You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2081 lines
68KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG Audio decoder
  24. */
  25. #include "libavutil/avassert.h"
  26. #include "libavutil/channel_layout.h"
  27. #include "libavutil/libm.h"
  28. #include "avcodec.h"
  29. #include "get_bits.h"
  30. #include "mathops.h"
  31. #include "mpegaudiodsp.h"
  32. #include "dsputil.h"
  33. /*
  34. * TODO:
  35. * - test lsf / mpeg25 extensively.
  36. */
  37. #include "mpegaudio.h"
  38. #include "mpegaudiodecheader.h"
  39. #define BACKSTEP_SIZE 512
  40. #define EXTRABYTES 24
  41. #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
  42. /* layer 3 "granule" */
  43. typedef struct GranuleDef {
  44. uint8_t scfsi;
  45. int part2_3_length;
  46. int big_values;
  47. int global_gain;
  48. int scalefac_compress;
  49. uint8_t block_type;
  50. uint8_t switch_point;
  51. int table_select[3];
  52. int subblock_gain[3];
  53. uint8_t scalefac_scale;
  54. uint8_t count1table_select;
  55. int region_size[3]; /* number of huffman codes in each region */
  56. int preflag;
  57. int short_start, long_end; /* long/short band indexes */
  58. uint8_t scale_factors[40];
  59. DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
  60. } GranuleDef;
  61. typedef struct MPADecodeContext {
  62. MPA_DECODE_HEADER
  63. uint8_t last_buf[LAST_BUF_SIZE];
  64. int last_buf_size;
  65. /* next header (used in free format parsing) */
  66. uint32_t free_format_next_header;
  67. GetBitContext gb;
  68. GetBitContext in_gb;
  69. DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
  70. int synth_buf_offset[MPA_MAX_CHANNELS];
  71. DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
  72. INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  73. GranuleDef granules[2][2]; /* Used in Layer 3 */
  74. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  75. int dither_state;
  76. int err_recognition;
  77. AVCodecContext* avctx;
  78. MPADSPContext mpadsp;
  79. DSPContext dsp;
  80. AVFrame frame;
  81. } MPADecodeContext;
  82. #if CONFIG_FLOAT
  83. # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
  84. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  85. # define FIXR(x) ((float)(x))
  86. # define FIXHR(x) ((float)(x))
  87. # define MULH3(x, y, s) ((s)*(y)*(x))
  88. # define MULLx(x, y, s) ((y)*(x))
  89. # define RENAME(a) a ## _float
  90. # define OUT_FMT AV_SAMPLE_FMT_FLT
  91. # define OUT_FMT_P AV_SAMPLE_FMT_FLTP
  92. #else
  93. # define SHR(a,b) ((a)>>(b))
  94. /* WARNING: only correct for positive numbers */
  95. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  96. # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  97. # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  98. # define MULH3(x, y, s) MULH((s)*(x), y)
  99. # define MULLx(x, y, s) MULL(x,y,s)
  100. # define RENAME(a) a ## _fixed
  101. # define OUT_FMT AV_SAMPLE_FMT_S16
  102. # define OUT_FMT_P AV_SAMPLE_FMT_S16P
  103. #endif
  104. /****************/
  105. #define HEADER_SIZE 4
  106. #include "mpegaudiodata.h"
  107. #include "mpegaudiodectab.h"
  108. /* vlc structure for decoding layer 3 huffman tables */
  109. static VLC huff_vlc[16];
  110. static VLC_TYPE huff_vlc_tables[
  111. 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
  112. 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
  113. ][2];
  114. static const int huff_vlc_tables_sizes[16] = {
  115. 0, 128, 128, 128, 130, 128, 154, 166,
  116. 142, 204, 190, 170, 542, 460, 662, 414
  117. };
  118. static VLC huff_quad_vlc[2];
  119. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  120. static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
  121. /* computed from band_size_long */
  122. static uint16_t band_index_long[9][23];
  123. #include "mpegaudio_tablegen.h"
  124. /* intensity stereo coef table */
  125. static INTFLOAT is_table[2][16];
  126. static INTFLOAT is_table_lsf[2][2][16];
  127. static INTFLOAT csa_table[8][4];
  128. static int16_t division_tab3[1<<6 ];
  129. static int16_t division_tab5[1<<8 ];
  130. static int16_t division_tab9[1<<11];
  131. static int16_t * const division_tabs[4] = {
  132. division_tab3, division_tab5, NULL, division_tab9
  133. };
  134. /* lower 2 bits: modulo 3, higher bits: shift */
  135. static uint16_t scale_factor_modshift[64];
  136. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  137. static int32_t scale_factor_mult[15][3];
  138. /* mult table for layer 2 group quantization */
  139. #define SCALE_GEN(v) \
  140. { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
  141. static const int32_t scale_factor_mult2[3][3] = {
  142. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  143. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  144. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  145. };
  146. /**
  147. * Convert region offsets to region sizes and truncate
  148. * size to big_values.
  149. */
  150. static void ff_region_offset2size(GranuleDef *g)
  151. {
  152. int i, k, j = 0;
  153. g->region_size[2] = 576 / 2;
  154. for (i = 0; i < 3; i++) {
  155. k = FFMIN(g->region_size[i], g->big_values);
  156. g->region_size[i] = k - j;
  157. j = k;
  158. }
  159. }
  160. static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g)
  161. {
  162. if (g->block_type == 2) {
  163. if (s->sample_rate_index != 8)
  164. g->region_size[0] = (36 / 2);
  165. else
  166. g->region_size[0] = (72 / 2);
  167. } else {
  168. if (s->sample_rate_index <= 2)
  169. g->region_size[0] = (36 / 2);
  170. else if (s->sample_rate_index != 8)
  171. g->region_size[0] = (54 / 2);
  172. else
  173. g->region_size[0] = (108 / 2);
  174. }
  175. g->region_size[1] = (576 / 2);
  176. }
  177. static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2)
  178. {
  179. int l;
  180. g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  181. /* should not overflow */
  182. l = FFMIN(ra1 + ra2 + 2, 22);
  183. g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
  184. }
  185. static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
  186. {
  187. if (g->block_type == 2) {
  188. if (g->switch_point) {
  189. if(s->sample_rate_index == 8)
  190. av_log_ask_for_sample(s->avctx, "switch point in 8khz\n");
  191. /* if switched mode, we handle the 36 first samples as
  192. long blocks. For 8000Hz, we handle the 72 first
  193. exponents as long blocks */
  194. if (s->sample_rate_index <= 2)
  195. g->long_end = 8;
  196. else
  197. g->long_end = 6;
  198. g->short_start = 3;
  199. } else {
  200. g->long_end = 0;
  201. g->short_start = 0;
  202. }
  203. } else {
  204. g->short_start = 13;
  205. g->long_end = 22;
  206. }
  207. }
  208. /* layer 1 unscaling */
  209. /* n = number of bits of the mantissa minus 1 */
  210. static inline int l1_unscale(int n, int mant, int scale_factor)
  211. {
  212. int shift, mod;
  213. int64_t val;
  214. shift = scale_factor_modshift[scale_factor];
  215. mod = shift & 3;
  216. shift >>= 2;
  217. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  218. shift += n;
  219. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  220. return (int)((val + (1LL << (shift - 1))) >> shift);
  221. }
  222. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  223. {
  224. int shift, mod, val;
  225. shift = scale_factor_modshift[scale_factor];
  226. mod = shift & 3;
  227. shift >>= 2;
  228. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  229. /* NOTE: at this point, 0 <= shift <= 21 */
  230. if (shift > 0)
  231. val = (val + (1 << (shift - 1))) >> shift;
  232. return val;
  233. }
  234. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  235. static inline int l3_unscale(int value, int exponent)
  236. {
  237. unsigned int m;
  238. int e;
  239. e = table_4_3_exp [4 * value + (exponent & 3)];
  240. m = table_4_3_value[4 * value + (exponent & 3)];
  241. e -= exponent >> 2;
  242. #ifdef DEBUG
  243. if(e < 1)
