You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

454 lines
13KB

  1. /*
  2. * Copyright (c) 2013
  3. * MIPS Technologies, Inc., California.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
  14. * contributors may be used to endorse or promote products derived from
  15. * this software without specific prior written permission.
  16. *
  17. * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
  18. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. * ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
  21. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  22. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  23. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  24. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  25. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  26. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  27. * SUCH DAMAGE.
  28. *
  29. * AAC decoder fixed-point implementation
  30. *
  31. * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
  32. * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
  33. *
  34. * This file is part of FFmpeg.
  35. *
  36. * FFmpeg is free software; you can redistribute it and/or
  37. * modify it under the terms of the GNU Lesser General Public
  38. * License as published by the Free Software Foundation; either
  39. * version 2.1 of the License, or (at your option) any later version.
  40. *
  41. * FFmpeg is distributed in the hope that it will be useful,
  42. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  43. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  44. * Lesser General Public License for more details.
  45. *
  46. * You should have received a copy of the GNU Lesser General Public
  47. * License along with FFmpeg; if not, write to the Free Software
  48. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  49. */
  50. /**
  51. * @file
  52. * AAC decoder
  53. * @author Oded Shimon ( ods15 ods15 dyndns org )
  54. * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
  55. *
  56. * Fixed point implementation
  57. * @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com )
  58. */
  59. #define FFT_FLOAT 0
  60. #define FFT_FIXED_32 1
  61. #define USE_FIXED 1
  62. #include "libavutil/fixed_dsp.h"
  63. #include "libavutil/opt.h"
  64. #include "avcodec.h"
  65. #include "internal.h"
  66. #include "get_bits.h"
  67. #include "fft.h"
  68. #include "lpc.h"
  69. #include "kbdwin.h"
  70. #include "sinewin.h"
  71. #include "aac.h"
  72. #include "aactab.h"
  73. #include "aacdectab.h"
  74. #include "cbrt_tablegen.h"
  75. #include "sbr.h"
  76. #include "aacsbr.h"
  77. #include "mpeg4audio.h"
  78. #include "aacadtsdec.h"
  79. #include "libavutil/intfloat.h"
  80. #include <math.h>
  81. #include <string.h>
  82. static av_always_inline void reset_predict_state(PredictorState *ps)
  83. {
  84. ps->r0.mant = 0;
  85. ps->r0.exp = 0;
  86. ps->r1.mant = 0;
  87. ps->r1.exp = 0;
  88. ps->cor0.mant = 0;
  89. ps->cor0.exp = 0;
  90. ps->cor1.mant = 0;
  91. ps->cor1.exp = 0;
  92. ps->var0.mant = 0x20000000;
  93. ps->var0.exp = 1;
  94. ps->var1.mant = 0x20000000;
  95. ps->var1.exp = 1;
  96. }
