149. }
  2150. j = 0;
  2151. for(k=0;k<4;k++) {
  2152. n = lsf_nsf_table[tindex2][tindex][k];
  2153. sl = slen[k];
  2154. if(sl){
  2155. for(i=0;i<n;i++)
  2156. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2157. }else{
  2158. for(i=0;i<n;i++)
  2159. g->scale_factors[j++] = 0;
  2160. }
  2161. }
  2162. /* XXX: should compute exact size */
  2163. for(;j<40;j++)
  2164. g->scale_factors[j] = 0;
  2165. #if defined(DEBUG)
  2166. {
  2167. dprintf("gr=%d ch=%d scale_factors:\n",
  2168. gr, ch);
  2169. for(i=0;i<40;i++)
  2170. dprintf(" %d", g->scale_factors[i]);
  2171. dprintf("\n");
  2172. }
  2173. #endif
  2174. }
  2175. exponents_from_scale_factors(s, g, exponents);
  2176. /* read Huffman coded residue */
  2177. if (huffman_decode(s, g, exponents,
  2178. bits_pos + g->part2_3_length) < 0)
  2179. return -1;
  2180. #if defined(DEBUG)
  2181. sample_dump(0, g->sb_hybrid, 576);
  2182. #endif
  2183. } /* ch */
  2184. if (s->nb_channels == 2)
  2185. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2186. for(ch=0;ch<s->nb_channels;ch++) {
  2187. g = &granules[ch][gr];
  2188. reorder_block(s, g);
  2189. #if defined(DEBUG)
  2190. sample_dump(0, g->sb_hybrid, 576);
  2191. #endif
  2192. s->compute_antialias(s, g);
  2193. #if defined(DEBUG)
  2194. sample_dump(1, g->sb_hybrid, 576);
  2195. #endif
  2196. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2197. #if defined(DEBUG)
  2198. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2199. #endif
  2200. }
  2201. } /* gr */
  2202. return nb_granules * 18;
  2203. }
  2204. static int mp_decode_frame(MPADecodeContext *s,
  2205. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2206. {
  2207. int i, nb_frames, ch;
  2208. OUT_INT *samples_ptr;
  2209. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2210. /* skip error protection field */
  2211. if (s->error_protection)
  2212. get_bits(&s->gb, 16);
  2213. dprintf("frame %d:\n", s->frame_count);
  2214. switch(s->layer) {
  2215. case 1:
  2216. nb_frames = mp_decode_layer1(s);
  2217. break;
  2218. case 2:
  2219. nb_frames = mp_decode_layer2(s);
  2220. break;
  2221. case 3:
  2222. default:
  2223. nb_frames = mp_decode_layer3(s);
  2224. s->last_buf_size=0;
  2225. if(s->in_gb.buffer){
  2226. align_get_bits(&s->gb);
  2227. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2228. if(i >= 0 && i <= BACKSTEP_SIZE){
  2229. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2230. s->last_buf_size=i;
  2231. }else
  2232. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2233. s->gb= s->in_gb;
  2234. }
  2235. align_get_bits(&s->gb);
  2236. assert((get_bits_count(&s->gb) & 7) == 0);
  2237. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2238. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2239. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2240. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2241. }
  2242. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2243. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2244. s->last_buf_size += i;
  2245. break;
  2246. }
  2247. #if defined(DEBUG)
  2248. for(i=0;i<nb_frames;i++) {
  2249. for(ch=0;ch<s->nb_channels;ch++) {
  2250. int j;
  2251. dprintf("%d-%d:", i, ch);
  2252. for(j=0;j<SBLIMIT;j++)
  2253. dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2254. dprintf("\n");
  2255. }
  2256. }
  2257. #endif
  2258. /* apply the synthesis filter */
  2259. for(ch=0;ch<s->nb_channels;ch++) {
  2260. samples_ptr = samples + ch;
  2261. for(i=0;i<nb_frames;i++) {
  2262. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2263. window, &s->dither_state,
  2264. samples_ptr, s->nb_channels,
  2265. s->sb_samples[ch][i]);
  2266. samples_ptr += 32 * s->nb_channels;
  2267. }
  2268. }
  2269. #ifdef DEBUG
  2270. s->frame_count++;
  2271. #endif
  2272. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2273. }
  2274. static int decode_frame(AVCodecContext * avctx,
  2275. void *data, int *data_size,
  2276. uint8_t * buf, int buf_size)
  2277. {
  2278. MPADecodeContext *s = avctx->priv_data;
  2279. uint32_t header;
  2280. int out_size;
  2281. OUT_INT *out_samples = data;
  2282. retry:
  2283. if(buf_size < HEADER_SIZE)
  2284. return -1;
  2285. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
  2286. if(ff_mpa_check_header(header) < 0){
  2287. buf++;
  2288. // buf_size--;
  2289. av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