  244. av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
  245. #endif
  246. if (e > 31)
  247. return 0;
  248. m = (m + (1 << (e - 1))) >> e;
  249. return m;
  250. }
  251. static av_cold void decode_init_static(void)
  252. {
  253. int i, j, k;
  254. int offset;
  255. /* scale factors table for layer 1/2 */
  256. for (i = 0; i < 64; i++) {
  257. int shift, mod;
  258. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  259. shift = i / 3;
  260. mod = i % 3;
  261. scale_factor_modshift[i] = mod | (shift << 2);
  262. }
  263. /* scale factor multiply for layer 1 */
  264. for (i = 0; i < 15; i++) {
  265. int n, norm;
  266. n = i + 2;
  267. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  268. scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
  269. scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
  270. scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
  271. av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
  272. scale_factor_mult[i][0],
  273. scale_factor_mult[i][1],
  274. scale_factor_mult[i][2]);
  275. }
  276. RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
  277. /* huffman decode tables */
  278. offset = 0;
  279. for (i = 1; i < 16; i++) {
  280. const HuffTable *h = &mpa_huff_tables[i];
  281. int xsize, x, y;
  282. uint8_t tmp_bits [512] = { 0 };
  283. uint16_t tmp_codes[512] = { 0 };
  284. xsize = h->xsize;
  285. j = 0;
  286. for (x = 0; x < xsize; x++) {
  287. for (y = 0; y < xsize; y++) {
  288. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  289. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  290. }
  291. }
  292. /* XXX: fail test */
  293. huff_vlc[i].table = huff_vlc_tables+offset;
  294. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  295. init_vlc(&huff_vlc[i], 7, 512,
  296. tmp_bits, 1, 1, tmp_codes, 2, 2,
  297. INIT_VLC_USE_NEW_STATIC);
  298. offset += huff_vlc_tables_sizes[i];
  299. }
  300. av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  301. offset = 0;
  302. for (i = 0; i < 2; i++) {
  303. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  304. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  305. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  306. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  307. INIT_VLC_USE_NEW_STATIC);
  308. offset += huff_quad_vlc_tables_sizes[i];
  309. }
  310. av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  311. for (i = 0; i < 9; i++) {
  312. k = 0;
  313. for (j = 0; j < 22; j++) {
  314. band_index_long[i][j] = k;
  315. k += band_size_long[i][j];
  316. }
  317. band_index_long[i][22] = k;
  318. }
  319. /* compute n ^ (4/3) and store it in mantissa/exp format */
  320. mpegaudio_tableinit();
  321. for (i = 0; i < 4; i++) {
  322. if (ff_mpa_quant_bits[i] < 0) {
  323. for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
  324. int val1, val2, val3, steps;
  325. int val = j;
  326. steps = ff_mpa_quant_steps[i];
  327. val1 = val % steps;
  328. val /= steps;
  329. val2 = val % steps;
  330. val3 = val / steps;
  331. division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
  332. }
  333. }
  334. }
  335. for (i = 0; i < 7; i++) {
  336. float f;
  337. INTFLOAT v;
  338. if (i != 6) {
  339. f = tan((double)i * M_PI / 12.0);
  340. v = FIXR(f / (1.0 + f));
  341. } else {
  342. v = FIXR(1.0);
  343. }
  344. is_table[0][ i] = v;
  345. is_table[1][6 - i] = v;
  346. }
  347. /* invalid values */
  348. for (i = 7; i < 16; i++)
  349. is_table[0][i] = is_table[1][i] = 0.0;
  350. for (i = 0; i < 16; i++) {
  351. double f;
  352. int e, k;
  353. for (j = 0; j < 2; j++) {
  354. e = -(j + 1) * ((i + 1) >> 1);
  355. f = exp2(e / 4.0);
  356. k = i & 1;
  357. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  358. is_table_lsf[j][k ][i] = FIXR(1.0);
  359. av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
  360. i, j, (float) is_table_lsf[j][0][i],
  361. (float) is_table_lsf[j][1][i]);
  362. }
  363. }
  364. for (i = 0; i < 8; i++) {
  365. float ci, cs, ca;
  366. ci = ci_table[i];
  367. cs = 1.0 / sqrt(1.0 + ci * ci);
  368. ca = cs * ci;
  369. #if !CONFIG_FLOAT
  370. csa_table[i][0] = FIXHR(cs/4);
  371. csa_table[i][1] = FIXHR(ca/4);
  372. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  373. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  374. #else
  375. csa_table[i][0] = cs;
  376. csa_table[i][1] = ca;
  377. csa_table[i][2] = ca + cs;
  378. csa_table[i][3] = ca - cs;
  379. #endif
  380. }
  381. }
  382. static av_cold int decode_init(AVCodecContext * avctx)
  383. {
  384. static int initialized_tables = 0;
  385. MPADecodeContext *s = avctx->priv_data;
  386. if (!initialized_tables) {
  387. decode_init_static();
  388. initialized_tables = 1;
  389. }
  390. s->avctx = avctx;
  391. ff_mpadsp_init(&s->mpadsp);
  392. ff_dsputil_init(&s->dsp, avctx);
  393. if (avctx->request_sample_fmt == OUT_FMT &&
  394. avctx->codec_id != AV_CODEC_ID_MP3ON4)
  395. avctx->sample_fmt = OUT_FMT;
  396. else
  397. avctx->sample_fmt = OUT_FMT_P;
  398. s->err_recognition = avctx->err_recognition;
  399. if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
  400. s->adu_mode = 1;
  401. avcodec_get_frame_defaults(&s->frame);
  402. avctx->coded_frame = &s->frame;
  403. return 0;
  404. }
  405. #define C3 FIXHR(0.86602540378443864676/2)
  406. #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
  407. #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
  408. #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
  409. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  410. cases. */
  411. static void imdct12(INTFLOAT *out, INTFLOAT *in)
  412. {
  413. INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
  414. in0 = in[0*3];
  415. in1 = in[1*3] + in[0*3];
  416. in2 = in[2*3] + in[1*3];
  417. in3 = in[3*3] + in[2*3];
  418. in4 = in[4*3] + in[3*3];
  419. in5 = in[5*3] + in[4*3];
  420. in5 += in3;
  421. in3 += in1;
  422. in2 = MULH3(in2, C3, 2);
  423. in3 = MULH3(in3, C3, 4);
  424. t1 = in0 - in4;
  425. t2 = MULH3(in1 - in5, C4, 2);
  426. out[ 7] =
  427. out[10] = t1 + t2;
  428. out[ 1] =
  429. out[ 4] = t1 - t2;
  430. in0 += SHR(in4, 1);
  431. in4 = in0 + in2;
  432. in5 += 2*in1;
  433. in1 = MULH3(in5 + in3, C5, 1);
  434. out[ 8] =
  435. out[ 9] = in4 + in1;
  436. out[ 2] =
  437. out[ 3] = in4 - in1;
  438. in0 -= in2;
  439. in5 = MULH3(in5 - in3, C6, 2);
  440. out[ 0] =
  441. out[ 5] = in0 - in5;
  442. out[ 6] =
  443. out[11] = in0 + in5;
  444. }
  445. /* return the number of decoded frames */
  446. static int mp_decode_layer1(MPADecodeContext *s)
  447. {
  448. int bound, i, v, n, ch, j, mant;
  449. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  450. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  451. if (s->mode == MPA_JSTEREO)
  452. bound = (s->mode_ext + 1) * 4;
  453. else
  454. bound = SBLIMIT;
  455. /* allocation bits */
  456. for (i = 0; i < bound; i++) {
  457. for (ch = 0; ch < s->nb_channels; ch++) {
  458. allocation[ch][i] = get_bits(&s->gb, 4);
  459. }
  460. }
  461. for (i = bound; i < SBLIMIT; i++)
  462. allocation[0][i] = get_bits(&s->gb, 4);
  463. /* scale factors */
  464. for (i = 0; i < bound; i++) {
  465. for (ch = 0; ch < s->nb_channels; ch++) {
  466. if (allocation[ch][i])
  467. scale_factors[ch][i] = get_bits(&s->gb, 6);
  468. }
  469. }
  470. for (i = bound; i < SBLIMIT; i++) {
  471. if (allocation[0][i]) {
  472. scale_factors[0][i] = get_bits(&s->gb, 6);
  473. scale_factors[1][i] = get_bits(&s->gb, 6);
  474. }
  475. }
  476. /* compute samples */
  477. for (j = 0; j < 12; j++) {
  478. for (i = 0; i < bound; i++) {
  479. for (ch = 0; ch < s->nb_channels; ch++) {
  480. n = allocation[ch][i];
  481. if (n) {
  482. mant = get_bits(&s->gb, n + 1);
  483. v = l1_unscale(n, mant, scale_factors[ch][i]);
  484. } else {
  485. v = 0;
  486. }
  487. s->sb_samples[ch][j][i] = v;
  488. }
  489. }
  490. for (i = bound; i < SBLIMIT; i++) {
  491. n = allocation[0][i];
