You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

927 lines
41KB

  1. /*
  2. * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define C30DB M_SQRT2
  27. #define C15DB 1.189207115
  28. #define C__0DB 1.0
  29. #define C_15DB 0.840896415
  30. #define C_30DB M_SQRT1_2
  31. #define C_45DB 0.594603558
  32. #define C_60DB 0.5
  33. #define ALIGN 32
  34. //TODO split options array out?
  35. #define OFFSET(x) offsetof(SwrContext,x)
  36. #define PARAM AV_OPT_FLAG_AUDIO_PARAM
  37. static const AVOption options[]={
  38. {"ich" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  39. {"in_channel_count" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  40. {"och" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  41. {"out_channel_count" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  42. {"uch" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  43. {"used_channel_count" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  44. {"isr" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  45. {"in_sample_rate" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  46. {"osr" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  47. {"out_sample_rate" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  48. {"isf" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  49. {"in_sample_fmt" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  50. {"osf" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  51. {"out_sample_fmt" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  52. {"tsf" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  53. {"internal_sample_fmt" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  54. {"icl" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  55. {"in_channel_layout" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  56. {"ocl" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  57. {"out_channel_layout" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  58. {"clev" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  59. {"center_mix_level" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  60. {"slev" , "set surround mix level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  61. {"surround_mix_level" , "set surround mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  62. {"lfe_mix_level" , "set LFE mix level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
  63. {"rmvol" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  64. {"rematrix_volume" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  65. {"flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  66. {"swr_flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  67. {"res" , "force resampling" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
  68. {"dither_scale" , "set dither scale" , OFFSET(dither.scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
  69. {"dither_method" , "set dither method" , OFFSET(dither.method ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
  70. {"rectangular" , "select rectangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
  71. {"triangular" , "select triangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
  72. {"triangular_hp" , "select triangular dither with high pass" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  73. {"lipshitz" , "select lipshitz noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LIPSHITZ}, INT_MIN, INT_MAX, PARAM, "dither_method"},
  74. {"shibata" , "select shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  75. {"low_shibata" , "select low shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LOW_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  76. {"high_shibata" , "select high shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_HIGH_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  77. {"f_weighted" , "select f-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_F_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  78. {"modified_e_weighted" , "select modified-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_MODIFIED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  79. {"improved_e_weighted" , "select improved-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_IMPROVED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  80. {"filter_size" , "set swr resampling filter size", OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=32 }, 0 , INT_MAX , PARAM },
  81. {"phase_shift" , "set swr resampling phase shift", OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 24 , PARAM },
  82. {"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  83. {"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  84. /* duplicate option in order to work with avconv */
  85. {"resample_cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  86. {"resampler" , "set resampling Engine" , OFFSET(engine) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_ENGINE_NB-1, PARAM, "resampler"},
  87. {"swr" , "select SW Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  88. {"soxr" , "select SoX Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  89. {"precision" , "set soxr resampling precision (in bits)"
  90. , OFFSET(precision) , AV_OPT_TYPE_DOUBLE,{.dbl=20.0 }, 15.0 , 33.0 , PARAM },
  91. {"cheby" , "enable soxr Chebyshev passband & higher-precision irrational ratio approximation"
  92. , OFFSET(cheby) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  93. {"min_comp" , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
  94. , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
  95. {"min_hard_comp" , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
  96. , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
  97. {"comp_duration" , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
  98. , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
  99. {"max_soft_comp" , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
  100. , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  101. {"async" , "simplified 1 parameter audio timestamp matching, 0(disabled), 1(filling and trimming), >1(maximum stretch/squeeze in samples per second)"
  102. , OFFSET(async) , AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  103. {"first_pts" , "Assume the first pts should be this value (in samples)."
