You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1289 lines
42KB

  1. /*
  2. * Copyright (C) 2016 Open Broadcast Systems Ltd.
  3. * Author 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/pixdesc.h"
  22. #include "libavutil/opt.h"
  23. #include "dirac.h"
  24. #include "put_bits.h"
  25. #include "internal.h"
  26. #include "version.h"
  27. #include "vc2enc_dwt.h"
  28. #include "diractab.h"
  29. /* Quantizations above this usually zero coefficients and lower the quality */
  30. #define MAX_QUANT_INDEX FF_ARRAY_ELEMS(ff_dirac_qscale_tab)
  31. /* Total range is -COEF_LUT_TAB to +COEFF_LUT_TAB, but total tab size is half
  32. * (COEF_LUT_TAB*MAX_QUANT_INDEX) since the sign is appended during encoding */
  33. #define COEF_LUT_TAB 2048
  34. /* Decides the cutoff point in # of slices to distribute the leftover bytes */
  35. #define SLICE_REDIST_TOTAL 150
  36. typedef struct VC2BaseVideoFormat {
  37. enum AVPixelFormat pix_fmt;
  38. AVRational time_base;
  39. int width, height, interlaced, level;
  40. const char *name;
  41. } VC2BaseVideoFormat;
  42. static const VC2BaseVideoFormat base_video_fmts[] = {
  43. { 0 }, /* Custom format, here just to make indexing equal to base_vf */
  44. { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 176, 120, 0, 1, "QSIF525" },
  45. { AV_PIX_FMT_YUV420P, { 2, 25 }, 176, 144, 0, 1, "QCIF" },
  46. { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 352, 240, 0, 1, "SIF525" },
  47. { AV_PIX_FMT_YUV420P, { 2, 25 }, 352, 288, 0, 1, "CIF" },
  48. { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 704, 480, 0, 1, "4SIF525" },
  49. { AV_PIX_FMT_YUV420P, { 2, 25 }, 704, 576, 0, 1, "4CIF" },
  50. { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 720, 480, 1, 2, "SD480I-60" },
  51. { AV_PIX_FMT_YUV422P10, { 1, 25 }, 720, 576, 1, 2, "SD576I-50" },
  52. { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1280, 720, 0, 3, "HD720P-60" },
  53. { AV_PIX_FMT_YUV422P10, { 1, 50 }, 1280, 720, 0, 3, "HD720P-50" },
  54. { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 1920, 1080, 1, 3, "HD1080I-60" },
  55. { AV_PIX_FMT_YUV422P10, { 1, 25 }, 1920, 1080, 1, 3, "HD1080I-50" },
  56. { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1920, 1080, 1, 3, "HD1080P-60" },
  57. { AV_PIX_FMT_YUV422P10, { 1, 50 }, 1920, 1080, 1, 3, "HD1080P-50" },
  58. { AV_PIX_FMT_YUV444P12, { 1, 24 }, 2048, 1080, 0, 4, "DC2K" },
  59. { AV_PIX_FMT_YUV444P12, { 1, 24 }, 4096, 2160, 0, 5, "DC4K" },
  60. { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 3840, 2160, 0, 6, "UHDTV 4K-60" },
  61. { AV_PIX_FMT_YUV422P10, { 1, 50 }, 3840, 2160, 0, 6, "UHDTV 4K-50" },
  62. { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 7680, 4320, 0, 7, "UHDTV 8K-60" },
  63. { AV_PIX_FMT_YUV422P10, { 1, 50 }, 7680, 4320, 0, 7, "UHDTV 8K-50" },
  64. { AV_PIX_FMT_YUV422P10, { 1001, 24000 }, 1920, 1080, 0, 3, "HD1080P-24" },
  65. { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 720, 486, 1, 2, "SD Pro486" },
  66. };
  67. static const int base_video_fmts_len = FF_ARRAY_ELEMS(base_video_fmts);
  68. enum VC2_QM {
  69. VC2_QM_DEF = 0,
  70. VC2_QM_COL,
  71. VC2_QM_FLAT,
  72. VC2_QM_NB
  73. };
  74. typedef struct SubBand {
  75. dwtcoef *buf;
  76. ptrdiff_t stride;
  77. int width;
  78. int height;
  79. } SubBand;
  80. typedef struct Plane {
  81. SubBand band[MAX_DWT_LEVELS][4];
  82. dwtcoef *coef_buf;
  83. int width;
  84. int height;
  85. int dwt_width;
  86. int dwt_height;
  87. ptrdiff_t coef_stride;
  88. } Plane;
  89. typedef struct SliceArgs {
  90. PutBitContext pb;
  91. int cache[MAX_QUANT_INDEX];
  92. void *ctx;
  93. int x;
  94. int y;
  95. int quant_idx;
  96. int bits_ceil;
  97. int bits_floor;
  98. int bytes_left;
  99. int bytes;
  100. } SliceArgs;
  101. typedef struct TransformArgs {
  102. void *ctx;
  103. Plane *plane;
  104. void *idata;
  105. ptrdiff_t istride;
  106. int field;
  107. VC2TransformContext t;
  108. } TransformArgs;
  109. typedef struct VC2EncContext {
  110. AVClass *av_class;
  111. PutBitContext pb;
  112. Plane plane[3];
  113. AVCodecContext *avctx;
  114. DiracVersionInfo ver;
  115. SliceArgs *slice_args;
  116. TransformArgs transform_args[3];
  117. /* For conversion from unsigned pixel values to signed */
  118. int diff_offset;
  119. int bpp;
  120. int bpp_idx;
  121. /* Picture number */
  122. uint32_t picture_number;
  123. /* Base video format */
  124. int base_vf;
  125. int level;
  126. int profile;
  127. /* Quantization matrix */
  128. uint8_t quant[MAX_DWT_LEVELS][4];
  129. int custom_quant_matrix;
  130. /* Coefficient LUT */
  131. uint32_t *coef_lut_val;
  132. uint8_t *coef_lut_len;
  133. int num_x; /* #slices horizontally */
  134. int num_y; /* #slices vertically */
  135. int prefix_bytes;
  136. int size_scaler;
  137. int chroma_x_shift;
  138. int chroma_y_shift;
  139. /* Rate control stuff */
  140. int slice_max_bytes;
  141. int slice_min_bytes;
  142. int q_ceil;
  143. int q_avg;
  144. /* Options */
  145. double tolerance;
  146. int wavelet_idx;
  147. int wavelet_depth;
  148. int strict_compliance;
  149. int slice_height;
  150. int slice_width;
  151. int interlaced;
  152. enum VC2_QM quant_matrix;
  153. /* Parse code state */
  154. uint32_t next_parse_offset;
  155. enum DiracParseCodes last_parse_code;
  156. } VC2EncContext;
  157. static av_always_inline void put_vc2_ue_uint(PutBitContext *pb, uint32_t val)