  2290. goto retry;
  2291. }
  2292. if (decode_header(s, header) == 1) {
  2293. /* free format: prepare to compute frame size */
  2294. s->frame_size = -1;
  2295. return -1;
  2296. }
  2297. /* update codec info */
  2298. avctx->sample_rate = s->sample_rate;
  2299. avctx->channels = s->nb_channels;
  2300. avctx->bit_rate = s->bit_rate;
  2301. avctx->sub_id = s->layer;
  2302. switch(s->layer) {
  2303. case 1:
  2304. avctx->frame_size = 384;
  2305. break;
  2306. case 2:
  2307. avctx->frame_size = 1152;
  2308. break;
  2309. case 3:
  2310. if (s->lsf)
  2311. avctx->frame_size = 576;
  2312. else
  2313. avctx->frame_size = 1152;
  2314. break;
  2315. }
  2316. if(s->frame_size<=0 || s->frame_size > buf_size){
  2317. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2318. return -1;
  2319. }else if(s->frame_size < buf_size){
  2320. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2321. }
  2322. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2323. if(out_size>=0)
  2324. *data_size = out_size;
  2325. else
  2326. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2327. s->frame_size = 0;
  2328. return buf_size;
  2329. }
  2330. #ifdef CONFIG_MP3ADU_DECODER
  2331. static int decode_frame_adu(AVCodecContext * avctx,
  2332. void *data, int *data_size,
  2333. uint8_t * buf, int buf_size)
  2334. {
  2335. MPADecodeContext *s = avctx->priv_data;
  2336. uint32_t header;
  2337. int len, out_size;
  2338. OUT_INT *out_samples = data;
  2339. len = buf_size;
  2340. // Discard too short frames
  2341. if (buf_size < HEADER_SIZE) {
  2342. *data_size = 0;
  2343. return buf_size;
  2344. }
  2345. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2346. len = MPA_MAX_CODED_FRAME_SIZE;
  2347. // Get header and restore sync word
  2348. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3] | 0xffe00000;
  2349. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2350. *data_size = 0;
  2351. return buf_size;
  2352. }
  2353. decode_header(s, header);
  2354. /* update codec info */
  2355. avctx->sample_rate = s->sample_rate;
  2356. avctx->channels = s->nb_channels;
  2357. avctx->bit_rate = s->bit_rate;
  2358. avctx->sub_id = s->layer;
  2359. avctx->frame_size=s->frame_size = len;
  2360. if (avctx->parse_only) {
  2361. out_size = buf_size;
  2362. } else {
  2363. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2364. }
  2365. *data_size = out_size;
  2366. return buf_size;
  2367. }
  2368. #endif /* CONFIG_MP3ADU_DECODER */
  2369. #ifdef CONFIG_MP3ON4_DECODER
  2370. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2371. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2372. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2373. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2374. static int chan_offset[9][5] = {
  2375. {0},
  2376. {0}, // C
  2377. {0}, // FLR
  2378. {2,0}, // C FLR
  2379. {2,0,3}, // C FLR BS
  2380. {4,0,2}, // C FLR BLRS
  2381. {4,0,2,5}, // C FLR BLRS LFE
  2382. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2383. {0,2} // FLR BLRS
  2384. };
  2385. static int decode_init_mp3on4(AVCodecContext * avctx)
  2386. {
  2387. MP3On4DecodeContext *s = avctx->priv_data;
  2388. int i;
  2389. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2390. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2391. return -1;
  2392. }
  2393. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2394. s->frames = mp3Frames[s->chan_cfg];
  2395. if(!s->frames) {
  2396. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2397. return -1;
  2398. }
  2399. avctx->channels = mp3Channels[s->chan_cfg];
  2400. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2401. * We replace avctx->priv_data with the context of the first decoder so that
  2402. * decode_init() does not have to be changed.
  2403. * Other decoders will be inited here copying data from the first context
  2404. */
  2405. // Allocate zeroed memory for the first decoder context
  2406. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2407. // Put decoder context in place to make init_decode() happy
  2408. avctx->priv_data = s->mp3decctx[0];
  2409. decode_init(avctx);
  2410. // Restore mp3on4 context pointer
  2411. avctx->priv_data = s;
  2412. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2413. /* Create a separate codec/context for each frame (first is already ok).