  104. , OFFSET(firstpts_in_samples), AV_OPT_TYPE_INT64 ,{.i64=AV_NOPTS_VALUE }, INT64_MIN,INT64_MAX, PARAM },
  105. { "matrix_encoding" , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE, AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
  106. { "none", "select none", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  107. { "dolby", "select Dolby", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  108. { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  109. { "filter_type" , "select swr filter type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
  110. { "cubic" , "select cubic" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  111. { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  112. { "kaiser" , "select Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  113. { "kaiser_beta" , "set swr Kaiser Window Beta" , OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.i64=9 }, 2 , 16 , PARAM },
  114. {0}
  115. };
  116. static const char* context_to_name(void* ptr) {
  117. return "SWR";
  118. }
  119. static const AVClass av_class = {
  120. .class_name = "SWResampler",
  121. .item_name = context_to_name,
  122. .option = options,
  123. .version = LIBAVUTIL_VERSION_INT,
  124. .log_level_offset_offset = OFFSET(log_level_offset),
  125. .parent_log_context_offset = OFFSET(log_ctx),
  126. .category = AV_CLASS_CATEGORY_SWRESAMPLER,
  127. };
  128. unsigned swresample_version(void)
  129. {
  130. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  131. return LIBSWRESAMPLE_VERSION_INT;
  132. }
  133. const char *swresample_configuration(void)
  134. {
  135. return FFMPEG_CONFIGURATION;
  136. }
  137. const char *swresample_license(void)
  138. {
  139. #define LICENSE_PREFIX "libswresample license: "
  140. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  141. }
  142. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  143. if(!s || s->in_convert) // s needs to be allocated but not initialized
  144. return AVERROR(EINVAL);
  145. s->channel_map = channel_map;
  146. return 0;
  147. }
  148. const AVClass *swr_get_class(void)
  149. {
  150. return &av_class;
  151. }
  152. av_cold struct SwrContext *swr_alloc(void){
  153. SwrContext *s= av_mallocz(sizeof(SwrContext));
  154. if(s){
  155. s->av_class= &av_class;
  156. av_opt_set_defaults(s);
  157. }
  158. return s;
  159. }
  160. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  161. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  162. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  163. int log_offset, void *log_ctx){
  164. if(!s) s= swr_alloc();
  165. if(!s) return NULL;
  166. s->log_level_offset= log_offset;
  167. s->log_ctx= log_ctx;
  168. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  169. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  170. av_opt_set_int(s, "osr", out_sample_rate, 0);
  171. av_opt_set_int(s, "icl", in_ch_layout, 0);
  172. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  173. av_opt_set_int(s, "isr", in_sample_rate, 0);
  174. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  175. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  176. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  177. av_opt_set_int(s, "uch", 0, 0);
  178. return s;
  179. }
  180. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  181. a->fmt = fmt;
  182. a->bps = av_get_bytes_per_sample(fmt);
  183. a->planar= av_sample_fmt_is_planar(fmt);
  184. }
  185. static void free_temp(AudioData *a){
  186. av_free(a->data);
  187. memset(a, 0, sizeof(*a));
  188. }
  189. av_cold void swr_free(SwrContext **ss){
  190. SwrContext *s= *ss;
  191. if(s){
  192. free_temp(&s->postin);
  193. free_temp(&s->midbuf);
  194. free_temp(&s->preout);
  195. free_temp(&s->in_buffer);
  196. free_temp(&s->silence);
  197. free_temp(&s->drop_temp);
  198. free_temp(&s->dither.noise);
  199. free_temp(&s->dither.temp);
  200. swri_audio_convert_free(&s-> in_convert);
  201. swri_audio_convert_free(&s->out_convert);
  202. swri_audio_convert_free(&s->full_convert);
  203. if (s->resampler)
  204. s->resampler->free(&s->resample);
  205. swri_rematrix_free(s);
  206. }
  207. av_freep(ss);
  208. }
  209. av_cold int swr_init(struct SwrContext *s){
  210. int ret;
  211. s->in_buffer_index= 0;