  158. {
  159. int i;
  160. int pbits = 0, bits = 0, topbit = 1, maxval = 1;
  161. if (!val++) {
  162. put_bits(pb, 1, 1);
  163. return;
  164. }
  165. while (val > maxval) {
  166. topbit <<= 1;
  167. maxval <<= 1;
  168. maxval |= 1;
  169. }
  170. bits = ff_log2(topbit);
  171. for (i = 0; i < bits; i++) {
  172. topbit >>= 1;
  173. pbits <<= 2;
  174. if (val & topbit)
  175. pbits |= 0x1;
  176. }
  177. put_bits(pb, bits*2 + 1, (pbits << 1) | 1);
  178. }
  179. static av_always_inline int count_vc2_ue_uint(uint32_t val)
  180. {
  181. int topbit = 1, maxval = 1;
  182. if (!val++)
  183. return 1;
  184. while (val > maxval) {
  185. topbit <<= 1;
  186. maxval <<= 1;
  187. maxval |= 1;
  188. }
  189. return ff_log2(topbit)*2 + 1;
  190. }
  191. static av_always_inline void get_vc2_ue_uint(int val, uint8_t *nbits,
  192. uint32_t *eval)
  193. {
  194. int i;
  195. int pbits = 0, bits = 0, topbit = 1, maxval = 1;
  196. if (!val++) {
  197. *nbits = 1;
  198. *eval = 1;
  199. return;
  200. }
  201. while (val > maxval) {
  202. topbit <<= 1;
  203. maxval <<= 1;
  204. maxval |= 1;
  205. }
  206. bits = ff_log2(topbit);
  207. for (i = 0; i < bits; i++) {
  208. topbit >>= 1;
  209. pbits <<= 2;
  210. if (val & topbit)
  211. pbits |= 0x1;
  212. }
  213. *nbits = bits*2 + 1;
  214. *eval = (pbits << 1) | 1;
  215. }
  216. /* VC-2 10.4 - parse_info() */
  217. static void encode_parse_info(VC2EncContext *s, enum DiracParseCodes pcode)
  218. {
  219. uint32_t cur_pos, dist;
  220. avpriv_align_put_bits(&s->pb);
  221. cur_pos = put_bits_count(&s->pb) >> 3;
  222. /* Magic string */
  223. avpriv_put_string(&s->pb, "BBCD", 0);
  224. /* Parse code */
  225. put_bits(&s->pb, 8, pcode);
  226. /* Next parse offset */
  227. dist = cur_pos - s->next_parse_offset;
  228. AV_WB32(s->pb.buf + s->next_parse_offset + 5, dist);
  229. s->next_parse_offset = cur_pos;
  230. put_bits32(&s->pb, pcode == DIRAC_PCODE_END_SEQ ? 13 : 0);
  231. /* Last parse offset */
  232. put_bits32(&s->pb, s->last_parse_code == DIRAC_PCODE_END_SEQ ? 13 : dist);
  233. s->last_parse_code = pcode;
  234. }
  235. /* VC-2 11.1 - parse_parameters()
  236. * The level dictates what the decoder should expect in terms of resolution
  237. * and allows it to quickly reject whatever it can't support. Remember,
  238. * this codec kinda targets cheapo FPGAs without much memory. Unfortunately
  239. * it also limits us greatly in our choice of formats, hence the flag to disable
  240. * strict_compliance */
  241. static void encode_parse_params(VC2EncContext *s)
  242. {
  243. put_vc2_ue_uint(&s->pb, s->ver.major); /* VC-2 demands this to be 2 */
  244. put_vc2_ue_uint(&s->pb, s->ver.minor); /* ^^ and this to be 0 */
  245. put_vc2_ue_uint(&s->pb, s->profile); /* 3 to signal HQ profile */
  246. put_vc2_ue_uint(&s->pb, s->level); /* 3 - 1080/720, 6 - 4K */
  247. }
  248. /* VC-2 11.3 - frame_size() */
  249. static void encode_frame_size(VC2EncContext *s)
  250. {
  251. put_bits(&s->pb, 1, !s->strict_compliance);
  252. if (!s->strict_compliance) {
  253. AVCodecContext *avctx = s->avctx;
  254. put_vc2_ue_uint(&s->pb, avctx->width);
  255. put_vc2_ue_uint(&s->pb, avctx->height);
  256. }
  257. }
  258. /* VC-2 11.3.3 - color_diff_sampling_format() */
  259. static void encode_sample_fmt(VC2EncContext *s)
  260. {
  261. put_bits(&s->pb, 1, !s->strict_compliance);
  262. if (!s->strict_compliance) {
  263. int idx;
  264. if (s->chroma_x_shift == 1 && s->chroma_y_shift == 0)
  265. idx = 1; /* 422 */
  266. else if (s->chroma_x_shift == 1 && s->chroma_y_shift == 1)
  267. idx = 2; /* 420 */
  268. else
  269. idx = 0; /* 444 */
  270. put_vc2_ue_uint(&s->pb, idx);
  271. }
  272. }
  273. /* VC-2 11.3.4 - scan_format() */
  274. static void encode_scan_format(VC2EncContext *s)
  275. {
  276. put_bits(&s->pb, 1, !s->strict_compliance);
  277. if (!s->strict_compliance)
  278. put_vc2_ue_uint(&s->pb, s->interlaced);
  279. }
  280. /* VC-2 11.3.5 - frame_rate() */
  281. static void encode_frame_rate(VC2EncContext *s)
  282. {
  283. put_bits(&s->pb, 1, !s->strict_compliance);
  284. if (!s->strict_compliance) {
  285. AVCodecContext *avctx = s->avctx;
  286. put_vc2_ue_uint(&s->pb, 0);
  287. put_vc2_ue_uint(&s->pb, avctx->time_base.den);
  288. put_vc2_ue_uint(&s->pb, avctx->time_base.num);
  289. }
  290. }
  291. /* VC-2 11.3.6 - aspect_ratio() */
  292. static void encode_aspect_ratio(VC2EncContext *s)
  293. {
  294. put_bits(&s->pb, 1, !s->strict_compliance);
  295. if (!s->strict_compliance) {
  296. AVCodecContext *avctx = s->avctx;
  297. put_vc2_ue_uint(&s->pb, 0);
  298. put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.num);
  299. put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.den);
  300. }
  301. }
  302. /* VC-2 11.3.7 - clean_area() */
  303. static void encode_clean_area(VC2EncContext *s)
  304. {
  305. put_bits(&s->pb, 1, 0);
  306. }
  307. /* VC-2 11.3.8 - signal_range() */
  308. static void encode_signal_range(VC2EncContext *s)
  309. {
  310. put_bits(&s->pb, 1, !s->strict_compliance);
  311. if (!s->strict_compliance)
  312. put_vc2_ue_uint(&s->pb, s->bpp_idx);
  313. }
  314. /* VC-2 11.3.9 - color_spec() */
  315. static void encode_color_spec(VC2EncContext *s)
  316. {
  317. AVCodecContext *avctx = s->avctx;
  318. put_bits(&s->pb, 1, !s->strict_compliance);