  492. if (n) {
  493. mant = get_bits(&s->gb, n + 1);
  494. v = l1_unscale(n, mant, scale_factors[0][i]);
  495. s->sb_samples[0][j][i] = v;
  496. v = l1_unscale(n, mant, scale_factors[1][i]);
  497. s->sb_samples[1][j][i] = v;
  498. } else {
  499. s->sb_samples[0][j][i] = 0;
  500. s->sb_samples[1][j][i] = 0;
  501. }
  502. }
  503. }
  504. return 12;
  505. }
  506. static int mp_decode_layer2(MPADecodeContext *s)
  507. {
  508. int sblimit; /* number of used subbands */
  509. const unsigned char *alloc_table;
  510. int table, bit_alloc_bits, i, j, ch, bound, v;
  511. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  512. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  513. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  514. int scale, qindex, bits, steps, k, l, m, b;
  515. /* select decoding table */
  516. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  517. s->sample_rate, s->lsf);
  518. sblimit = ff_mpa_sblimit_table[table];
  519. alloc_table = ff_mpa_alloc_tables[table];
  520. if (s->mode == MPA_JSTEREO)
  521. bound = (s->mode_ext + 1) * 4;
  522. else
  523. bound = sblimit;
  524. av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  525. /* sanity check */
  526. if (bound > sblimit)
  527. bound = sblimit;
  528. /* parse bit allocation */
  529. j = 0;
  530. for (i = 0; i < bound; i++) {
  531. bit_alloc_bits = alloc_table[j];
  532. for (ch = 0; ch < s->nb_channels; ch++)
  533. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  534. j += 1 << bit_alloc_bits;
  535. }
  536. for (i = bound; i < sblimit; i++) {
  537. bit_alloc_bits = alloc_table[j];
  538. v = get_bits(&s->gb, bit_alloc_bits);
  539. bit_alloc[0][i] = v;
  540. bit_alloc[1][i] = v;
  541. j += 1 << bit_alloc_bits;
  542. }
  543. /* scale codes */
  544. for (i = 0; i < sblimit; i++) {
  545. for (ch = 0; ch < s->nb_channels; ch++) {
  546. if (bit_alloc[ch][i])
  547. scale_code[ch][i] = get_bits(&s->gb, 2);
  548. }
  549. }
  550. /* scale factors */
  551. for (i = 0; i < sblimit; i++) {
  552. for (ch = 0; ch < s->nb_channels; ch++) {
  553. if (bit_alloc[ch][i]) {
  554. sf = scale_factors[ch][i];
  555. switch (scale_code[ch][i]) {
  556. default:
  557. case 0:
  558. sf[0] = get_bits(&s->gb, 6);
  559. sf[1] = get_bits(&s->gb, 6);
  560. sf[2] = get_bits(&s->gb, 6);
  561. break;
  562. case 2:
  563. sf[0] = get_bits(&s->gb, 6);
  564. sf[1] = sf[0];
  565. sf[2] = sf[0];
  566. break;
  567. case 1:
  568. sf[0] = get_bits(&s->gb, 6);
  569. sf[2] = get_bits(&s->gb, 6);
  570. sf[1] = sf[0];
  571. break;
  572. case 3:
  573. sf[0] = get_bits(&s->gb, 6);
  574. sf[2] = get_bits(&s->gb, 6);
  575. sf[1] = sf[2];
  576. break;
  577. }
  578. }
  579. }
  580. }
  581. /* samples */
  582. for (k = 0; k < 3; k++) {
  583. for (l = 0; l < 12; l += 3) {
  584. j = 0;
  585. for (i = 0; i < bound; i++) {
  586. bit_alloc_bits = alloc_table[j];
  587. for (ch = 0; ch < s->nb_channels; ch++) {
  588. b = bit_alloc[ch][i];
  589. if (b) {
  590. scale = scale_factors[ch][i][k];
  591. qindex = alloc_table[j+b];
  592. bits = ff_mpa_quant_bits[qindex];
  593. if (bits < 0) {
  594. int v2;
  595. /* 3 values at the same time */
  596. v = get_bits(&s->gb, -bits);
  597. v2 = division_tabs[qindex][v];
  598. steps = ff_mpa_quant_steps[qindex];
  599. s->sb_samples[ch][k * 12 + l + 0][i] =
  600. l2_unscale_group(steps, v2 & 15, scale);
  601. s->sb_samples[ch][k * 12 + l + 1][i] =
  602. l2_unscale_group(steps, (v2 >> 4) & 15, scale);
  603. s->sb_samples[ch][k * 12 + l + 2][i] =
  604. l2_unscale_group(steps, v2 >> 8 , scale);
  605. } else {
  606. for (m = 0; m < 3; m++) {
  607. v = get_bits(&s->gb, bits);
  608. v = l1_unscale(bits - 1, v, scale);
  609. s->sb_samples[ch][k * 12 + l + m][i] = v;
  610. }
  611. }
  612. } else {
  613. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  614. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  615. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  616. }
  617. }
  618. /* next subband in alloc table */
  619. j += 1 << bit_alloc_bits;
  620. }
  621. /* XXX: find a way to avoid this duplication of code */
  622. for (i = bound; i < sblimit; i++) {
  623. bit_alloc_bits = alloc_table[j];
  624. b = bit_alloc[0][i];
  625. if (b) {
  626. int mant, scale0, scale1;
  627. scale0 = scale_factors[0][i][k];
  628. scale1 = scale_factors[1][i][k];
  629. qindex = alloc_table[j+b];
  630. bits = ff_mpa_quant_bits[qindex];
  631. if (bits < 0) {
  632. /* 3 values at the same time */
  633. v = get_bits(&s->gb, -bits);
  634. steps = ff_mpa_quant_steps[qindex];
  635. mant = v % steps;
  636. v = v / steps;
  637. s->sb_samples[0][k * 12 + l + 0][i] =
  638. l2_unscale_group(steps, mant, scale0);
  639. s->sb_samples[1][k * 12 + l + 0][i] =
  640. l2_unscale_group(steps, mant, scale1);
  641. mant = v % steps;
  642. v = v / steps;
  643. s->sb_samples[0][k * 12 + l + 1][i] =
  644. l2_unscale_group(steps, mant, scale0);
  645. s->sb_samples[1][k * 12 + l + 1][i] =
  646. l2_unscale_group(steps, mant, scale1);
  647. s->sb_samples[0][k * 12 + l + 2][i] =
  648. l2_unscale_group(steps, v, scale0);
  649. s->sb_samples[1][k * 12 + l + 2][i] =
  650. l2_unscale_group(steps, v, scale1);
  651. } else {
  652. for (m = 0; m < 3; m++) {
  653. mant = get_bits(&s->gb, bits);
  654. s->sb_samples[0][k * 12 + l + m][i] =
  655. l1_unscale(bits - 1, mant, scale0);
  656. s->sb_samples[1][k * 12 + l + m][i] =
  657. l1_unscale(bits - 1, mant, scale1);
  658. }
  659. }
  660. } else {
  661. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  662. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  663. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  664. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  665. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  666. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  667. }
  668. /* next subband in alloc table */
  669. j += 1 << bit_alloc_bits;
  670. }
  671. /* fill remaining samples to zero */
  672. for (i = sblimit; i < SBLIMIT; i++) {
  673. for (ch = 0; ch < s->nb_channels; ch++) {
  674. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  675. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  676. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  677. }
  678. }
  679. }
  680. }
  681. return 3 * 12;
  682. }
  683. #define SPLIT(dst,sf,n) \
  684. if (n == 3) { \
  685. int m = (sf * 171) >> 9; \
  686. dst = sf - 3 * m; \
  687. sf = m; \
  688. } else if (n == 4) { \
  689. dst = sf & 3; \
  690. sf >>= 2; \
  691. } else if (n == 5) { \
  692. int m = (sf * 205) >> 10; \
  693. dst = sf - 5 * m; \
  694. sf = m; \
  695. } else if (n == 6) { \
  696. int m = (sf * 171) >> 10; \
  697. dst = sf - 6 * m; \
  698. sf = m; \
  699. } else { \
  700. dst = 0; \
  701. }
  702. static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
  703. int n3)
  704. {
  705. SPLIT(slen[3], sf, n3)
  706. SPLIT(slen[2], sf, n2)
  707. SPLIT(slen[1], sf, n1)
  708. slen[0] = sf;
  709. }
  710. static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
  711. int16_t *exponents)
  712. {
  713. const uint8_t *bstab, *pretab;
  714. int len, i, j, k, l, v0, shift, gain, gains[3];
  715. int16_t *exp_ptr;
  716. exp_ptr = exponents;
  717. gain = g->global_gain - 210;
  718. shift = g->scalefac_scale + 1;
  719. bstab = band_size_long[s->sample_rate_index];
  720. pretab = mpa_pretab[g->preflag];
  721. for (i = 0; i < g->long_end; i++) {
  722. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  723. len = bstab[i];
  724. for (j = len; j > 0; j--)
  725. *exp_ptr++ = v0;
  726. }
  727. if (g->short_start < 13) {
  728. bstab = band_size_short[s->sample_rate_index];
  729. gains[0] = gain - (g->subblock_gain[0] << 3);
  730. gains[1] = gain - (g->subblock_gain[1] << 3);
  731. gains[2] = gain - (g->subblock_gain[2] << 3);
  732. k = g->long_end;
  733. for (i = g->short_start; i < 13; i++) {
  734. len = bstab[i];