  212. s->in_buffer_count= 0;
  213. s->resample_in_constraint= 0;
  214. free_temp(&s->postin);
  215. free_temp(&s->midbuf);
  216. free_temp(&s->preout);
  217. free_temp(&s->in_buffer);
  218. free_temp(&s->silence);
  219. free_temp(&s->drop_temp);
  220. free_temp(&s->dither.noise);
  221. free_temp(&s->dither.temp);
  222. memset(s->in.ch, 0, sizeof(s->in.ch));
  223. memset(s->out.ch, 0, sizeof(s->out.ch));
  224. swri_audio_convert_free(&s-> in_convert);
  225. swri_audio_convert_free(&s->out_convert);
  226. swri_audio_convert_free(&s->full_convert);
  227. swri_rematrix_free(s);
  228. s->flushed = 0;
  229. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  230. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  231. return AVERROR(EINVAL);
  232. }
  233. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  234. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  235. return AVERROR(EINVAL);
  236. }
  237. if(av_get_channel_layout_nb_channels(s-> in_ch_layout) > SWR_CH_MAX) {
  238. av_log(s, AV_LOG_WARNING, "Input channel layout 0x%"PRIx64" is invalid or unsupported.\n", s-> in_ch_layout);
  239. s->in_ch_layout = 0;
  240. }
  241. if(av_get_channel_layout_nb_channels(s->out_ch_layout) > SWR_CH_MAX) {
  242. av_log(s, AV_LOG_WARNING, "Output channel layout 0x%"PRIx64" is invalid or unsupported.\n", s->out_ch_layout);
  243. s->out_ch_layout = 0;
  244. }
  245. switch(s->engine){
  246. #if CONFIG_LIBSOXR
  247. extern struct Resampler const soxr_resampler;
  248. case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
  249. #endif
  250. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  251. default:
  252. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  253. return AVERROR(EINVAL);
  254. }
  255. if(!s->used_ch_count)
  256. s->used_ch_count= s->in.ch_count;
  257. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  258. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  259. s-> in_ch_layout= 0;
  260. }
  261. if(!s-> in_ch_layout)
  262. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  263. if(!s->out_ch_layout)
  264. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  265. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  266. s->rematrix_custom;
  267. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  268. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  269. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  270. }else if( av_get_planar_sample_fmt(s-> in_sample_fmt) == AV_SAMPLE_FMT_S32P
  271. && av_get_planar_sample_fmt(s->out_sample_fmt) == AV_SAMPLE_FMT_S32P
  272. && !s->rematrix
  273. && s->engine != SWR_ENGINE_SOXR){
  274. s->int_sample_fmt= AV_SAMPLE_FMT_S32P;
  275. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  276. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  277. }else{
  278. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  279. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  280. }
  281. }
  282. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  283. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  284. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  285. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  286. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  287. return AVERROR(EINVAL);
  288. }
  289. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  290. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  291. if (s->firstpts_in_samples != AV_NOPTS_VALUE) {
  292. if (!s->async && s->min_compensation >= FLT_MAX/2)
  293. s->async = 1;
  294. s->firstpts =
  295. s->outpts = s->firstpts_in_samples * s->out_sample_rate;
  296. }
  297. if (s->async) {
  298. if (s->min_compensation >= FLT_MAX/2)
  299. s->min_compensation = 0.001;
  300. if (s->async > 1.0001) {
  301. s->max_soft_compensation = s->async / (double) s->in_sample_rate;
  302. }
  303. }
  304. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  305. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  306. }else
  307. s->resampler->free(&s->resample);
  308. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  309. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  310. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  311. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  312. && s->resample){