  2414. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2415. */
  2416. for (i = 1; i < s->frames; i++) {
  2417. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2418. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2419. s->mp3decctx[i]->adu_mode = 1;
  2420. }
  2421. return 0;
  2422. }
  2423. static int decode_close_mp3on4(AVCodecContext * avctx)
  2424. {
  2425. MP3On4DecodeContext *s = avctx->priv_data;
  2426. int i;
  2427. for (i = 0; i < s->frames; i++)
  2428. if (s->mp3decctx[i])
  2429. av_free(s->mp3decctx[i]);
  2430. return 0;
  2431. }
  2432. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2433. void *data, int *data_size,
  2434. uint8_t * buf, int buf_size)
  2435. {
  2436. MP3On4DecodeContext *s = avctx->priv_data;
  2437. MPADecodeContext *m;
  2438. int len, out_size = 0;
  2439. uint32_t header;
  2440. OUT_INT *out_samples = data;
  2441. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2442. OUT_INT *outptr, *bp;
  2443. int fsize;
  2444. unsigned char *start2 = buf, *start;
  2445. int fr, i, j, n;
  2446. int off = avctx->channels;
  2447. int *coff = chan_offset[s->chan_cfg];
  2448. len = buf_size;
  2449. // Discard too short frames
  2450. if (buf_size < HEADER_SIZE) {
  2451. *data_size = 0;
  2452. return buf_size;
  2453. }
  2454. // If only one decoder interleave is not needed
  2455. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2456. for (fr = 0; fr < s->frames; fr++) {
  2457. start = start2;
  2458. fsize = (start[0] << 4) | (start[1] >> 4);
  2459. start2 += fsize;
  2460. if (fsize > len)
  2461. fsize = len;
  2462. len -= fsize;
  2463. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2464. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2465. m = s->mp3decctx[fr];
  2466. assert (m != NULL);
  2467. // Get header
  2468. header = (start[0] << 24) | (start[1] << 16) | (start[2] << 8) | start[3] | 0xfff00000;
  2469. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2470. *data_size = 0;
  2471. return buf_size;
  2472. }
  2473. decode_header(m, header);
  2474. mp_decode_frame(m, decoded_buf, start, fsize);
  2475. n = MPA_FRAME_SIZE * m->nb_channels;
  2476. out_size += n * sizeof(OUT_INT);
  2477. if(s->frames > 1) {
  2478. /* interleave output data */
  2479. bp = out_samples + coff[fr];
  2480. if(m->nb_channels == 1) {
  2481. for(j = 0; j < n; j++) {
  2482. *bp = decoded_buf[j];
  2483. bp += off;
  2484. }
  2485. } else {
  2486. for(j = 0; j < n; j++) {
  2487. bp[0] = decoded_buf[j++];
  2488. bp[1] = decoded_buf[j];
  2489. bp += off;
  2490. }
  2491. }
  2492. }
  2493. }
  2494. /* update codec info */
  2495. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2496. avctx->frame_size= buf_size;
  2497. avctx->bit_rate = 0;
  2498. for (i = 0; i < s->frames; i++)
  2499. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2500. *data_size = out_size;
  2501. return buf_size;
  2502. }
  2503. #endif /* CONFIG_MP3ON4_DECODER */
  2504. #ifdef CONFIG_MP2_DECODER
  2505. AVCodec mp2_decoder =
  2506. {
  2507. "mp2",
  2508. CODEC_TYPE_AUDIO,
  2509. CODEC_ID_MP2,
  2510. sizeof(MPADecodeContext),
  2511. decode_init,
  2512. NULL,
  2513. NULL,
  2514. decode_frame,
  2515. CODEC_CAP_PARSE_ONLY,
  2516. };
  2517. #endif
  2518. #ifdef CONFIG_MP3_DECODER
  2519. AVCodec mp3_decoder =
  2520. {
  2521. "mp3",
  2522. CODEC_TYPE_AUDIO,
  2523. CODEC_ID_MP3,
  2524. sizeof(MPADecodeContext),
  2525. decode_init,
  2526. NULL,
  2527. NULL,
  2528. decode_frame,
  2529. CODEC_CAP_PARSE_ONLY,
  2530. };
  2531. #endif
  2532. #ifdef CONFIG_MP3ADU_DECODER
  2533. AVCodec mp3adu_decoder =
  2534. {
  2535. "mp3adu",
  2536. CODEC_TYPE_AUDIO,
  2537. CODEC_ID_MP3ADU,
  2538. sizeof(MPADecodeContext),
  2539. decode_init,
  2540. NULL,
  2541. NULL,
  2542. decode_frame_adu,
  2543. CODEC_CAP_PARSE_ONLY,
  2544. };
  2545. #endif
  2546. #ifdef CONFIG_MP3ON4_DECODER
  2547. AVCodec mp3on4_decoder =
  2548. {
  2549. "mp3on4",
  2550. CODEC_TYPE_AUDIO,
  2551. CODEC_ID_MP3ON4,
  2552. sizeof(MP3On4DecodeContext),
  2553. decode_init_mp3on4,
  2554. NULL,
  2555. decode_close_mp3on4,
  2556. decode_frame_mp3on4,
  2557. 0
  2558. };
  2559. #endif