  735. for (l = 0; l < 3; l++) {
  736. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  737. for (j = len; j > 0; j--)
  738. *exp_ptr++ = v0;
  739. }
  740. }
  741. }
  742. }
  743. /* handle n = 0 too */
  744. static inline int get_bitsz(GetBitContext *s, int n)
  745. {
  746. return n ? get_bits(s, n) : 0;
  747. }
  748. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
  749. int *end_pos2)
  750. {
  751. if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
  752. s->gb = s->in_gb;
  753. s->in_gb.buffer = NULL;
  754. av_assert2((get_bits_count(&s->gb) & 7) == 0);
  755. skip_bits_long(&s->gb, *pos - *end_pos);
  756. *end_pos2 =
  757. *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
  758. *pos = get_bits_count(&s->gb);
  759. }
  760. }
  761. /* Following is a optimized code for
  762. INTFLOAT v = *src
  763. if(get_bits1(&s->gb))
  764. v = -v;
  765. *dst = v;
  766. */
  767. #if CONFIG_FLOAT
  768. #define READ_FLIP_SIGN(dst,src) \
  769. v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
  770. AV_WN32A(dst, v);
  771. #else
  772. #define READ_FLIP_SIGN(dst,src) \
  773. v = -get_bits1(&s->gb); \
  774. *(dst) = (*(src) ^ v) - v;
  775. #endif
  776. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  777. int16_t *exponents, int end_pos2)
  778. {
  779. int s_index;
  780. int i;
  781. int last_pos, bits_left;
  782. VLC *vlc;
  783. int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
  784. /* low frequencies (called big values) */
  785. s_index = 0;
  786. for (i = 0; i < 3; i++) {
  787. int j, k, l, linbits;
  788. j = g->region_size[i];
  789. if (j == 0)
  790. continue;
  791. /* select vlc table */
  792. k = g->table_select[i];
  793. l = mpa_huff_data[k][0];
  794. linbits = mpa_huff_data[k][1];
  795. vlc = &huff_vlc[l];
  796. if (!l) {
  797. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
  798. s_index += 2 * j;
  799. continue;
  800. }
  801. /* read huffcode and compute each couple */
  802. for (; j > 0; j--) {
  803. int exponent, x, y;
  804. int v;
  805. int pos = get_bits_count(&s->gb);
  806. if (pos >= end_pos){
  807. switch_buffer(s, &pos, &end_pos, &end_pos2);
  808. if (pos >= end_pos)
  809. break;
  810. }
  811. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  812. if (!y) {
  813. g->sb_hybrid[s_index ] =
  814. g->sb_hybrid[s_index+1] = 0;
  815. s_index += 2;
  816. continue;
  817. }
  818. exponent= exponents[s_index];
  819. av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  820. i, g->region_size[i] - j, x, y, exponent);
  821. if (y & 16) {
  822. x = y >> 5;
  823. y = y & 0x0f;
  824. if (x < 15) {
  825. READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
  826. } else {
  827. x += get_bitsz(&s->gb, linbits);
  828. v = l3_unscale(x, exponent);
  829. if (get_bits1(&s->gb))
  830. v = -v;
  831. g->sb_hybrid[s_index] = v;
  832. }
  833. if (y < 15) {
  834. READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
  835. } else {
  836. y += get_bitsz(&s->gb, linbits);
  837. v = l3_unscale(y, exponent);
  838. if (get_bits1(&s->gb))
  839. v = -v;
  840. g->sb_hybrid[s_index+1] = v;
  841. }
  842. } else {
  843. x = y >> 5;
  844. y = y & 0x0f;
  845. x += y;
  846. if (x < 15) {
  847. READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
  848. } else {
  849. x += get_bitsz(&s->gb, linbits);
  850. v = l3_unscale(x, exponent);
  851. if (get_bits1(&s->gb))
  852. v = -v;
  853. g->sb_hybrid[s_index+!!y] = v;
  854. }
  855. g->sb_hybrid[s_index + !y] = 0;
  856. }
  857. s_index += 2;
  858. }
  859. }
  860. /* high frequencies */
  861. vlc = &huff_quad_vlc[g->count1table_select];
  862. last_pos = 0;
  863. while (s_index <= 572) {
  864. int pos, code;
  865. pos = get_bits_count(&s->gb);
  866. if (pos >= end_pos) {
  867. if (pos > end_pos2 && last_pos) {
  868. /* some encoders generate an incorrect size for this
  869. part. We must go back into the data */
  870. s_index -= 4;
  871. skip_bits_long(&s->gb, last_pos - pos);
  872. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  873. if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
  874. s_index=0;
  875. break;
  876. }
  877. switch_buffer(s, &pos, &end_pos, &end_pos2);
  878. if (pos >= end_pos)
  879. break;
  880. }
  881. last_pos = pos;
  882. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  883. av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  884. g->sb_hybrid[s_index+0] =
  885. g->sb_hybrid[s_index+1] =
  886. g->sb_hybrid[s_index+2] =
  887. g->sb_hybrid[s_index+3] = 0;
  888. while (code) {
  889. static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
  890. int v;
  891. int pos = s_index + idxtab[code];
  892. code ^= 8 >> idxtab[code];
  893. READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
  894. }
  895. s_index += 4;
  896. }
  897. /* skip extension bits */
  898. bits_left = end_pos2 - get_bits_count(&s->gb);
  899. if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
  900. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  901. s_index=0;
  902. } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
  903. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  904. s_index = 0;
  905. }
  906. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
  907. skip_bits_long(&s->gb, bits_left);
  908. i = get_bits_count(&s->gb);
  909. switch_buffer(s, &i, &end_pos, &end_pos2);
  910. return 0;
  911. }
  912. /* Reorder short blocks from bitstream order to interleaved order. It
  913. would be faster to do it in parsing, but the code would be far more
  914. complicated */
  915. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  916. {
  917. int i, j, len;
  918. INTFLOAT *ptr, *dst, *ptr1;
  919. INTFLOAT tmp[576];
  920. if (g->block_type != 2)
  921. return;
  922. if (g->switch_point) {
  923. if (s->sample_rate_index != 8)
  924. ptr = g->sb_hybrid + 36;
  925. else
  926. ptr = g->sb_hybrid + 72;
  927. } else {
  928. ptr = g->sb_hybrid;
  929. }
  930. for (i = g->short_start; i < 13; i++) {
  931. len = band_size_short[s->sample_rate_index][i];
  932. ptr1 = ptr;
  933. dst = tmp;
  934. for (j = len; j > 0; j--) {
  935. *dst++ = ptr[0*len];
  936. *dst++ = ptr[1*len];
  937. *dst++ = ptr[2*len];
  938. ptr++;
  939. }
  940. ptr += 2 * len;
  941. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  942. }
  943. }
  944. #define ISQRT2 FIXR(0.70710678118654752440)
  945. static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
  946. {
  947. int i, j, k, l;
  948. int sf_max, sf, len, non_zero_found;
  949. INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
  950. int non_zero_found_short[3];
  951. /* intensity stereo */
  952. if (s->mode_ext & MODE_EXT_I_STEREO) {
  953. if (!s->lsf) {
  954. is_tab = is_table;
  955. sf_max = 7;
  956. } else {
  957. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  958. sf_max = 16;
  959. }
  960. tab0 = g0->sb_hybrid + 576;
  961. tab1 = g1->sb_hybrid + 576;
  962. non_zero_found_short[0] = 0;
  963. non_zero_found_short[1] = 0;
  964. non_zero_found_short[2] = 0;
  965. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  966. for (i = 12; i >= g1->short_start; i--) {
  967. /* for last band, use previous scale factor */
  968. if (i != 11)
  969. k -= 3;
  970. len = band_size_short[s->sample_rate_index][i];
  971. for (l = 2; l >= 0; l--) {
  972. tab0 -= len;
  973. tab1 -= len;
  974. if (!non_zero_found_short[l]) {
  975. /* test if non zero band. if so, stop doing i-stereo */
  976. for (j = 0; j < len; j++) {
  977. if (tab1[j] != 0) {
  978. non_zero_found_short[l] = 1;
  979. goto found1;
  980. }
  981. }
  982. sf = g1->scale_factors[k + l];
  983. if (sf >= sf_max)
  984. goto found1;
  985. v1 = is_tab[0][sf];
  986. v2 = is_tab[1][sf];
  987. for (j = 0; j < len; j++) {
  988. tmp0 = tab0[j];
  989. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  990. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  991. }
  992. } else {
  993. found1:
  994. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  995. /* lower part of the spectrum : do ms stereo
  996. if enabled */
  997. for (j = 0; j < len; j++) {
  998. tmp0 = tab0[j];
  999. tmp1 = tab1[j];
  1000. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1001. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1002. }
  1003. }
  1004. }
  1005. }
  1006. }
  1007. non_zero_found = non_zero_found_short[0] |
  1008. non_zero_found_short[1] |
  1009. non_zero_found_short[2];
  1010. for (i = g1->long_end - 1;i >= 0;i--) {
  1011. len = band_size_long[s->sample_rate_index][i];
  1012. tab0 -= len;
  1013. tab1 -= len;
  1014. /* test if non zero band. if so, stop doing i-stereo */
  1015. if (!non_zero_found) {
  1016. for (j = 0; j < len; j++) {
  1017. if (tab1[j] != 0) {
  1018. non_zero_found = 1;
  1019. goto found2;
  1020. }
  1021. }
  1022. /* for last band, use previous scale factor */
  1023. k = (i == 21) ? 20 : i;
  1024. sf = g1->scale_factors[k];
  1025. if (sf >= sf_max)
  1026. goto found2;
  1027. v1 = is_tab[0][sf];
  1028. v2 = is_tab[1][sf];
  1029. for (j = 0; j < len; j++) {
  1030. tmp0 = tab0[j];
  1031. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1032. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1033. }
  1034. } else {
  1035. found2:
  1036. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1037. /* lower part of the spectrum : do ms stereo
  1038. if enabled */
  1039. for (j = 0; j < len; j++) {
  1040. tmp0 = tab0[j];
  1041. tmp1 = tab1[j];
  1042. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1043. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1044. }
  1045. }
  1046. }
  1047. }
  1048. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1049. /* ms stereo ONLY */
  1050. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1051. global gain */
  1052. #if CONFIG_FLOAT
  1053. s-> dsp.butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
  1054. #else
  1055. tab0 = g0->sb_hybrid;
  1056. tab1 = g1->sb_hybrid;
  1057. for (i = 0; i < 576; i++) {
  1058. tmp0 = tab0[i];
  1059. tmp1 = tab1[i];
  1060. tab0[i] = tmp0 + tmp1;
  1061. tab1[i] = tmp0 - tmp1;
  1062. }
  1063. #endif
  1064. }
  1065. }
  1066. #if CONFIG_FLOAT
  1067. #if HAVE_MIPSFPU
  1068. # include "mips/compute_antialias_float.h"
  1069. #endif /* HAVE_MIPSFPU */
  1070. #else
  1071. #if HAVE_MIPSDSPR1
  1072. # include "mips/compute_antialias_fixed.h"
  1073. #endif /* HAVE_MIPSDSPR1 */
  1074. #endif /* CONFIG_FLOAT */
  1075. #ifndef compute_antialias
  1076. #if CONFIG_FLOAT
  1077. #define AA(j) do { \
  1078. float tmp0 = ptr[-1-j]; \
  1079. float tmp1 = ptr[ j]; \
  1080. ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
  1081. ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
  1082. } while (0)
  1083. #else
  1084. #define AA(j) do { \
  1085. int tmp0 = ptr[-1-j]; \
  1086. int tmp1 = ptr[ j]; \
  1087. int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
  1088. ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
  1089. ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
  1090. } while (0)
  1091. #endif
  1092. static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
  1093. {
  1094. INTFLOAT *ptr;
  1095. int n, i;
  1096. /* we antialias only "long" bands */
  1097. if (g->block_type == 2) {
  1098. if (!g->switch_point)
  1099. return;
  1100. /* XXX: check this for 8000Hz case */
  1101. n = 1;
  1102. } else {
  1103. n = SBLIMIT - 1;
  1104. }
  1105. ptr = g->sb_hybrid + 18;
  1106. for (i = n; i > 0; i--) {
  1107. AA(0);
  1108. AA(1);
  1109. AA(2);
  1110. AA(3);
  1111. AA(4);
  1112. AA(5);
  1113. AA(6);
  1114. AA(7);
  1115. ptr += 18;
  1116. }
  1117. }
  1118. #endif /* compute_antialias */
  1119. static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
  1120. INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
  1121. {
  1122. INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
  1123. INTFLOAT out2[12];
  1124. int i, j, mdct_long_end, sblimit;
  1125. /* find last non zero block */
  1126. ptr = g->sb_hybrid + 576;
  1127. ptr1 = g->sb_hybrid + 2 * 18;
  1128. while (ptr >= ptr1) {
  1129. int32_t *p;
  1130. ptr -= 6;
  1131. p = (int32_t*)ptr;
  1132. if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
  1133. break;
  1134. }
  1135. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1136. if (g->block_type == 2) {
  1137. /* XXX: check for 8000 Hz */
  1138. if (g->switch_point)
  1139. mdct_long_end = 2;
  1140. else
  1141. mdct_long_end = 0;
  1142. } else {
  1143. mdct_long_end = sblimit;
  1144. }
  1145. s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
  1146. mdct_long_end, g->switch_point,
  1147. g->block_type);
  1148. buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
  1149. ptr = g->sb_hybrid + 18 * mdct_long_end;
  1150. for (j = mdct_long_end; j < sblimit; j++) {
  1151. /* select frequency inversion */
  1152. win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
  1153. out_ptr = sb_samples + j;
  1154. for (i = 0; i < 6; i++) {
  1155. *out_ptr = buf[4*i];
  1156. out_ptr += SBLIMIT;
  1157. }
  1158. imdct12(out2, ptr + 0);
  1159. for (i = 0; i < 6; i++) {
  1160. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
  1161. buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
  1162. out_ptr += SBLIMIT;
  1163. }
  1164. imdct12(out2, ptr + 1);
  1165. for (i = 0; i < 6; i++) {
  1166. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
  1167. buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
  1168. out_ptr += SBLIMIT;
  1169. }
  1170. imdct12(out2, ptr + 2);
  1171. for (i = 0; i < 6; i++) {
  1172. buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
  1173. buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
  1174. buf[4*(i + 6*2)] = 0;
  1175. }
  1176. ptr += 18;
  1177. buf += (j&3) != 3 ? 1 : (4*18-3);
  1178. }
  1179. /* zero bands */
  1180. for (j = sblimit; j < SBLIMIT; j++) {
  1181. /* overlap */
  1182. out_ptr = sb_samples + j;
  1183. for (i = 0; i < 18; i++) {
  1184. *out_ptr = buf[4*i];
  1185. buf[4*i] = 0;
  1186. out_ptr += SBLIMIT;
  1187. }
  1188. buf += (j&3) != 3 ? 1 : (4*18-3);
  1189. }
  1190. }
  1191. /* main layer3 decoding function */
  1192. static int mp_decode_layer3(MPADecodeContext *s)
  1193. {
  1194. int nb_granules, main_data_begin;
  1195. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1196. GranuleDef *g;
  1197. int16_t exponents[576]; //FIXME try INTFLOAT
  1198. /* read side info */
  1199. if (s->lsf) {
  1200. main_data_begin = get_bits(&s->gb, 8);
  1201. skip_bits(&s->gb, s->nb_channels);
  1202. nb_granules = 1;
  1203. } else {
  1204. main_data_begin = get_bits(&s->gb, 9);
  1205. if (s->nb_channels == 2)
  1206. skip_bits(&s->gb, 3);
  1207. else
  1208. skip_bits(&s->gb, 5);
  1209. nb_granules = 2;
  1210. for (ch = 0; ch < s->nb_channels; ch++) {
  1211. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1212. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1213. }
  1214. }
  1215. for (gr = 0; gr < nb_granules; gr++) {
  1216. for (ch = 0; ch < s->nb_channels; ch++) {
  1217. av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1218. g = &s->granules[ch][gr];
  1219. g->part2_3_length = get_bits(&s->gb, 12);
  1220. g->big_values = get_bits(&s->gb, 9);
  1221. if (g->big_values > 288) {
  1222. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1223. return AVERROR_INVALIDDATA;
  1224. }
  1225. g->global_gain = get_bits(&s->gb, 8);
  1226. /* if MS stereo only is selected, we precompute the
  1227. 1/sqrt(2) renormalization factor */
  1228. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1229. MODE_EXT_MS_STEREO)
  1230. g->global_gain -= 2;
  1231. if (s->lsf)
  1232. g->scalefac_compress = get_bits(&s->gb, 9);
  1233. else
  1234. g->scalefac_compress = get_bits(&s->gb, 4);
  1235. blocksplit_flag = get_bits1(&s->gb);
  1236. if (blocksplit_flag) {
  1237. g->block_type = get_bits(&s->gb, 2);
  1238. if (g->block_type == 0) {
