You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

357 lines
9.0KB

  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file libavcodec/fft.c
  25. * FFT/IFFT transforms.
  26. */
  27. #include "dsputil.h"
  28. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  29. #if !CONFIG_HARDCODED_TABLES
  30. COSTABLE(16);
  31. COSTABLE(32);
  32. COSTABLE(64);
  33. COSTABLE(128);
  34. COSTABLE(256);
  35. COSTABLE(512);
  36. COSTABLE(1024);
  37. COSTABLE(2048);
  38. COSTABLE(4096);
  39. COSTABLE(8192);
  40. COSTABLE(16384);
  41. COSTABLE(32768);
  42. COSTABLE(65536);
  43. #endif
  44. COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
  45. ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
  46. ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
  47. };
  48. static int split_radix_permutation(int i, int n, int inverse)
  49. {
  50. int m;
  51. if(n <= 2) return i&1;
  52. m = n >> 1;
  53. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  54. m >>= 1;
  55. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  56. else return split_radix_permutation(i, m, inverse)*4 - 1;
  57. }
  58. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  59. {
  60. int i, j, m, n;
  61. float alpha, c1, s1, s2;
  62. int av_unused has_vectors;
  63. if (nbits < 2 || nbits > 16)
  64. goto fail;
  65. s->nbits = nbits;
  66. n = 1 << nbits;
  67. s->tmp_buf = NULL;
  68. s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
  69. if (!s->exptab)
  70. goto fail;
  71. s->revtab = av_malloc(n * sizeof(uint16_t));
  72. if (!s->revtab)
  73. goto fail;
  74. s->inverse = inverse;
  75. s2 = inverse ? 1.0 : -1.0;
  76. s->fft_permute = ff_fft_permute_c;
  77. s->fft_calc = ff_fft_calc_c;
  78. s->imdct_calc = ff_imdct_calc_c;
  79. s->imdct_half = ff_imdct_half_c;
  80. s->mdct_calc = ff_mdct_calc_c;
  81. s->exptab1 = NULL;
  82. s->split_radix = 1;
  83. if (ARCH_ARM) ff_fft_init_arm(s);
  84. if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
  85. if (HAVE_MMX) ff_fft_init_mmx(s);
  86. if (s->split_radix) {
  87. #if !CONFIG_HARDCODED_TABLES
  88. for(j=4; j<=nbits; j++) {
  89. int m = 1<<j;
  90. double freq = 2*M_PI/m;
  91. FFTSample *tab = ff_cos_tabs[j-4];
  92. for(i=0; i<=m/4; i++)
  93. tab[i] = cos(i*freq);
  94. for(i=1; i<m/4; i++)
  95. tab[m/2-i] = tab[i];
  96. }
  97. #endif
  98. for(i=0; i<n; i++)
  99. s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
  100. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  101. } else {
  102. int np, nblocks, np2, l;
  103. FFTComplex *q;
  104. for(i=0; i<(n/2); i++) {
  105. alpha = 2 * M_PI * (float)i / (float)n;
  106. c1 = cos(alpha);
  107. s1 = sin(alpha) * s2;
  108. s->exptab[i].re = c1;
  109. s->exptab[i].im = s1;
  110. }
  111. np = 1 << nbits;
  112. nblocks = np >> 3;
  113. np2 = np >> 1;
  114. s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
  115. if (!s->exptab1)
  116. goto fail;
  117. q = s->exptab1;
  118. do {
  119. for(l = 0; l < np2; l += 2 * nblocks) {
  120. *q++ = s->exptab[l];
  121. *q++ = s->exptab[l + nblocks];
  122. q->re = -s->exptab[l].im;
  123. q->im = s->exptab[l].re;
  124. q++;
  125. q->re = -s->exptab[l + nblocks].im;
  126. q->im = s->exptab[l + nblocks].re;
  127. q++;
  128. }
  129. nblocks = nblocks >> 1;
  130. } while (nblocks != 0);
  131. av_freep(&s->exptab);
  132. /* compute bit reverse table */
  133. for(i=0;i<n;i++) {
  134. m=0;
  135. for(j=0;j<nbits;j++) {
  136. m |= ((i >> j) & 1) << (nbits-j-1);
  137. }
  138. s->revtab[i]=m;
  139. }
  140. }
  141. return 0;
  142. fail:
  143. av_freep(&s->revtab);
  144. av_freep(&s->exptab);
  145. av_freep(&s->exptab1);
  146. av_freep(&s->tmp_buf);
  147. return -1;
  148. }
  149. void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
  150. {
  151. int j, k, np;
  152. FFTComplex tmp;
  153. const uint16_t *revtab = s->revtab;
  154. np = 1 << s->nbits;
  155. if (s->tmp_buf) {
  156. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  157. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  158. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  159. return;
  160. }
  161. /* reverse */
  162. for(j=0;j<np;j++) {
  163. k = revtab[j];
  164. if (k < j) {
  165. tmp = z[k];
  166. z[k] = z[j];
  167. z[j] = tmp;
  168. }
  169. }
  170. }
  171. av_cold void ff_fft_end(FFTContext *s)
  172. {
  173. av_freep(&s->revtab);
  174. av_freep(&s->exptab);
  175. av_freep(&s->exptab1);
  176. av_freep(&s->tmp_buf);
  177. }
  178. #define sqrthalf (float)M_SQRT1_2
  179. #define BF(x,y,a,b) {\
  180. x = a - b;\
  181. y = a + b;\
  182. }
  183. #define BUTTERFLIES(a0,a1,a2,a3) {\
  184. BF(t3, t5, t5, t1);\
  185. BF(a2.re, a0.re, a0.re, t5);\
  186. BF(a3.im, a1.im, a1.im, t3);\
  187. BF(t4, t6, t2, t6);\
  188. BF(a3.re, a1.re, a1.re, t4);\
  189. BF(a2.im, a0.im, a0.im, t6);\
  190. }
  191. // force loading all the inputs before storing any.