  97. static const int exp2tab[4] = { Q31(1.0000000000/2), Q31(1.1892071150/2), Q31(1.4142135624/2), Q31(1.6817928305/2) }; // 2^0, 2^0.25, 2^0.5, 2^0.75
  98. static inline int *DEC_SPAIR(int *dst, unsigned idx)
  99. {
  100. dst[0] = (idx & 15) - 4;
  101. dst[1] = (idx >> 4 & 15) - 4;
  102. return dst + 2;
  103. }
  104. static inline int *DEC_SQUAD(int *dst, unsigned idx)
  105. {
  106. dst[0] = (idx & 3) - 1;
  107. dst[1] = (idx >> 2 & 3) - 1;
  108. dst[2] = (idx >> 4 & 3) - 1;
  109. dst[3] = (idx >> 6 & 3) - 1;
  110. return dst + 4;
  111. }
  112. static inline int *DEC_UPAIR(int *dst, unsigned idx, unsigned sign)
  113. {
  114. dst[0] = (idx & 15) * (1 - (sign & 0xFFFFFFFE));
  115. dst[1] = (idx >> 4 & 15) * (1 - ((sign & 1) * 2));
  116. return dst + 2;
  117. }
  118. static inline int *DEC_UQUAD(int *dst, unsigned idx, unsigned sign)
  119. {
  120. unsigned nz = idx >> 12;
  121. dst[0] = (idx & 3) * (1 + (((int)sign >> 31) * 2));
  122. sign <<= nz & 1;
  123. nz >>= 1;
  124. dst[1] = (idx >> 2 & 3) * (1 + (((int)sign >> 31) * 2));
  125. sign <<= nz & 1;
  126. nz >>= 1;
  127. dst[2] = (idx >> 4 & 3) * (1 + (((int)sign >> 31) * 2));
  128. sign <<= nz & 1;
  129. nz >>= 1;
  130. dst[3] = (idx >> 6 & 3) * (1 + (((int)sign >> 31) * 2));
  131. return dst + 4;
  132. }
  133. static void vector_pow43(int *coefs, int len)
  134. {
  135. int i, coef;
  136. for (i=0; i<len; i++) {
  137. coef = coefs[i];
  138. if (coef < 0)
  139. coef = -(int)cbrt_tab[-coef];
  140. else
  141. coef = (int)cbrt_tab[coef];
  142. coefs[i] = coef;
  143. }
  144. }
  145. static void subband_scale(int *dst, int *src, int scale, int offset, int len)
  146. {
  147. int ssign = scale < 0 ? -1 : 1;
  148. int s = FFABS(scale);
  149. unsigned int round;
  150. int i, out, c = exp2tab[s & 3];
  151. s = offset - (s >> 2);
  152. if (s > 31) {
  153. for (i=0; i<len; i++) {
  154. dst[i] = 0;
  155. }
  156. } else if (s > 0) {
  157. round = 1 << (s-1);
  158. for (i=0; i<len; i++) {
  159. out = (int)(((int64_t)src[i] * c) >> 32);
  160. dst[i] = ((int)(out+round) >> s) * ssign;
  161. }
  162. }
  163. else {
  164. s = s + 32;
  165. round = 1 << (s-1);
  166. for (i=0; i<len; i++) {
  167. out = (int)((int64_t)((int64_t)src[i] * c + round) >> s);
  168. dst[i] = out * (unsigned)ssign;
  169. }
  170. }
  171. }
  172. static void noise_scale(int *coefs, int scale, int band_energy, int len)
  173. {
  174. int ssign = scale < 0 ? -1 : 1;
  175. int s = FFABS(scale);
  176. unsigned int round;
  177. int i, out, c = exp2tab[s & 3];
  178. int nlz = 0;
  179. while (band_energy > 0x7fff) {
  180. band_energy >>= 1;
  181. nlz++;
  182. }
  183. c /= band_energy;
  184. s = 21 + nlz - (s >> 2);
  185. if (s > 31) {
  186. for (i=0; i<len; i++) {
  187. coefs[i] = 0;
  188. }
  189. } else if (s >= 0) {
  190. round = s ? 1 << (s-1) : 0;
  191. for (i=0; i<len; i++) {
  192. out = (int)(((int64_t)coefs[i] * c) >> 32);
  193. coefs[i] = ((int)(out+round) >> s) * ssign;
  194. }
  195. }
  196. else {
  197. s = s + 32;
  198. round = 1 << (s-1);
  199. for (i=0; i<len; i++) {
  200. out = (int)((int64_t)((int64_t)coefs[i] * c + round) >> s);
  201. coefs[i] = out * ssign;