  313. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  314. return -1;
  315. }
  316. #define RSC 1 //FIXME finetune
  317. if(!s-> in.ch_count)
  318. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  319. if(!s->used_ch_count)
  320. s->used_ch_count= s->in.ch_count;
  321. if(!s->out.ch_count)
  322. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  323. if(!s-> in.ch_count){
  324. av_assert0(!s->in_ch_layout);
  325. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  326. return -1;
  327. }
  328. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  329. char l1[1024], l2[1024];
  330. av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
  331. av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
  332. av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
  333. "but there is not enough information to do it\n", l1, l2);
  334. return -1;
  335. }
  336. av_assert0(s->used_ch_count);
  337. av_assert0(s->out.ch_count);
  338. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  339. s->in_buffer= s->in;
  340. s->silence = s->in;
  341. s->drop_temp= s->out;
  342. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
  343. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  344. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  345. return 0;
  346. }
  347. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  348. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  349. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  350. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  351. if (!s->in_convert || !s->out_convert)
  352. return AVERROR(ENOMEM);
  353. s->postin= s->in;
  354. s->preout= s->out;
  355. s->midbuf= s->in;
  356. if(s->channel_map){
  357. s->postin.ch_count=
  358. s->midbuf.ch_count= s->used_ch_count;
  359. if(s->resample)
  360. s->in_buffer.ch_count= s->used_ch_count;
  361. }
  362. if(!s->resample_first){
  363. s->midbuf.ch_count= s->out.ch_count;
  364. if(s->resample)
  365. s->in_buffer.ch_count = s->out.ch_count;
  366. }
  367. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  368. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  369. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  370. if(s->resample){
  371. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  372. }
  373. if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
  374. return ret;
  375. if(s->rematrix || s->dither.method)
  376. return swri_rematrix_init(s);
  377. return 0;
  378. }
  379. int swri_realloc_audio(AudioData *a, int count){
  380. int i, countb;
  381. AudioData old;
  382. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  383. return AVERROR(EINVAL);
  384. if(a->count >= count)
  385. return 0;
  386. count*=2;
  387. countb= FFALIGN(count*a->bps, ALIGN);
  388. old= *a;
  389. av_assert0(a->bps);
  390. av_assert0(a->ch_count);
  391. a->data= av_mallocz(countb*a->ch_count);
  392. if(!a->data)
  393. return AVERROR(ENOMEM);
  394. for(i=0; i<a->ch_count; i++){
  395. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  396. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  397. }
  398. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  399. av_free(old.data);
  400. a->count= count;
  401. return 1;
  402. }
  403. static void copy(AudioData *out, AudioData *in,
  404. int count){
  405. av_assert0(out->planar == in->planar);
  406. av_assert0(out->bps == in->bps);
  407. av_assert0(out->ch_count == in->ch_count);
  408. if(out->planar){
  409. int ch;
  410. for(ch=0; ch<out->ch_count; ch++)
  411. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  412. }else
  413. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  414. }
  415. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  416. int i;
  417. if(!in_arg){
  418. memset(out->ch, 0, sizeof(out->ch));
  419. }else if(out->planar){
  420. for(i=0; i<out->ch_count; i++)
  421. out->ch[i]= in_arg[i];
  422. }else{
  423. for(i=0; i<out->ch_count; i++)
  424. out->ch[i]= in_arg[0] + i*out->bps;
  425. }
  426. }
  427. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  428. int i;
  429. if(out->planar){
  430. for(i=0; i<out->ch_count; i++)
  431. in_arg[i]= out->ch[i];
  432. }else{
  433. in_arg[0]= out->ch[0];
  434. }
  435. }
  436. /**
  437. *
  438. * out may be equal in.