  319. if (!s->strict_compliance) {
  320. int val;
  321. put_vc2_ue_uint(&s->pb, 0);
  322. /* primaries */
  323. put_bits(&s->pb, 1, 1);
  324. if (avctx->color_primaries == AVCOL_PRI_BT470BG)
  325. val = 2;
  326. else if (avctx->color_primaries == AVCOL_PRI_SMPTE170M)
  327. val = 1;
  328. else if (avctx->color_primaries == AVCOL_PRI_SMPTE240M)
  329. val = 1;
  330. else
  331. val = 0;
  332. put_vc2_ue_uint(&s->pb, val);
  333. /* color matrix */
  334. put_bits(&s->pb, 1, 1);
  335. if (avctx->colorspace == AVCOL_SPC_RGB)
  336. val = 3;
  337. else if (avctx->colorspace == AVCOL_SPC_YCOCG)
  338. val = 2;
  339. else if (avctx->colorspace == AVCOL_SPC_BT470BG)
  340. val = 1;
  341. else
  342. val = 0;
  343. put_vc2_ue_uint(&s->pb, val);
  344. /* transfer function */
  345. put_bits(&s->pb, 1, 1);
  346. if (avctx->color_trc == AVCOL_TRC_LINEAR)
  347. val = 2;
  348. else if (avctx->color_trc == AVCOL_TRC_BT1361_ECG)
  349. val = 1;
  350. else
  351. val = 0;
  352. put_vc2_ue_uint(&s->pb, val);
  353. }
  354. }
  355. /* VC-2 11.3 - source_parameters() */
  356. static void encode_source_params(VC2EncContext *s)
  357. {
  358. encode_frame_size(s);
  359. encode_sample_fmt(s);
  360. encode_scan_format(s);
  361. encode_frame_rate(s);
  362. encode_aspect_ratio(s);
  363. encode_clean_area(s);
  364. encode_signal_range(s);
  365. encode_color_spec(s);
  366. }
  367. /* VC-2 11 - sequence_header() */
  368. static void encode_seq_header(VC2EncContext *s)
  369. {
  370. avpriv_align_put_bits(&s->pb);
  371. encode_parse_params(s);
  372. put_vc2_ue_uint(&s->pb, s->base_vf);
  373. encode_source_params(s);
  374. put_vc2_ue_uint(&s->pb, s->interlaced); /* Frames or fields coding */
  375. }
  376. /* VC-2 12.1 - picture_header() */
  377. static void encode_picture_header(VC2EncContext *s)
  378. {
  379. avpriv_align_put_bits(&s->pb);
  380. put_bits32(&s->pb, s->picture_number++);
  381. }
  382. /* VC-2 12.3.4.1 - slice_parameters() */
  383. static void encode_slice_params(VC2EncContext *s)
  384. {
  385. put_vc2_ue_uint(&s->pb, s->num_x);
  386. put_vc2_ue_uint(&s->pb, s->num_y);
  387. put_vc2_ue_uint(&s->pb, s->prefix_bytes);
  388. put_vc2_ue_uint(&s->pb, s->size_scaler);
  389. }
  390. /* 1st idx = LL, second - vertical, third - horizontal, fourth - total */
  391. const uint8_t vc2_qm_col_tab[][4] = {
  392. {20, 9, 15, 4},
  393. { 0, 6, 6, 4},
  394. { 0, 3, 3, 5},
  395. { 0, 3, 5, 1},
  396. { 0, 11, 10, 11}
  397. };
  398. const uint8_t vc2_qm_flat_tab[][4] = {
  399. { 0, 0, 0, 0},
  400. { 0, 0, 0, 0},
  401. { 0, 0, 0, 0},
  402. { 0, 0, 0, 0},
  403. { 0, 0, 0, 0}
  404. };
  405. static void init_quant_matrix(VC2EncContext *s)
  406. {
  407. int level, orientation;
  408. if (s->wavelet_depth <= 4 && s->quant_matrix == VC2_QM_DEF) {
  409. s->custom_quant_matrix = 0;
  410. for (level = 0; level < s->wavelet_depth; level++) {
  411. s->quant[level][0] = ff_dirac_default_qmat[s->wavelet_idx][level][0];
  412. s->quant[level][1] = ff_dirac_default_qmat[s->wavelet_idx][level][1];
  413. s->quant[level][2] = ff_dirac_default_qmat[s->wavelet_idx][level][2];
  414. s->quant[level][3] = ff_dirac_default_qmat[s->wavelet_idx][level][3];
  415. }
  416. return;
  417. }
  418. s->custom_quant_matrix = 1;
  419. if (s->quant_matrix == VC2_QM_DEF) {
  420. for (level = 0; level < s->wavelet_depth; level++) {
  421. for (orientation = 0; orientation < 4; orientation++) {
  422. if (level <= 3)
  423. s->quant[level][orientation] = ff_dirac_default_qmat[s->wavelet_idx][level][orientation];
  424. else
  425. s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
  426. }
  427. }
  428. } else if (s->quant_matrix == VC2_QM_COL) {
  429. for (level = 0; level < s->wavelet_depth; level++) {
  430. for (orientation = 0; orientation < 4; orientation++) {
  431. s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
  432. }
  433. }
  434. } else {
  435. for (level = 0; level < s->wavelet_depth; level++) {
  436. for (orientation = 0; orientation < 4; orientation++) {
  437. s->quant[level][orientation] = vc2_qm_flat_tab[level][orientation];
  438. }
  439. }
  440. }
  441. }
  442. /* VC-2 12.3.4.2 - quant_matrix() */
  443. static void encode_quant_matrix(VC2EncContext *s)
  444. {
  445. int level;
  446. put_bits(&s->pb, 1, s->custom_quant_matrix);
  447. if (s->custom_quant_matrix) {
  448. put_vc2_ue_uint(&s->pb, s->quant[0][0]);
  449. for (level = 0; level < s->wavelet_depth; level++) {
  450. put_vc2_ue_uint(&s->pb, s->quant[level][1]);
  451. put_vc2_ue_uint(&s->pb, s->quant[level][2]);
  452. put_vc2_ue_uint(&s->pb, s->quant[level][3]);
  453. }
  454. }
  455. }
  456. /* VC-2 12.3 - transform_parameters() */
  457. static void encode_transform_params(VC2EncContext *s)
  458. {
  459. put_vc2_ue_uint(&s->pb, s->wavelet_idx);
  460. put_vc2_ue_uint(&s->pb, s->wavelet_depth);
  461. encode_slice_params(s);
  462. encode_quant_matrix(s);
  463. }
  464. /* VC-2 12.2 - wavelet_transform() */
  465. static void encode_wavelet_transform(VC2EncContext *s)
  466. {
  467. encode_transform_params(s);
  468. avpriv_align_put_bits(&s->pb);
  469. }
  470. /* VC-2 12 - picture_parse() */
  471. static void encode_picture_start(VC2EncContext *s)
  472. {
  473. avpriv_align_put_bits(&s->pb);
  474. encode_picture_header(s);
  475. avpriv_align_put_bits(&s->pb);
  476. encode_wavelet_transform(s);