  202. }
  203. }
  204. }
  205. static av_always_inline SoftFloat flt16_round(SoftFloat pf)
  206. {
  207. SoftFloat tmp;
  208. int s;
  209. tmp.exp = pf.exp;
  210. s = pf.mant >> 31;
  211. tmp.mant = (pf.mant ^ s) - s;
  212. tmp.mant = (tmp.mant + 0x00200000U) & 0xFFC00000U;
  213. tmp.mant = (tmp.mant ^ s) - s;
  214. return tmp;
  215. }
  216. static av_always_inline SoftFloat flt16_even(SoftFloat pf)
  217. {
  218. SoftFloat tmp;
  219. int s;
  220. tmp.exp = pf.exp;
  221. s = pf.mant >> 31;
  222. tmp.mant = (pf.mant ^ s) - s;
  223. tmp.mant = (tmp.mant + 0x001FFFFFU + (tmp.mant & 0x00400000U >> 16)) & 0xFFC00000U;
  224. tmp.mant = (tmp.mant ^ s) - s;
  225. return tmp;
  226. }
  227. static av_always_inline SoftFloat flt16_trunc(SoftFloat pf)
  228. {
  229. SoftFloat pun;
  230. int s;
  231. pun.exp = pf.exp;
  232. s = pf.mant >> 31;
  233. pun.mant = (pf.mant ^ s) - s;
  234. pun.mant = pun.mant & 0xFFC00000U;
  235. pun.mant = (pun.mant ^ s) - s;
  236. return pun;
  237. }
  238. static av_always_inline void predict(PredictorState *ps, int *coef,
  239. int output_enable)
  240. {
  241. const SoftFloat a = { 1023410176, 0 }; // 61.0 / 64
  242. const SoftFloat alpha = { 973078528, 0 }; // 29.0 / 32
  243. SoftFloat e0, e1;
  244. SoftFloat pv;
  245. SoftFloat k1, k2;
  246. SoftFloat r0 = ps->r0, r1 = ps->r1;
  247. SoftFloat cor0 = ps->cor0, cor1 = ps->cor1;
  248. SoftFloat var0 = ps->var0, var1 = ps->var1;
  249. SoftFloat tmp;
  250. if (var0.exp > 1 || (var0.exp == 1 && var0.mant > 0x20000000)) {
  251. k1 = av_mul_sf(cor0, flt16_even(av_div_sf(a, var0)));
  252. }
  253. else {
  254. k1.mant = 0;
  255. k1.exp = 0;
  256. }
  257. if (var1.exp > 1 || (var1.exp == 1 && var1.mant > 0x20000000)) {
  258. k2 = av_mul_sf(cor1, flt16_even(av_div_sf(a, var1)));
  259. }
  260. else {
  261. k2.mant = 0;
  262. k2.exp = 0;
  263. }
  264. tmp = av_mul_sf(k1, r0);
  265. pv = flt16_round(av_add_sf(tmp, av_mul_sf(k2, r1)));
  266. if (output_enable) {
  267. int shift = 28 - pv.exp;
  268. if (shift < 31)
  269. *coef += (pv.mant + (1 << (shift - 1))) >> shift;
  270. }
  271. e0 = av_int2sf(*coef, 2);
  272. e1 = av_sub_sf(e0, tmp);
  273. ps->cor1 = flt16_trunc(av_add_sf(av_mul_sf(alpha, cor1), av_mul_sf(r1, e1)));
  274. tmp = av_add_sf(av_mul_sf(r1, r1), av_mul_sf(e1, e1));
  275. tmp.exp--;
  276. ps->var1 = flt16_trunc(av_add_sf(av_mul_sf(alpha, var1), tmp));
  277. ps->cor0 = flt16_trunc(av_add_sf(av_mul_sf(alpha, cor0), av_mul_sf(r0, e0)));
  278. tmp = av_add_sf(av_mul_sf(r0, r0), av_mul_sf(e0, e0));
  279. tmp.exp--;
  280. ps->var0 = flt16_trunc(av_add_sf(av_mul_sf(alpha, var0), tmp));
  281. ps->r1 = flt16_trunc(av_mul_sf(a, av_sub_sf(r0, av_mul_sf(k1, e0))));
  282. ps->r0 = flt16_trunc(av_mul_sf(a, e0));
  283. }
  284. static const int cce_scale_fixed[8] = {
  285. Q30(1.0), //2^(0/8)
  286. Q30(1.0905077327), //2^(1/8)
  287. Q30(1.1892071150), //2^(2/8)
  288. Q30(1.2968395547), //2^(3/8)
  289. Q30(1.4142135624), //2^(4/8)
  290. Q30(1.5422108254), //2^(5/8)
  291. Q30(1.6817928305), //2^(6/8)
  292. Q30(1.8340080864), //2^(7/8)
  293. };
  294. /**
  295. * Apply dependent channel coupling (applied before IMDCT).