  439. */
  440. static void buf_set(AudioData *out, AudioData *in, int count){
  441. int ch;
  442. if(in->planar){
  443. for(ch=0; ch<out->ch_count; ch++)
  444. out->ch[ch]= in->ch[ch] + count*out->bps;
  445. }else{
  446. for(ch=out->ch_count-1; ch>=0; ch--)
  447. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  448. }
  449. }
  450. /**
  451. *
  452. * @return number of samples output per channel
  453. */
  454. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  455. const AudioData * in_param, int in_count){
  456. AudioData in, out, tmp;
  457. int ret_sum=0;
  458. int border=0;
  459. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  460. av_assert1(s->in_buffer.planar == in_param->planar);
  461. av_assert1(s->in_buffer.fmt == in_param->fmt);
  462. tmp=out=*out_param;
  463. in = *in_param;
  464. do{
  465. int ret, size, consumed;
  466. if(!s->resample_in_constraint && s->in_buffer_count){
  467. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  468. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  469. out_count -= ret;
  470. ret_sum += ret;
  471. buf_set(&out, &out, ret);
  472. s->in_buffer_count -= consumed;
  473. s->in_buffer_index += consumed;
  474. if(!in_count)
  475. break;
  476. if(s->in_buffer_count <= border){
  477. buf_set(&in, &in, -s->in_buffer_count);
  478. in_count += s->in_buffer_count;
  479. s->in_buffer_count=0;
  480. s->in_buffer_index=0;
  481. border = 0;
  482. }
  483. }
  484. if((s->flushed || in_count) && !s->in_buffer_count){
  485. s->in_buffer_index=0;
  486. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  487. out_count -= ret;
  488. ret_sum += ret;
  489. buf_set(&out, &out, ret);
  490. in_count -= consumed;
  491. buf_set(&in, &in, consumed);
  492. }
  493. //TODO is this check sane considering the advanced copy avoidance below
  494. size= s->in_buffer_index + s->in_buffer_count + in_count;
  495. if( size > s->in_buffer.count
  496. && s->in_buffer_count + in_count <= s->in_buffer_index){
  497. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  498. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  499. s->in_buffer_index=0;
  500. }else
  501. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  502. return ret;
  503. if(in_count){
  504. int count= in_count;
  505. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  506. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  507. copy(&tmp, &in, /*in_*/count);
  508. s->in_buffer_count += count;
  509. in_count -= count;
  510. border += count;
  511. buf_set(&in, &in, count);
  512. s->resample_in_constraint= 0;
  513. if(s->in_buffer_count != count || in_count)
  514. continue;
  515. }
  516. break;
  517. }while(1);
  518. s->resample_in_constraint= !!out_count;
  519. return ret_sum;
  520. }
  521. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  522. AudioData *in , int in_count){
  523. AudioData *postin, *midbuf, *preout;
  524. int ret/*, in_max*/;
  525. AudioData preout_tmp, midbuf_tmp;
  526. if(s->full_convert){
  527. av_assert0(!s->resample);
  528. swri_audio_convert(s->full_convert, out, in, in_count);
  529. return out_count;
  530. }
  531. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  532. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  533. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  534. return ret;
  535. if(s->resample_first){
  536. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  537. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  538. return ret;
  539. }else{
  540. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  541. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  542. return ret;
  543. }
  544. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  545. return ret;
  546. postin= &s->postin;
  547. midbuf_tmp= s->midbuf;
  548. midbuf= &midbuf_tmp;
  549. preout_tmp= s->preout;
  550. preout= &preout_tmp;
  551. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  552. postin= in;
  553. if(s->resample_first ? !s->resample : !s->rematrix)
  554. midbuf= postin;
  555. if(s->resample_first ? !s->rematrix : !s->resample)
  556. preout= midbuf;
  557. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  558. if(preout==in){
  559. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  560. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  561. copy(out, in, out_count);
  562. return out_count;
  563. }