  477. }
  478. #define QUANT(c, qf) (((c) << 2)/(qf))
  479. /* VC-2 13.5.5.2 - slice_band() */
  480. static void encode_subband(VC2EncContext *s, PutBitContext *pb, int sx, int sy,
  481. SubBand *b, int quant)
  482. {
  483. int x, y;
  484. const int left = b->width * (sx+0) / s->num_x;
  485. const int right = b->width * (sx+1) / s->num_x;
  486. const int top = b->height * (sy+0) / s->num_y;
  487. const int bottom = b->height * (sy+1) / s->num_y;
  488. const int qfactor = ff_dirac_qscale_tab[quant];
  489. const uint8_t *len_lut = &s->coef_lut_len[quant*COEF_LUT_TAB];
  490. const uint32_t *val_lut = &s->coef_lut_val[quant*COEF_LUT_TAB];
  491. dwtcoef *coeff = b->buf + top * b->stride;
  492. for (y = top; y < bottom; y++) {
  493. for (x = left; x < right; x++) {
  494. const int neg = coeff[x] < 0;
  495. uint32_t c_abs = FFABS(coeff[x]);
  496. if (c_abs < COEF_LUT_TAB) {
  497. const uint8_t len = len_lut[c_abs];
  498. if (len == 1)
  499. put_bits(pb, 1, 1);
  500. else
  501. put_bits(pb, len + 1, (val_lut[c_abs] << 1) | neg);
  502. } else {
  503. c_abs = QUANT(c_abs, qfactor);
  504. put_vc2_ue_uint(pb, c_abs);
  505. if (c_abs)
  506. put_bits(pb, 1, neg);
  507. }
  508. }
  509. coeff += b->stride;
  510. }
  511. }
  512. static int count_hq_slice(SliceArgs *slice, int quant_idx)
  513. {
  514. int x, y;
  515. uint8_t quants[MAX_DWT_LEVELS][4];
  516. int bits = 0, p, level, orientation;
  517. VC2EncContext *s = slice->ctx;
  518. if (slice->cache[quant_idx])
  519. return slice->cache[quant_idx];
  520. bits += 8*s->prefix_bytes;
  521. bits += 8; /* quant_idx */
  522. for (level = 0; level < s->wavelet_depth; level++)
  523. for (orientation = !!level; orientation < 4; orientation++)
  524. quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
  525. for (p = 0; p < 3; p++) {
  526. int bytes_start, bytes_len, pad_s, pad_c;
  527. bytes_start = bits >> 3;
  528. bits += 8;
  529. for (level = 0; level < s->wavelet_depth; level++) {
  530. for (orientation = !!level; orientation < 4; orientation++) {
  531. SubBand *b = &s->plane[p].band[level][orientation];
  532. const int q_idx = quants[level][orientation];
  533. const uint8_t *len_lut = &s->coef_lut_len[q_idx*COEF_LUT_TAB];
  534. const int qfactor = ff_dirac_qscale_tab[q_idx];
  535. const int left = b->width * slice->x / s->num_x;
  536. const int right = b->width *(slice->x+1) / s->num_x;
  537. const int top = b->height * slice->y / s->num_y;
  538. const int bottom = b->height *(slice->y+1) / s->num_y;
  539. dwtcoef *buf = b->buf + top * b->stride;
  540. for (y = top; y < bottom; y++) {
  541. for (x = left; x < right; x++) {
  542. uint32_t c_abs = FFABS(buf[x]);
  543. if (c_abs < COEF_LUT_TAB) {
  544. const int len = len_lut[c_abs];
  545. bits += len + (len != 1);
  546. } else {
  547. c_abs = QUANT(c_abs, qfactor);
  548. bits += count_vc2_ue_uint(c_abs);
  549. bits += !!c_abs;
  550. }
  551. }
  552. buf += b->stride;
  553. }
  554. }
  555. }
  556. bits += FFALIGN(bits, 8) - bits;
  557. bytes_len = (bits >> 3) - bytes_start - 1;
  558. pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
  559. pad_c = (pad_s*s->size_scaler) - bytes_len;
  560. bits += pad_c*8;
  561. }
  562. slice->cache[quant_idx] = bits;
  563. return bits;
  564. }
  565. /* Approaches the best possible quantizer asymptotically, its kinda exaustive
  566. * but we have a LUT to get the coefficient size in bits. Guaranteed to never
  567. * overshoot, which is apparently very important when streaming */
  568. static int rate_control(AVCodecContext *avctx, void *arg)
  569. {
  570. SliceArgs *slice_dat = arg;
  571. VC2EncContext *s = slice_dat->ctx;
  572. const int top = slice_dat->bits_ceil;
  573. const int bottom = slice_dat->bits_floor;
  574. int quant_buf[2] = {-1, -1};
  575. int quant = slice_dat->quant_idx, step = 1;
  576. int bits_last, bits = count_hq_slice(slice_dat, quant);
  577. while ((bits > top) || (bits < bottom)) {
  578. const int signed_step = bits > top ? +step : -step;
  579. quant = av_clip(quant + signed_step, 0, s->q_ceil-1);
  580. bits = count_hq_slice(slice_dat, quant);
  581. if (quant_buf[1] == quant) {
  582. quant = FFMAX(quant_buf[0], quant);
  583. bits = quant == quant_buf[0] ? bits_last : bits;
  584. break;
  585. }
  586. step = av_clip(step/2, 1, (s->q_ceil-1)/2);
  587. quant_buf[1] = quant_buf[0];
  588. quant_buf[0] = quant;
  589. bits_last = bits;
  590. }
  591. slice_dat->quant_idx = av_clip(quant, 0, s->q_ceil-1);
  592. slice_dat->bytes = FFALIGN((bits >> 3), s->size_scaler) + 4 + s->prefix_bytes;
  593. slice_dat->bytes_left = s->slice_max_bytes - slice_dat->bytes;
  594. return 0;
  595. }
  596. static int calc_slice_sizes(VC2EncContext *s)
  597. {
  598. int i, slice_x, slice_y, bytes_left = 0;
  599. int bytes_top[SLICE_REDIST_TOTAL] = {0};
  600. int64_t total_bytes_needed = 0;
  601. int slice_redist_range = FFMIN(SLICE_REDIST_TOTAL, s->num_x*s->num_y);
  602. SliceArgs *enc_args = s->slice_args;
  603. SliceArgs *top_loc[SLICE_REDIST_TOTAL] = {NULL};
  604. init_quant_matrix(s);
  605. for (slice_y = 0; slice_y < s->num_y; slice_y++) {
  606. for (slice_x = 0; slice_x < s->num_x; slice_x++) {
  607. SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
  608. args->ctx = s;
  609. args->x = slice_x;
  610. args->y = slice_y;
  611. args->bits_ceil = s->slice_max_bytes << 3;