  1239. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1240. return AVERROR_INVALIDDATA;
  1241. }
  1242. g->switch_point = get_bits1(&s->gb);
  1243. for (i = 0; i < 2; i++)
  1244. g->table_select[i] = get_bits(&s->gb, 5);
  1245. for (i = 0; i < 3; i++)
  1246. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1247. ff_init_short_region(s, g);
  1248. } else {
  1249. int region_address1, region_address2;
  1250. g->block_type = 0;
  1251. g->switch_point = 0;
  1252. for (i = 0; i < 3; i++)
  1253. g->table_select[i] = get_bits(&s->gb, 5);
  1254. /* compute huffman coded region sizes */
  1255. region_address1 = get_bits(&s->gb, 4);
  1256. region_address2 = get_bits(&s->gb, 3);
  1257. av_dlog(s->avctx, "region1=%d region2=%d\n",
  1258. region_address1, region_address2);
  1259. ff_init_long_region(s, g, region_address1, region_address2);
  1260. }
  1261. ff_region_offset2size(g);
  1262. ff_compute_band_indexes(s, g);
  1263. g->preflag = 0;
  1264. if (!s->lsf)
  1265. g->preflag = get_bits1(&s->gb);
  1266. g->scalefac_scale = get_bits1(&s->gb);
  1267. g->count1table_select = get_bits1(&s->gb);
  1268. av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
  1269. g->block_type, g->switch_point);
  1270. }
  1271. }
  1272. if (!s->adu_mode) {
  1273. int skip;
  1274. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1275. int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0, EXTRABYTES);
  1276. av_assert1((get_bits_count(&s->gb) & 7) == 0);
  1277. /* now we get bits from the main_data_begin offset */
  1278. av_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
  1279. main_data_begin, s->last_buf_size);
  1280. memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
  1281. s->in_gb = s->gb;
  1282. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1283. #if !UNCHECKED_BITSTREAM_READER
  1284. s->gb.size_in_bits_plus8 += FFMAX(extrasize, LAST_BUF_SIZE - s->last_buf_size) * 8;
  1285. #endif
  1286. s->last_buf_size <<= 3;
  1287. for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
  1288. for (ch = 0; ch < s->nb_channels; ch++) {
  1289. g = &s->granules[ch][gr];
  1290. s->last_buf_size += g->part2_3_length;
  1291. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1292. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1293. }
  1294. }
  1295. skip = s->last_buf_size - 8 * main_data_begin;
  1296. if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
  1297. skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
  1298. s->gb = s->in_gb;
  1299. s->in_gb.buffer = NULL;
  1300. } else {
  1301. skip_bits_long(&s->gb, skip);
  1302. }
  1303. } else {
  1304. gr = 0;
  1305. }
  1306. for (; gr < nb_granules; gr++) {
  1307. for (ch = 0; ch < s->nb_channels; ch++) {
  1308. g = &s->granules[ch][gr];
  1309. bits_pos = get_bits_count(&s->gb);
  1310. if (!s->lsf) {
  1311. uint8_t *sc;
  1312. int slen, slen1, slen2;
  1313. /* MPEG1 scale factors */
  1314. slen1 = slen_table[0][g->scalefac_compress];
  1315. slen2 = slen_table[1][g->scalefac_compress];
  1316. av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1317. if (g->block_type == 2) {
  1318. n = g->switch_point ? 17 : 18;
  1319. j = 0;
  1320. if (slen1) {
  1321. for (i = 0; i < n; i++)
  1322. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1323. } else {
  1324. for (i = 0; i < n; i++)
  1325. g->scale_factors[j++] = 0;
  1326. }
  1327. if (slen2) {
  1328. for (i = 0; i < 18; i++)
  1329. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1330. for (i = 0; i < 3; i++)
  1331. g->scale_factors[j++] = 0;
  1332. } else {
  1333. for (i = 0; i < 21; i++)
  1334. g->scale_factors[j++] = 0;
  1335. }
  1336. } else {
  1337. sc = s->granules[ch][0].scale_factors;
  1338. j = 0;
  1339. for (k = 0; k < 4; k++) {
  1340. n = k == 0 ? 6 : 5;
  1341. if ((g->scfsi & (0x8 >> k)) == 0) {
  1342. slen = (k < 2) ? slen1 : slen2;
  1343. if (slen) {
  1344. for (i = 0; i < n; i++)
  1345. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1346. } else {
  1347. for (i = 0; i < n; i++)
  1348. g->scale_factors[j++] = 0;
  1349. }
  1350. } else {
  1351. /* simply copy from last granule */
  1352. for (i = 0; i < n; i++) {
  1353. g->scale_factors[j] = sc[j];
  1354. j++;
  1355. }
  1356. }
  1357. }
  1358. g->scale_factors[j++] = 0;
  1359. }
  1360. } else {
  1361. int tindex, tindex2, slen[4], sl, sf;
  1362. /* LSF scale factors */
  1363. if (g->block_type == 2)
  1364. tindex = g->switch_point ? 2 : 1;
  1365. else
  1366. tindex = 0;
  1367. sf = g->scalefac_compress;
  1368. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1369. /* intensity stereo case */
  1370. sf >>= 1;
  1371. if (sf < 180) {
  1372. lsf_sf_expand(slen, sf, 6, 6, 0);
  1373. tindex2 = 3;
  1374. } else if (sf < 244) {
  1375. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1376. tindex2 = 4;
  1377. } else {
  1378. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1379. tindex2 = 5;
  1380. }
  1381. } else {
  1382. /* normal case */
  1383. if (sf < 400) {
  1384. lsf_sf_expand(slen, sf, 5, 4, 4);
  1385. tindex2 = 0;
  1386. } else if (sf < 500) {
  1387. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1388. tindex2 = 1;
  1389. } else {
  1390. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1391. tindex2 = 2;
  1392. g->preflag = 1;
  1393. }
  1394. }
  1395. j = 0;
  1396. for (k = 0; k < 4; k++) {
  1397. n = lsf_nsf_table[tindex2][tindex][k];
  1398. sl = slen[k];
  1399. if (sl) {
  1400. for (i = 0; i < n; i++)
  1401. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1402. } else {
  1403. for (i = 0; i < n; i++)
  1404. g->scale_factors[j++] = 0;
  1405. }
  1406. }
  1407. /* XXX: should compute exact size */
  1408. for (; j < 40; j++)
  1409. g->scale_factors[j] = 0;
  1410. }
  1411. exponents_from_scale_factors(s, g, exponents);
  1412. /* read Huffman coded residue */
  1413. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1414. } /* ch */
  1415. if (s->mode == MPA_JSTEREO)
  1416. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1417. for (ch = 0; ch < s->nb_channels; ch++) {
  1418. g = &s->granules[ch][gr];
  1419. reorder_block(s, g);
  1420. compute_antialias(s, g);
  1421. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1422. }
  1423. } /* gr */
  1424. if (get_bits_count(&s->gb) < 0)
  1425. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1426. return nb_granules * 18;
  1427. }
  1428. static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
  1429. const uint8_t *buf, int buf_size)
  1430. {
  1431. int i, nb_frames, ch, ret;
  1432. OUT_INT *samples_ptr;
  1433. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
  1434. /* skip error protection field */
  1435. if (s->error_protection)
  1436. skip_bits(&s->gb, 16);
  1437. switch(s->layer) {
  1438. case 1:
  1439. s->avctx->frame_size = 384;
  1440. nb_frames = mp_decode_layer1(s);
  1441. break;
  1442. case 2:
  1443. s->avctx->frame_size = 1152;
  1444. nb_frames = mp_decode_layer2(s);
  1445. break;
  1446. case 3:
  1447. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1448. default:
  1449. nb_frames = mp_decode_layer3(s);
  1450. s->last_buf_size=0;
  1451. if (s->in_gb.buffer) {
  1452. align_get_bits(&s->gb);
  1453. i = get_bits_left(&s->gb)>>3;
  1454. if (i >= 0 && i <= BACKSTEP_SIZE) {
  1455. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1456. s->last_buf_size=i;
  1457. } else
  1458. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1459. s->gb = s->in_gb;
  1460. s->in_gb.buffer = NULL;
  1461. }
  1462. align_get_bits(&s->gb);
  1463. av_assert1((get_bits_count(&s->gb) & 7) == 0);
  1464. i = get_bits_left(&s->gb) >> 3;
  1465. if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
  1466. if (i < 0)
  1467. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1468. i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1469. }
  1470. av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