  564. else if(preout==postin) preout= midbuf= postin= out;
  565. else if(preout==midbuf) preout= midbuf= out;
  566. else preout= out;
  567. }
  568. if(in != postin){
  569. swri_audio_convert(s->in_convert, postin, in, in_count);
  570. }
  571. if(s->resample_first){
  572. if(postin != midbuf)
  573. out_count= resample(s, midbuf, out_count, postin, in_count);
  574. if(midbuf != preout)
  575. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  576. }else{
  577. if(postin != midbuf)
  578. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  579. if(midbuf != preout)
  580. out_count= resample(s, preout, out_count, midbuf, in_count);
  581. }
  582. if(preout != out && out_count){
  583. AudioData *conv_src = preout;
  584. if(s->dither.method){
  585. int ch;
  586. int dither_count= FFMAX(out_count, 1<<16);
  587. if (preout == in) {
  588. conv_src = &s->dither.temp;
  589. if((ret=swri_realloc_audio(&s->dither.temp, dither_count))<0)
  590. return ret;
  591. }
  592. if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
  593. return ret;
  594. if(ret)
  595. for(ch=0; ch<s->dither.noise.ch_count; ch++)
  596. swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<<ch, s->dither.noise.fmt);
  597. av_assert0(s->dither.noise.ch_count == preout->ch_count);
  598. if(s->dither.noise_pos + out_count > s->dither.noise.count)
  599. s->dither.noise_pos = 0;
  600. if (s->dither.method < SWR_DITHER_NS){
  601. if (s->mix_2_1_simd) {
  602. int len1= out_count&~15;
  603. int off = len1 * preout->bps;
  604. if(len1)
  605. for(ch=0; ch<preout->ch_count; ch++)
  606. s->mix_2_1_simd(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, len1);
  607. if(out_count != len1)
  608. for(ch=0; ch<preout->ch_count; ch++)
  609. s->mix_2_1_f(conv_src->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos + off + len1, s->native_one, 0, 0, out_count - len1);
  610. } else {
  611. for(ch=0; ch<preout->ch_count; ch++)
  612. s->mix_2_1_f(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, out_count);
  613. }
  614. } else {
  615. switch(s->int_sample_fmt) {
  616. case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, conv_src, preout, &s->dither.noise, out_count); break;
  617. case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, conv_src, preout, &s->dither.noise, out_count); break;
  618. case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, conv_src, preout, &s->dither.noise, out_count); break;
  619. case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,conv_src, preout, &s->dither.noise, out_count); break;
  620. }
  621. }
  622. s->dither.noise_pos += out_count;
  623. }
  624. //FIXME packed doesnt need more than 1 chan here!
  625. swri_audio_convert(s->out_convert, out, conv_src, out_count);
  626. }
  627. return out_count;
  628. }
  629. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  630. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  631. AudioData * in= &s->in;
  632. AudioData *out= &s->out;
  633. while(s->drop_output > 0){
  634. int ret;
  635. uint8_t *tmp_arg[SWR_CH_MAX];
  636. #define MAX_DROP_STEP 16384
  637. if((ret=swri_realloc_audio(&s->drop_temp, FFMIN(s->drop_output, MAX_DROP_STEP)))<0)
  638. return ret;
  639. reversefill_audiodata(&s->drop_temp, tmp_arg);
  640. s->drop_output *= -1; //FIXME find a less hackish solution
  641. ret = swr_convert(s, tmp_arg, FFMIN(-s->drop_output, MAX_DROP_STEP), in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
  642. s->drop_output *= -1;
  643. in_count = 0;
  644. if(ret>0) {
  645. s->drop_output -= ret;
  646. continue;
  647. }
  648. if(s->drop_output || !out_arg)
  649. return 0;
  650. }
  651. if(!in_arg){
  652. if(s->resample){
  653. if (!s->flushed)
  654. s->resampler->flush(s);
  655. s->resample_in_constraint = 0;
  656. s->flushed = 1;
  657. }else if(!s->in_buffer_count){
  658. return 0;
  659. }
  660. }else
  661. fill_audiodata(in , (void*)in_arg);
  662. fill_audiodata(out, out_arg);
  663. if(s->resample){
  664. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  665. if(ret>0 && !s->drop_output)
  666. s->outpts += ret * (int64_t)s->in_sample_rate;
  667. return ret;
  668. }else{
  669. AudioData tmp= *in;
  670. int ret2=0;
  671. int ret, size;
  672. size = FFMIN(out_count, s->in_buffer_count);
  673. if(size){
  674. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  675. ret= swr_convert_internal(s, out, size, &tmp, size);