  612. args->bits_floor = s->slice_min_bytes << 3;
  613. memset(args, 0, s->q_ceil*sizeof(int));
  614. }
  615. }
  616. /* First pass - determine baseline slice sizes w.r.t. max_slice_size */
  617. s->avctx->execute(s->avctx, rate_control, enc_args, NULL, s->num_x*s->num_y,
  618. sizeof(SliceArgs));
  619. for (slice_y = 0; slice_y < s->num_y; slice_y++) {
  620. for (slice_x = 0; slice_x < s->num_x; slice_x++) {
  621. SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
  622. bytes_left += args->bytes_left;
  623. for (i = 0; i < slice_redist_range; i++) {
  624. if (args->bytes > bytes_top[i]) {
  625. bytes_top[i] = args->bytes;
  626. top_loc[i] = args;
  627. break;
  628. }
  629. }
  630. }
  631. }
  632. /* Second pass - distribute leftover bytes */
  633. while (1) {
  634. int distributed = 0;
  635. for (i = 0; i < slice_redist_range; i++) {
  636. SliceArgs *args;
  637. int bits, bytes, diff, prev_bytes, new_idx;
  638. if (bytes_left <= 0)
  639. break;
  640. if (!top_loc[i] || !top_loc[i]->quant_idx)
  641. break;
  642. args = top_loc[i];
  643. prev_bytes = args->bytes;
  644. new_idx = FFMAX(args->quant_idx - 1, 0);
  645. bits = count_hq_slice(args, new_idx);
  646. bytes = FFALIGN((bits >> 3), s->size_scaler) + 4 + s->prefix_bytes;
  647. diff = bytes - prev_bytes;
  648. if ((bytes_left - diff) > 0) {
  649. args->quant_idx = new_idx;
  650. args->bytes = bytes;
  651. bytes_left -= diff;
  652. distributed++;
  653. }
  654. }
  655. if (!distributed)
  656. break;
  657. }
  658. for (slice_y = 0; slice_y < s->num_y; slice_y++) {
  659. for (slice_x = 0; slice_x < s->num_x; slice_x++) {
  660. SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
  661. total_bytes_needed += args->bytes;
  662. s->q_avg = (s->q_avg + args->quant_idx)/2;
  663. }
  664. }
  665. return total_bytes_needed;
  666. }
  667. /* VC-2 13.5.3 - hq_slice */
  668. static int encode_hq_slice(AVCodecContext *avctx, void *arg)
  669. {
  670. SliceArgs *slice_dat = arg;
  671. VC2EncContext *s = slice_dat->ctx;
  672. PutBitContext *pb = &slice_dat->pb;
  673. const int slice_x = slice_dat->x;
  674. const int slice_y = slice_dat->y;
  675. const int quant_idx = slice_dat->quant_idx;
  676. const int slice_bytes_max = slice_dat->bytes;
  677. uint8_t quants[MAX_DWT_LEVELS][4];
  678. int p, level, orientation;
  679. skip_put_bytes(pb, s->prefix_bytes);
  680. put_bits(pb, 8, quant_idx);
  681. /* Slice quantization (slice_quantizers() in the specs) */
  682. for (level = 0; level < s->wavelet_depth; level++)
  683. for (orientation = !!level; orientation < 4; orientation++)
  684. quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
  685. /* Luma + 2 Chroma planes */
  686. for (p = 0; p < 3; p++) {
  687. int bytes_start, bytes_len, pad_s, pad_c;
  688. bytes_start = put_bits_count(pb) >> 3;
  689. put_bits(pb, 8, 0);
  690. for (level = 0; level < s->wavelet_depth; level++) {
  691. for (orientation = !!level; orientation < 4; orientation++) {
  692. encode_subband(s, pb, slice_x, slice_y,
  693. &s->plane[p].band[level][orientation],
  694. quants[level][orientation]);
  695. }
  696. }
  697. avpriv_align_put_bits(pb);
  698. bytes_len = (put_bits_count(pb) >> 3) - bytes_start - 1;
  699. if (p == 2) {
  700. int len_diff = slice_bytes_max - (put_bits_count(pb) >> 3);
  701. pad_s = FFALIGN((bytes_len + len_diff), s->size_scaler)/s->size_scaler;
  702. pad_c = (pad_s*s->size_scaler) - bytes_len;
  703. } else {
  704. pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
  705. pad_c = (pad_s*s->size_scaler) - bytes_len;
  706. }
  707. pb->buf[bytes_start] = pad_s;
  708. flush_put_bits(pb);
  709. skip_put_bytes(pb, pad_c);
  710. }
  711. return 0;
  712. }
  713. /* VC-2 13.5.1 - low_delay_transform_data() */
  714. static int encode_slices(VC2EncContext *s)
  715. {
  716. uint8_t *buf;
  717. int slice_x, slice_y, skip = 0;
  718. SliceArgs *enc_args = s->slice_args;
  719. avpriv_align_put_bits(&s->pb);
  720. flush_put_bits(&s->pb);
  721. buf = put_bits_ptr(&s->pb);
  722. for (slice_y = 0; slice_y < s->num_y; slice_y++) {
  723. for (slice_x = 0; slice_x < s->num_x; slice_x++) {
  724. SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
  725. init_put_bits(&args->pb, buf + skip, args->bytes+s->prefix_bytes);
  726. skip += args->bytes;
  727. }
  728. }
  729. s->avctx->execute(s->avctx, encode_hq_slice, enc_args, NULL, s->num_x*s->num_y,
  730. sizeof(SliceArgs));
  731. skip_put_bytes(&s->pb, skip);
  732. return 0;
  733. }
  734. /*
  735. * Transform basics for a 3 level transform
  736. * |---------------------------------------------------------------------|
  737. * | LL-0 | HL-0 | | |
  738. * |--------|-------| HL-1 | |
  739. * | LH-0 | HH-0 | | |
  740. * |----------------|-----------------| HL-2 |
  741. * | | | |
  742. * | LH-1 | HH-1 | |
  743. * | | | |
  744. * |----------------------------------|----------------------------------|
  745. * | | |
  746. * | | |
  747. * | | |
  748. * | LH-2 | HH-2 |
  749. * | | |
  750. * | | |
  751. * | | |
  752. * |---------------------------------------------------------------------|
  753. *
  754. * DWT transforms are generally applied by splitting the image in two vertically
  755. * and applying a low pass transform on the left part and a corresponding high
  756. * pass transform on the right hand side. This is known as the horizontal filter
  757. * stage.