  1471. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1472. s->last_buf_size += i;
  1473. }
  1474. if(nb_frames < 0)
  1475. return nb_frames;
  1476. /* get output buffer */
  1477. if (!samples) {
  1478. s->frame.nb_samples = s->avctx->frame_size;
  1479. if ((ret = s->avctx->get_buffer(s->avctx, &s->frame)) < 0) {
  1480. av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1481. return ret;
  1482. }
  1483. samples = (OUT_INT **)s->frame.extended_data;
  1484. }
  1485. /* apply the synthesis filter */
  1486. for (ch = 0; ch < s->nb_channels; ch++) {
  1487. int sample_stride;
  1488. if (s->avctx->sample_fmt == OUT_FMT_P) {
  1489. samples_ptr = samples[ch];
  1490. sample_stride = 1;
  1491. } else {
  1492. samples_ptr = samples[0] + ch;
  1493. sample_stride = s->nb_channels;
  1494. }
  1495. for (i = 0; i < nb_frames; i++) {
  1496. RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
  1497. &(s->synth_buf_offset[ch]),
  1498. RENAME(ff_mpa_synth_window),
  1499. &s->dither_state, samples_ptr,
  1500. sample_stride, s->sb_samples[ch][i]);
  1501. samples_ptr += 32 * sample_stride;
  1502. }
  1503. }
  1504. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1505. }
  1506. static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
  1507. AVPacket *avpkt)
  1508. {
  1509. const uint8_t *buf = avpkt->data;
  1510. int buf_size = avpkt->size;
  1511. MPADecodeContext *s = avctx->priv_data;
  1512. uint32_t header;
  1513. int ret;
  1514. while(buf_size && !*buf){
  1515. buf++;
  1516. buf_size--;
  1517. }
  1518. if (buf_size < HEADER_SIZE)
  1519. return AVERROR_INVALIDDATA;
  1520. header = AV_RB32(buf);
  1521. if (header>>8 == AV_RB32("TAG")>>8) {
  1522. av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
  1523. return buf_size;
  1524. }
  1525. if (ff_mpa_check_header(header) < 0) {
  1526. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  1527. return AVERROR_INVALIDDATA;
  1528. }
  1529. if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  1530. /* free format: prepare to compute frame size */
  1531. s->frame_size = -1;
  1532. return AVERROR_INVALIDDATA;
  1533. }
  1534. /* update codec info */
  1535. avctx->channels = s->nb_channels;
  1536. avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
  1537. if (!avctx->bit_rate)
  1538. avctx->bit_rate = s->bit_rate;
  1539. if (s->frame_size <= 0 || s->frame_size > buf_size) {
  1540. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  1541. return AVERROR_INVALIDDATA;
  1542. } else if (s->frame_size < buf_size) {
  1543. av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
  1544. buf_size= s->frame_size;
  1545. }
  1546. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1547. if (ret >= 0) {
  1548. *got_frame_ptr = 1;
  1549. *(AVFrame *)data = s->frame;
  1550. avctx->sample_rate = s->sample_rate;
  1551. //FIXME maybe move the other codec info stuff from above here too
  1552. } else {
  1553. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1554. /* Only return an error if the bad frame makes up the whole packet or
  1555. * the error is related to buffer management.
  1556. * If there is more data in the packet, just consume the bad frame
  1557. * instead of returning an error, which would discard the whole
  1558. * packet. */
  1559. *got_frame_ptr = 0;
  1560. if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
  1561. return ret;
  1562. }
  1563. s->frame_size = 0;
  1564. return buf_size;
  1565. }
  1566. static void mp_flush(MPADecodeContext *ctx)
  1567. {
  1568. memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
  1569. ctx->last_buf_size = 0;
  1570. }
  1571. static void flush(AVCodecContext *avctx)
  1572. {
  1573. mp_flush(avctx->priv_data);
  1574. }
  1575. #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
  1576. static int decode_frame_adu(AVCodecContext *avctx, void *data,
  1577. int *got_frame_ptr, AVPacket *avpkt)
  1578. {
  1579. const uint8_t *buf = avpkt->data;
  1580. int buf_size = avpkt->size;
  1581. MPADecodeContext *s = avctx->priv_data;
  1582. uint32_t header;
  1583. int len, ret;
  1584. int av_unused out_size;
  1585. len = buf_size;
  1586. // Discard too short frames
  1587. if (buf_size < HEADER_SIZE) {
  1588. av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
  1589. return AVERROR_INVALIDDATA;
  1590. }
  1591. if (len > MPA_MAX_CODED_FRAME_SIZE)
  1592. len = MPA_MAX_CODED_FRAME_SIZE;
  1593. // Get header and restore sync word
  1594. header = AV_RB32(buf) | 0xffe00000;
  1595. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  1596. av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
  1597. return AVERROR_INVALIDDATA;
  1598. }
  1599. avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  1600. /* update codec info */
  1601. avctx->sample_rate = s->sample_rate;
  1602. avctx->channels = s->nb_channels;
  1603. if (!avctx->bit_rate)
  1604. avctx->bit_rate = s->bit_rate;
  1605. s->frame_size = len;
  1606. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1607. if (ret < 0) {
  1608. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1609. return ret;
  1610. }
  1611. *got_frame_ptr = 1;
  1612. *(AVFrame *)data = s->frame;
  1613. return buf_size;
  1614. }
  1615. #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
  1616. #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
  1617. /**
  1618. * Context for MP3On4 decoder
  1619. */
  1620. typedef struct MP3On4DecodeContext {
  1621. AVFrame *frame;
  1622. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  1623. int syncword; ///< syncword patch
  1624. const uint8_t *coff; ///< channel offsets in output buffer
  1625. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  1626. } MP3On4DecodeContext;
  1627. #include "mpeg4audio.h"
  1628. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  1629. /* number of mp3 decoder instances */
  1630. static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
  1631. /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
  1632. static const uint8_t chan_offset[8][5] = {
  1633. { 0 },
  1634. { 0 }, // C
  1635. { 0 }, // FLR
  1636. { 2, 0 }, // C FLR
  1637. { 2, 0, 3 }, // C FLR BS
  1638. { 2, 0, 3 }, // C FLR BLRS
  1639. { 2, 0, 4, 3 }, // C FLR BLRS LFE
  1640. { 2, 0, 6, 4, 3 }, // C FLR BLRS BLR LFE
  1641. };
  1642. /* mp3on4 channel layouts */
  1643. static const int16_t chan_layout[8] = {
  1644. 0,
  1645. AV_CH_LAYOUT_MONO,
  1646. AV_CH_LAYOUT_STEREO,
  1647. AV_CH_LAYOUT_SURROUND,
  1648. AV_CH_LAYOUT_4POINT0,
  1649. AV_CH_LAYOUT_5POINT0,
  1650. AV_CH_LAYOUT_5POINT1,
  1651. AV_CH_LAYOUT_7POINT1
  1652. };
  1653. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  1654. {
  1655. MP3On4DecodeContext *s = avctx->priv_data;
  1656. int i;
  1657. for (i = 0; i < s->frames; i++)
  1658. av_free(s->mp3decctx[i]);
  1659. return 0;
  1660. }
  1661. static int decode_init_mp3on4(AVCodecContext * avctx)
  1662. {
  1663. MP3On4DecodeContext *s = avctx->priv_data;
  1664. MPEG4AudioConfig cfg;
  1665. int i;
  1666. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  1667. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  1668. return AVERROR_INVALIDDATA;
  1669. }
  1670. avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
  1671. avctx->extradata_size * 8, 1);
  1672. if (!cfg.chan_config || cfg.chan_config > 7) {
  1673. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  1674. return AVERROR_INVALIDDATA;
  1675. }
  1676. s->frames = mp3Frames[cfg.chan_config];
  1677. s->coff = chan_offset[cfg.chan_config];
  1678. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  1679. avctx->channel_layout = chan_layout[cfg.chan_config];
  1680. if (cfg.sample_rate < 16000)
  1681. s->syncword = 0xffe00000;
  1682. else
  1683. s->syncword = 0xfff00000;
  1684. /* Init the first mp3 decoder in standard way, so that all tables get builded
  1685. * We replace avctx->priv_data with the context of the first decoder so that
  1686. * decode_init() does not have to be changed.