  192. // this is slightly slower for small data, but avoids store->load aliasing
  193. // for addresses separated by large powers of 2.
  194. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  195. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  196. BF(t3, t5, t5, t1);\
  197. BF(a2.re, a0.re, r0, t5);\
  198. BF(a3.im, a1.im, i1, t3);\
  199. BF(t4, t6, t2, t6);\
  200. BF(a3.re, a1.re, r1, t4);\
  201. BF(a2.im, a0.im, i0, t6);\
  202. }
  203. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  204. t1 = a2.re * wre + a2.im * wim;\
  205. t2 = a2.im * wre - a2.re * wim;\
  206. t5 = a3.re * wre - a3.im * wim;\
  207. t6 = a3.im * wre + a3.re * wim;\
  208. BUTTERFLIES(a0,a1,a2,a3)\
  209. }
  210. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  211. t1 = a2.re;\
  212. t2 = a2.im;\
  213. t5 = a3.re;\
  214. t6 = a3.im;\
  215. BUTTERFLIES(a0,a1,a2,a3)\
  216. }
  217. /* z[0...8n-1], w[1...2n-1] */
  218. #define PASS(name)\
  219. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  220. {\
  221. FFTSample t1, t2, t3, t4, t5, t6;\
  222. int o1 = 2*n;\
  223. int o2 = 4*n;\
  224. int o3 = 6*n;\
  225. const FFTSample *wim = wre+o1;\
  226. n--;\
  227. \
  228. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  229. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  230. do {\
  231. z += 2;\
  232. wre += 2;\
  233. wim -= 2;\
  234. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  235. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  236. } while(--n);\
  237. }
  238. PASS(pass)
  239. #undef BUTTERFLIES
  240. #define BUTTERFLIES BUTTERFLIES_BIG
  241. PASS(pass_big)
  242. #define DECL_FFT(n,n2,n4)\
  243. static void fft##n(FFTComplex *z)\
  244. {\
  245. fft##n2(z);\
  246. fft##n4(z+n4*2);\
  247. fft##n4(z+n4*3);\
  248. pass(z,ff_cos_##n,n4/2);\
  249. }
  250. static void fft4(FFTComplex *z)
  251. {
  252. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  253. BF(t3, t1, z[0].re, z[1].re);
  254. BF(t8, t6, z[3].re, z[2].re);
  255. BF(z[2].re, z[0].re, t1, t6);
  256. BF(t4, t2, z[0].im, z[1].im);
  257. BF(t7, t5, z[2].im, z[3].im);
  258. BF(z[3].im, z[1].im, t4, t8);
  259. BF(z[3].re, z[1].re, t3, t7);
  260. BF(z[2].im, z[0].im, t2, t5);
  261. }
  262. static void fft8(FFTComplex *z)
  263. {
  264. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  265. fft4(z);
  266. BF(t1, z[5].re, z[4].re, -z[5].re);
  267. BF(t2, z[5].im, z[4].im, -z[5].im);
  268. BF(t3, z[7].re, z[6].re, -z[7].re);
  269. BF(t4, z[7].im, z[6].im, -z[7].im);
  270. BF(t8, t1, t3, t1);
  271. BF(t7, t2, t2, t4);
  272. BF(z[4].re, z[0].re, z[0].re, t1);
  273. BF(z[4].im, z[0].im, z[0].im, t2);
  274. BF(z[6].re, z[2].re, z[2].re, t7);
  275. BF(z[6].im, z[2].im, z[2].im, t8);
  276. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  277. }
  278. #if !CONFIG_SMALL
  279. static void fft16(FFTComplex *z)
  280. {
  281. FFTSample t1, t2, t3, t4, t5, t6;
  282. fft8(z);
  283. fft4(z+8);
  284. fft4(z+12);
  285. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  286. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  287. TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
  288. TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
  289. }
  290. #else
  291. DECL_FFT(16,8,4)
  292. #endif
  293. DECL_FFT(32,16,8)
  294. DECL_FFT(64,32,16)
  295. DECL_FFT(128,64,32)
  296. DECL_FFT(256,128,64)
  297. DECL_FFT(512,256,128)
  298. #if !CONFIG_SMALL
  299. #define pass pass_big
  300. #endif
  301. DECL_FFT(1024,512,256)
  302. DECL_FFT(2048,1024,512)
  303. DECL_FFT(4096,2048,1024)
  304. DECL_FFT(8192,4096,2048)
  305. DECL_FFT(16384,8192,4096)
  306. DECL_FFT(32768,16384,8192)
  307. DECL_FFT(65536,32768,16384)
  308. static void (* const fft_dispatch[])(FFTComplex*) = {
  309. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  310. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
  311. };
  312. void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
  313. {
  314. fft_dispatch[s->nbits-2](z);
  315. }