  758. * After that, the same operation is performed except the image is divided
  759. * horizontally, with the high pass on the lower and the low pass on the higher
  760. * side.
  761. * Therefore, you're left with 4 subdivisions - known as low-low, low-high,
  762. * high-low and high-high. They're referred to as orientations in the decoder
  763. * and encoder.
  764. *
  765. * The LL (low-low) area contains the original image downsampled by the amount
  766. * of levels. The rest of the areas can be thought as the details needed
  767. * to restore the image perfectly to its original size.
  768. */
  769. static int dwt_plane(AVCodecContext *avctx, void *arg)
  770. {
  771. TransformArgs *transform_dat = arg;
  772. VC2EncContext *s = transform_dat->ctx;
  773. const void *frame_data = transform_dat->idata;
  774. const ptrdiff_t linesize = transform_dat->istride;
  775. const int field = transform_dat->field;
  776. const Plane *p = transform_dat->plane;
  777. VC2TransformContext *t = &transform_dat->t;
  778. dwtcoef *buf = p->coef_buf;
  779. const int idx = s->wavelet_idx;
  780. const int skip = 1 + s->interlaced;
  781. int x, y, level, offset;
  782. ptrdiff_t pix_stride = linesize >> (s->bpp - 1);
  783. if (field == 1) {
  784. offset = 0;
  785. pix_stride <<= 1;
  786. } else if (field == 2) {
  787. offset = pix_stride;
  788. pix_stride <<= 1;
  789. } else {
  790. offset = 0;
  791. }
  792. if (s->bpp == 1) {
  793. const uint8_t *pix = (const uint8_t *)frame_data + offset;
  794. for (y = 0; y < p->height*skip; y+=skip) {
  795. for (x = 0; x < p->width; x++) {
  796. buf[x] = pix[x] - s->diff_offset;
  797. }
  798. buf += p->coef_stride;
  799. pix += pix_stride;
  800. }
  801. } else {
  802. const uint16_t *pix = (const uint16_t *)frame_data + offset;
  803. for (y = 0; y < p->height*skip; y+=skip) {
  804. for (x = 0; x < p->width; x++) {
  805. buf[x] = pix[x] - s->diff_offset;
  806. }
  807. buf += p->coef_stride;
  808. pix += pix_stride;
  809. }
  810. }
  811. memset(buf, 0, p->coef_stride * (p->dwt_height - p->height) * sizeof(dwtcoef));
  812. for (level = s->wavelet_depth-1; level >= 0; level--) {
  813. const SubBand *b = &p->band[level][0];
  814. t->vc2_subband_dwt[idx](t, p->coef_buf, p->coef_stride,
  815. b->width, b->height);
  816. }
  817. return 0;
  818. }
  819. static int encode_frame(VC2EncContext *s, AVPacket *avpkt, const AVFrame *frame,
  820. const char *aux_data, const int header_size, int field)
  821. {
  822. int i, ret;
  823. int64_t max_frame_bytes;
  824. /* Threaded DWT transform */
  825. for (i = 0; i < 3; i++) {
  826. s->transform_args[i].ctx = s;
  827. s->transform_args[i].field = field;
  828. s->transform_args[i].plane = &s->plane[i];
  829. s->transform_args[i].idata = frame->data[i];
  830. s->transform_args[i].istride = frame->linesize[i];
  831. }
  832. s->avctx->execute(s->avctx, dwt_plane, s->transform_args, NULL, 3,
  833. sizeof(TransformArgs));
  834. /* Calculate per-slice quantizers and sizes */
  835. max_frame_bytes = header_size + calc_slice_sizes(s);
  836. if (field < 2) {
  837. ret = ff_alloc_packet2(s->avctx, avpkt,
  838. max_frame_bytes << s->interlaced,
  839. max_frame_bytes << s->interlaced);
  840. if (ret) {
  841. av_log(s->avctx, AV_LOG_ERROR, "Error getting output packet.\n");
  842. return ret;
  843. }
  844. init_put_bits(&s->pb, avpkt->data, avpkt->size);
  845. }
  846. /* Sequence header */
  847. encode_parse_info(s, DIRAC_PCODE_SEQ_HEADER);
  848. encode_seq_header(s);
  849. /* Encoder version */
  850. if (aux_data) {
  851. encode_parse_info(s, DIRAC_PCODE_AUX);
  852. avpriv_put_string(&s->pb, aux_data, 1);
  853. }
  854. /* Picture header */
  855. encode_parse_info(s, DIRAC_PCODE_PICTURE_HQ);
  856. encode_picture_start(s);
  857. /* Encode slices */
  858. encode_slices(s);
  859. /* End sequence */
  860. encode_parse_info(s, DIRAC_PCODE_END_SEQ);
  861. return 0;
  862. }
  863. static av_cold int vc2_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  864. const AVFrame *frame, int *got_packet)
  865. {
  866. int ret = 0;
  867. int sig_size = 256;
  868. VC2EncContext *s = avctx->priv_data;
  869. const char aux_data[] = LIBAVCODEC_IDENT;
  870. const int aux_data_size = sizeof(aux_data);
  871. const int header_size = 100 + aux_data_size;
  872. int64_t max_frame_bytes, r_bitrate = avctx->bit_rate >> (s->interlaced);
  873. s->avctx = avctx;
  874. s->size_scaler = 2;
  875. s->prefix_bytes = 0;
  876. s->last_parse_code = 0;
  877. s->next_parse_offset = 0;
  878. /* Rate control */
  879. max_frame_bytes = (av_rescale(r_bitrate, s->avctx->time_base.num,
  880. s->avctx->time_base.den) >> 3) - header_size;
  881. /* Find an appropriate size scaler */
  882. while (sig_size > 255) {
  883. s->slice_max_bytes = FFALIGN(av_rescale(max_frame_bytes, 1,
  884. s->num_x*s->num_y), s->size_scaler);
  885. s->slice_max_bytes += 4 + s->prefix_bytes;