  676. if(ret<0)
  677. return ret;
  678. ret2= ret;
  679. s->in_buffer_count -= ret;
  680. s->in_buffer_index += ret;
  681. buf_set(out, out, ret);
  682. out_count -= ret;
  683. if(!s->in_buffer_count)
  684. s->in_buffer_index = 0;
  685. }
  686. if(in_count){
  687. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  688. if(in_count > out_count) { //FIXME move after swr_convert_internal
  689. if( size > s->in_buffer.count
  690. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  691. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  692. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  693. s->in_buffer_index=0;
  694. }else
  695. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  696. return ret;
  697. }
  698. if(out_count){
  699. size = FFMIN(in_count, out_count);
  700. ret= swr_convert_internal(s, out, size, in, size);
  701. if(ret<0)
  702. return ret;
  703. buf_set(in, in, ret);
  704. in_count -= ret;
  705. ret2 += ret;
  706. }
  707. if(in_count){
  708. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  709. copy(&tmp, in, in_count);
  710. s->in_buffer_count += in_count;
  711. }
  712. }
  713. if(ret2>0 && !s->drop_output)
  714. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  715. return ret2;
  716. }
  717. }
  718. int swr_drop_output(struct SwrContext *s, int count){
  719. s->drop_output += count;
  720. if(s->drop_output <= 0)
  721. return 0;
  722. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  723. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  724. }
  725. int swr_inject_silence(struct SwrContext *s, int count){
  726. int ret, i;
  727. uint8_t *tmp_arg[SWR_CH_MAX];
  728. if(count <= 0)
  729. return 0;
  730. #define MAX_SILENCE_STEP 16384
  731. while (count > MAX_SILENCE_STEP) {
  732. if ((ret = swr_inject_silence(s, MAX_SILENCE_STEP)) < 0)
  733. return ret;
  734. count -= MAX_SILENCE_STEP;
  735. }
  736. if((ret=swri_realloc_audio(&s->silence, count))<0)
  737. return ret;
  738. if(s->silence.planar) for(i=0; i<s->silence.ch_count; i++) {
  739. memset(s->silence.ch[i], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps);
  740. } else
  741. memset(s->silence.ch[0], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps*s->silence.ch_count);
  742. reversefill_audiodata(&s->silence, tmp_arg);
  743. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  744. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  745. return ret;
  746. }
  747. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  748. if (s->resampler && s->resample){
  749. return s->resampler->get_delay(s, base);
  750. }else{
  751. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  752. }
  753. }
  754. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  755. int ret;
  756. if (!s || compensation_distance < 0)
  757. return AVERROR(EINVAL);
  758. if (!compensation_distance && sample_delta)
  759. return AVERROR(EINVAL);
  760. if (!s->resample) {
  761. s->flags |= SWR_FLAG_RESAMPLE;
  762. ret = swr_init(s);
  763. if (ret < 0)
  764. return ret;
  765. }
  766. if (!s->resampler->set_compensation){
  767. return AVERROR(EINVAL);
  768. }else{
  769. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  770. }
  771. }
  772. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  773. if(pts == INT64_MIN)
  774. return s->outpts;
  775. if(s->min_compensation >= FLT_MAX) {
  776. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  777. } else {
  778. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts + s->drop_output*(int64_t)s->in_sample_rate;
  779. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  780. if(fabs(fdelta) > s->min_compensation) {
  781. if(s->outpts == s->firstpts || fabs(fdelta) > s->min_hard_compensation){
  782. int ret;
  783. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  784. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  785. if(ret<0){
  786. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  787. }
  788. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  789. int duration = s->out_sample_rate * s->soft_compensation_duration;
  790. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  791. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  792. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  793. swr_set_compensation(s, comp, duration);
  794. }
  795. }
  796. return s->outpts;
  797. }
  798. }