  1687. * Other decoders will be initialized here copying data from the first context
  1688. */
  1689. // Allocate zeroed memory for the first decoder context
  1690. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  1691. if (!s->mp3decctx[0])
  1692. goto alloc_fail;
  1693. // Put decoder context in place to make init_decode() happy
  1694. avctx->priv_data = s->mp3decctx[0];
  1695. decode_init(avctx);
  1696. s->frame = avctx->coded_frame;
  1697. // Restore mp3on4 context pointer
  1698. avctx->priv_data = s;
  1699. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  1700. /* Create a separate codec/context for each frame (first is already ok).
  1701. * Each frame is 1 or 2 channels - up to 5 frames allowed
  1702. */
  1703. for (i = 1; i < s->frames; i++) {
  1704. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  1705. if (!s->mp3decctx[i])
  1706. goto alloc_fail;
  1707. s->mp3decctx[i]->adu_mode = 1;
  1708. s->mp3decctx[i]->avctx = avctx;
  1709. s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
  1710. }
  1711. return 0;
  1712. alloc_fail:
  1713. decode_close_mp3on4(avctx);
  1714. return AVERROR(ENOMEM);
  1715. }
  1716. static void flush_mp3on4(AVCodecContext *avctx)
  1717. {
  1718. int i;
  1719. MP3On4DecodeContext *s = avctx->priv_data;
  1720. for (i = 0; i < s->frames; i++)
  1721. mp_flush(s->mp3decctx[i]);
  1722. }
  1723. static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
  1724. int *got_frame_ptr, AVPacket *avpkt)
  1725. {
  1726. const uint8_t *buf = avpkt->data;
  1727. int buf_size = avpkt->size;
  1728. MP3On4DecodeContext *s = avctx->priv_data;
  1729. MPADecodeContext *m;
  1730. int fsize, len = buf_size, out_size = 0;
  1731. uint32_t header;
  1732. OUT_INT **out_samples;
  1733. OUT_INT *outptr[2];
  1734. int fr, ch, ret;
  1735. /* get output buffer */
  1736. s->frame->nb_samples = s->frames * MPA_FRAME_SIZE;
  1737. if ((ret = avctx->get_buffer(avctx, s->frame)) < 0) {
  1738. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1739. return ret;
  1740. }
  1741. out_samples = (OUT_INT **)s->frame->extended_data;
  1742. // Discard too short frames
  1743. if (buf_size < HEADER_SIZE)
  1744. return AVERROR_INVALIDDATA;
  1745. avctx->bit_rate = 0;
  1746. ch = 0;
  1747. for (fr = 0; fr < s->frames; fr++) {
  1748. fsize = AV_RB16(buf) >> 4;
  1749. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  1750. m = s->mp3decctx[fr];
  1751. av_assert1(m);
  1752. if (fsize < HEADER_SIZE) {
  1753. av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
  1754. return AVERROR_INVALIDDATA;
  1755. }
  1756. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  1757. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  1758. break;
  1759. avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  1760. if (ch + m->nb_channels > avctx->channels) {
  1761. av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
  1762. "channel count\n");
  1763. return AVERROR_INVALIDDATA;
  1764. }
  1765. ch += m->nb_channels;
  1766. outptr[0] = out_samples[s->coff[fr]];
  1767. if (m->nb_channels > 1)
  1768. outptr[1] = out_samples[s->coff[fr] + 1];
  1769. if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0)
  1770. return ret;
  1771. out_size += ret;
  1772. buf += fsize;
  1773. len -= fsize;
  1774. avctx->bit_rate += m->bit_rate;
  1775. }
  1776. /* update codec info */
  1777. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  1778. s->frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
  1779. *got_frame_ptr = 1;
  1780. *(AVFrame *)data = *s->frame;
  1781. return buf_size;
  1782. }
  1783. #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
  1784. #if !CONFIG_FLOAT
  1785. #if CONFIG_MP1_DECODER
  1786. AVCodec ff_mp1_decoder = {
  1787. .name = "mp1",
  1788. .type = AVMEDIA_TYPE_AUDIO,
  1789. .id = AV_CODEC_ID_MP1,
  1790. .priv_data_size = sizeof(MPADecodeContext),
  1791. .init = decode_init,
  1792. .decode = decode_frame,
  1793. .capabilities = CODEC_CAP_DR1,
  1794. .flush = flush,
  1795. .long_name = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  1796. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1797. AV_SAMPLE_FMT_S16,
  1798. AV_SAMPLE_FMT_NONE },
  1799. };
  1800. #endif
  1801. #if CONFIG_MP2_DECODER
  1802. AVCodec ff_mp2_decoder = {
  1803. .name = "mp2",
  1804. .type = AVMEDIA_TYPE_AUDIO,
  1805. .id = AV_CODEC_ID_MP2,
  1806. .priv_data_size = sizeof(MPADecodeContext),
  1807. .init = decode_init,
  1808. .decode = decode_frame,
  1809. .capabilities = CODEC_CAP_DR1,
  1810. .flush = flush,
  1811. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  1812. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1813. AV_SAMPLE_FMT_S16,
  1814. AV_SAMPLE_FMT_NONE },
  1815. };
  1816. #endif
  1817. #if CONFIG_MP3_DECODER
  1818. AVCodec ff_mp3_decoder = {
  1819. .name = "mp3",
  1820. .type = AVMEDIA_TYPE_AUDIO,
  1821. .id = AV_CODEC_ID_MP3,
  1822. .priv_data_size = sizeof(MPADecodeContext),
  1823. .init = decode_init,
  1824. .decode = decode_frame,
  1825. .capabilities = CODEC_CAP_DR1,
  1826. .flush = flush,
  1827. .long_name = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  1828. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1829. AV_SAMPLE_FMT_S16,
  1830. AV_SAMPLE_FMT_NONE },
  1831. };
  1832. #endif
  1833. #if CONFIG_MP3ADU_DECODER
  1834. AVCodec ff_mp3adu_decoder = {
  1835. .name = "mp3adu",
  1836. .type = AVMEDIA_TYPE_AUDIO,
  1837. .id = AV_CODEC_ID_MP3ADU,
  1838. .priv_data_size = sizeof(MPADecodeContext),
  1839. .init = decode_init,
  1840. .decode = decode_frame_adu,
  1841. .capabilities = CODEC_CAP_DR1,
  1842. .flush = flush,
  1843. .long_name = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  1844. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1845. AV_SAMPLE_FMT_S16,
  1846. AV_SAMPLE_FMT_NONE },
  1847. };
  1848. #endif
  1849. #if CONFIG_MP3ON4_DECODER
  1850. AVCodec ff_mp3on4_decoder = {
  1851. .name = "mp3on4",
  1852. .type = AVMEDIA_TYPE_AUDIO,
  1853. .id = AV_CODEC_ID_MP3ON4,
  1854. .priv_data_size = sizeof(MP3On4DecodeContext),
  1855. .init = decode_init_mp3on4,
  1856. .close = decode_close_mp3on4,
  1857. .decode = decode_frame_mp3on4,
  1858. .capabilities = CODEC_CAP_DR1,
  1859. .flush = flush_mp3on4,
  1860. .long_name = NULL_IF_CONFIG_SMALL("MP3onMP4"),
  1861. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1862. AV_SAMPLE_FMT_NONE },
  1863. };
  1864. #endif
  1865. #endif