  886. sig_size = s->slice_max_bytes/s->size_scaler; /* Signalled slize size */
  887. s->size_scaler <<= 1;
  888. }
  889. s->slice_min_bytes = s->slice_max_bytes - s->slice_max_bytes*(s->tolerance/100.0f);
  890. ret = encode_frame(s, avpkt, frame, aux_data, header_size, s->interlaced);
  891. if (ret)
  892. return ret;
  893. if (s->interlaced) {
  894. ret = encode_frame(s, avpkt, frame, aux_data, header_size, 2);
  895. if (ret)
  896. return ret;
  897. }
  898. flush_put_bits(&s->pb);
  899. avpkt->size = put_bits_count(&s->pb) >> 3;
  900. *got_packet = 1;
  901. return 0;
  902. }
  903. static av_cold int vc2_encode_end(AVCodecContext *avctx)
  904. {
  905. int i;
  906. VC2EncContext *s = avctx->priv_data;
  907. av_log(avctx, AV_LOG_INFO, "Qavg: %i\n", s->q_avg);
  908. for (i = 0; i < 3; i++) {
  909. ff_vc2enc_free_transforms(&s->transform_args[i].t);
  910. av_freep(&s->plane[i].coef_buf);
  911. }
  912. av_freep(&s->slice_args);
  913. av_freep(&s->coef_lut_len);
  914. av_freep(&s->coef_lut_val);
  915. return 0;
  916. }
  917. static av_cold int vc2_encode_init(AVCodecContext *avctx)
  918. {
  919. Plane *p;
  920. SubBand *b;
  921. int i, j, level, o, shift;
  922. const AVPixFmtDescriptor *fmt = av_pix_fmt_desc_get(avctx->pix_fmt);
  923. const int depth = fmt->comp[0].depth;
  924. VC2EncContext *s = avctx->priv_data;
  925. s->picture_number = 0;
  926. /* Total allowed quantization range */
  927. s->q_ceil = MAX_QUANT_INDEX;
  928. s->ver.major = 2;
  929. s->ver.minor = 0;
  930. s->profile = 3;
  931. s->level = 3;
  932. s->base_vf = -1;
  933. s->strict_compliance = 1;
  934. s->q_avg = 0;
  935. s->slice_max_bytes = 0;
  936. s->slice_min_bytes = 0;
  937. /* Mark unknown as progressive */
  938. s->interlaced = !((avctx->field_order == AV_FIELD_UNKNOWN) ||
  939. (avctx->field_order == AV_FIELD_PROGRESSIVE));
  940. for (i = 0; i < base_video_fmts_len; i++) {
  941. const VC2BaseVideoFormat *fmt = &base_video_fmts[i];
  942. if (avctx->pix_fmt != fmt->pix_fmt)
  943. continue;
  944. if (avctx->time_base.num != fmt->time_base.num)
  945. continue;
  946. if (avctx->time_base.den != fmt->time_base.den)
  947. continue;
  948. if (avctx->width != fmt->width)
  949. continue;
  950. if (avctx->height != fmt->height)
  951. continue;
  952. if (s->interlaced != fmt->interlaced)
  953. continue;
  954. s->base_vf = i;
  955. s->level = base_video_fmts[i].level;
  956. break;
  957. }
  958. if (s->interlaced)
  959. av_log(avctx, AV_LOG_WARNING, "Interlacing enabled!\n");
  960. if ((s->slice_width & (s->slice_width - 1)) ||
  961. (s->slice_height & (s->slice_height - 1))) {
  962. av_log(avctx, AV_LOG_ERROR, "Slice size is not a power of two!\n");
  963. return AVERROR_UNKNOWN;
  964. }
  965. if ((s->slice_width > avctx->width) ||
  966. (s->slice_height > avctx->height)) {
  967. av_log(avctx, AV_LOG_ERROR, "Slice size is bigger than the image!\n");
  968. return AVERROR_UNKNOWN;
  969. }
  970. if (s->base_vf <= 0) {
  971. if (avctx->strict_std_compliance <= FF_COMPLIANCE_UNOFFICIAL) {
  972. s->strict_compliance = s->base_vf = 0;
  973. av_log(avctx, AV_LOG_WARNING, "Disabling strict compliance\n");
  974. } else {
  975. av_log(avctx, AV_LOG_WARNING, "Given format does not strictly comply with "
  976. "the specifications, please add a -strict -1 flag to use it\n");
  977. return AVERROR_UNKNOWN;
  978. }
  979. } else {
  980. av_log(avctx, AV_LOG_INFO, "Selected base video format = %i (%s)\n",
  981. s->base_vf, base_video_fmts[s->base_vf].name);
  982. }
  983. /* Chroma subsampling */
  984. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  985. /* Bit depth and color range index */
  986. if (depth == 8 && avctx->color_range == AVCOL_RANGE_JPEG) {
  987. s->bpp = 1;
  988. s->bpp_idx = 1;
  989. s->diff_offset = 128;
  990. } else if (depth == 8 && (avctx->color_range == AVCOL_RANGE_MPEG ||
  991. avctx->color_range == AVCOL_RANGE_UNSPECIFIED)) {
  992. s->bpp = 1;
  993. s->bpp_idx = 2;
  994. s->diff_offset = 128;
  995. } else if (depth == 10) {
  996. s->bpp = 2;
  997. s->bpp_idx = 3;
  998. s->diff_offset = 512;
  999. } else {
  1000. s->bpp = 2;
  1001. s->bpp_idx = 4;
  1002. s->diff_offset = 2048;
  1003. }
  1004. /* Planes initialization */
  1005. for (i = 0; i < 3; i++) {
  1006. int w, h;
  1007. p = &s->plane[i];
  1008. p->width = avctx->width >> (i ? s->chroma_x_shift : 0);
  1009. p->height = avctx->height >> (i ? s->chroma_y_shift : 0);
  1010. if (s->interlaced)
  1011. p->height >>= 1;
  1012. p->dwt_width = w = FFALIGN(p->width, (1 << s->wavelet_depth));
  1013. p->dwt_height = h = FFALIGN(p->height, (1 << s->wavelet_depth));
  1014. p->coef_stride = FFALIGN(p->dwt_width, 32);
  1015. p->coef_buf = av_malloc(p->coef_stride*p->dwt_height*sizeof(dwtcoef));
  1016. if (!p->coef_buf)
  1017. goto alloc_fail;
  1018. for (level = s->wavelet_depth-1; level >= 0; level--) {
  1019. w = w >> 1;
  1020. h = h >> 1;
  1021. for (o = 0; o < 4; o++) {
  1022. b = &p->band[level][o];
  1023. b->width = w;
  1024. b->height = h;
  1025. b->stride = p->coef_stride;
  1026. shift = (o > 1)*b->height*b->stride + (o & 1)*b->width;
  1027. b->buf = p->coef_buf + shift;
  1028. }
  1029. }
  1030. /* DWT init */
  1031. if (ff_vc2enc_init_transforms(&s->transform_args[i].t,
  1032. s->plane[i].coef_stride,
  1033. s->plane[i].dwt_height))
  1034. goto alloc_fail;
  1035. }
  1036. /* Slices */
  1037. s->num_x = s->plane[0].dwt_width/s->slice_width;
  1038. s->num_y = s->plane[0].dwt_height/s->slice_height;
  1039. s->slice_args = av_calloc(s->num_x*s->num_y, sizeof(SliceArgs));
  1040. if (!s->slice_args)
  1041. goto alloc_fail;
  1042. /* Lookup tables */
  1043. s->coef_lut_len = av_malloc(COEF_LUT_TAB*(s->q_ceil+1)*sizeof(*s->coef_lut_len));
  1044. if (!s->coef_lut_len)
  1045. goto alloc_fail;
  1046. s->coef_lut_val = av_malloc(COEF_LUT_TAB*(s->q_ceil+1)*sizeof(*s->coef_lut_val));
  1047. if (!s->coef_lut_val)
  1048. goto alloc_fail;
  1049. for (i = 0; i < s->q_ceil; i++) {
  1050. uint8_t *len_lut = &s->coef_lut_len[i*COEF_LUT_TAB];
  1051. uint32_t *val_lut = &s->coef_lut_val[i*COEF_LUT_TAB];
  1052. for (j = 0; j < COEF_LUT_TAB; j++) {
  1053. get_vc2_ue_uint(QUANT(j, ff_dirac_qscale_tab[i]),
  1054. &len_lut[j], &val_lut[j]);
  1055. }
  1056. }
  1057. return 0;
  1058. alloc_fail:
  1059. vc2_encode_end(avctx);
  1060. av_log(avctx, AV_LOG_ERROR, "Unable to allocate memory!\n");
  1061. return AVERROR(ENOMEM);
  1062. }
  1063. #define VC2ENC_FLAGS (AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  1064. static const AVOption vc2enc_options[] = {
  1065. {"tolerance", "Max undershoot in percent", offsetof(VC2EncContext, tolerance), AV_OPT_TYPE_DOUBLE, {.dbl = 5.0f}, 0.0f, 45.0f, VC2ENC_FLAGS, "tolerance"},
  1066. {"slice_width", "Slice width", offsetof(VC2EncContext, slice_width), AV_OPT_TYPE_INT, {.i64 = 64}, 32, 1024, VC2ENC_FLAGS, "slice_width"},
  1067. {"slice_height", "Slice height", offsetof(VC2EncContext, slice_height), AV_OPT_TYPE_INT, {.i64 = 32}, 8, 1024, VC2ENC_FLAGS, "slice_height"},
  1068. {"wavelet_depth", "Transform depth", offsetof(VC2EncContext, wavelet_depth), AV_OPT_TYPE_INT, {.i64 = 4}, 1, 5, VC2ENC_FLAGS, "wavelet_depth"},
  1069. {"wavelet_type", "Transform type", offsetof(VC2EncContext, wavelet_idx), AV_OPT_TYPE_INT, {.i64 = VC2_TRANSFORM_9_7}, 0, VC2_TRANSFORMS_NB, VC2ENC_FLAGS, "wavelet_idx"},
  1070. {"9_7", "Deslauriers-Dubuc (9,7)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_9_7}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
  1071. {"5_3", "LeGall (5,3)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_5_3}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
  1072. {"haar", "Haar (with shift)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR_S}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
  1073. {"haar_noshift", "Haar (without shift)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
  1074. {"qm", "Custom quantization matrix", offsetof(VC2EncContext, quant_matrix), AV_OPT_TYPE_INT, {.i64 = VC2_QM_DEF}, 0, VC2_QM_NB, VC2ENC_FLAGS, "quant_matrix"},
  1075. {"default", "Default from the specifications", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_DEF}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
  1076. {"color", "Prevents low bitrate discoloration", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_COL}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
  1077. {"flat", "Optimize for PSNR", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_FLAT}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
  1078. {NULL}
  1079. };
  1080. static const AVClass vc2enc_class = {
  1081. .class_name = "SMPTE VC-2 encoder",
  1082. .category = AV_CLASS_CATEGORY_ENCODER,
  1083. .option = vc2enc_options,
  1084. .item_name = av_default_item_name,
  1085. .version = LIBAVUTIL_VERSION_INT
  1086. };
  1087. static const AVCodecDefault vc2enc_defaults[] = {
  1088. { "b", "600000000" },
  1089. { NULL },
  1090. };
  1091. static const enum AVPixelFormat allowed_pix_fmts[] = {
  1092. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
  1093. AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
  1094. AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
  1095. AV_PIX_FMT_NONE
  1096. };
  1097. AVCodec ff_vc2_encoder = {
  1098. .name = "vc2",
  1099. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-2"),
  1100. .type = AVMEDIA_TYPE_VIDEO,
  1101. .id = AV_CODEC_ID_DIRAC,
  1102. .priv_data_size = sizeof(VC2EncContext),
  1103. .init = vc2_encode_init,
  1104. .close = vc2_encode_end,
  1105. .capabilities = AV_CODEC_CAP_SLICE_THREADS,
  1106. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
  1107. .encode2 = vc2_encode_frame,
  1108. .priv_class = &vc2enc_class,
  1109. .defaults = vc2enc_defaults,
  1110. .pix_fmts = allowed_pix_fmts
  1111. };