  296. *
  297. * @param index index into coupling gain array
  298. */
  299. static void apply_dependent_coupling_fixed(AACContext *ac,
  300. SingleChannelElement *target,
  301. ChannelElement *cce, int index)
  302. {
  303. IndividualChannelStream *ics = &cce->ch[0].ics;
  304. const uint16_t *offsets = ics->swb_offset;
  305. int *dest = target->coeffs;
  306. const int *src = cce->ch[0].coeffs;
  307. int g, i, group, k, idx = 0;
  308. if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) {
  309. av_log(ac->avctx, AV_LOG_ERROR,
  310. "Dependent coupling is not supported together with LTP\n");
  311. return;
  312. }
  313. for (g = 0; g < ics->num_window_groups; g++) {
  314. for (i = 0; i < ics->max_sfb; i++, idx++) {
  315. if (cce->ch[0].band_type[idx] != ZERO_BT) {
  316. const int gain = cce->coup.gain[index][idx];
  317. int shift, round, c, tmp;
  318. if (gain < 0) {
  319. c = -cce_scale_fixed[-gain & 7];
  320. shift = (-gain-1024) >> 3;
  321. }
  322. else {
  323. c = cce_scale_fixed[gain & 7];
  324. shift = (gain-1024) >> 3;
  325. }
  326. if (shift < -31) {
  327. // Nothing to do
  328. } else if (shift < 0) {
  329. shift = -shift;
  330. round = 1 << (shift - 1);
  331. for (group = 0; group < ics->group_len[g]; group++) {
  332. for (k = offsets[i]; k < offsets[i + 1]; k++) {
  333. tmp = (int)(((int64_t)src[group * 128 + k] * c + \
  334. (int64_t)0x1000000000) >> 37);
  335. dest[group * 128 + k] += (tmp + round) >> shift;
  336. }
  337. }
  338. }
  339. else {
  340. for (group = 0; group < ics->group_len[g]; group++) {
  341. for (k = offsets[i]; k < offsets[i + 1]; k++) {
  342. tmp = (int)(((int64_t)src[group * 128 + k] * c + \
  343. (int64_t)0x1000000000) >> 37);
  344. dest[group * 128 + k] += tmp * (1 << shift);
  345. }
  346. }
  347. }
  348. }
  349. }
  350. dest += ics->group_len[g] * 128;
  351. src += ics->group_len[g] * 128;
  352. }
  353. }
  354. /**
  355. * Apply independent channel coupling (applied after IMDCT).
  356. *
  357. * @param index index into coupling gain array
  358. */
  359. static void apply_independent_coupling_fixed(AACContext *ac,
  360. SingleChannelElement *target,
  361. ChannelElement *cce, int index)
  362. {
  363. int i, c, shift, round, tmp;
  364. const int gain = cce->coup.gain[index][0];
  365. const int *src = cce->ch[0].ret;
  366. int *dest = target->ret;
  367. const int len = 1024 << (ac->oc[1].m4ac.sbr == 1);
  368. c = cce_scale_fixed[gain & 7];
  369. shift = (gain-1024) >> 3;
  370. if (shift < 0) {
  371. shift = -shift;
  372. round = 1 << (shift - 1);
  373. for (i = 0; i < len; i++) {
  374. tmp = (int)(((int64_t)src[i] * c + (int64_t)0x1000000000) >> 37);
  375. dest[i] += (tmp + round) >> shift;
  376. }
  377. }
  378. else {
  379. for (i = 0; i < len; i++) {
  380. tmp = (int)(((int64_t)src[i] * c + (int64_t)0x1000000000) >> 37);
  381. dest[i] += tmp << shift;
  382. }
  383. }
  384. }
  385. #include "aacdec_template.c"
  386. AVCodec ff_aac_fixed_decoder = {
  387. .name = "aac_fixed",
  388. .long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
  389. .type = AVMEDIA_TYPE_AUDIO,
  390. .id = AV_CODEC_ID_AAC,
  391. .priv_data_size = sizeof(AACContext),
  392. .init = aac_decode_init,
  393. .close = aac_decode_close,
  394. .decode = aac_decode_frame,
  395. .sample_fmts = (const enum AVSampleFormat[]) {
  396. AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_NONE
  397. },
  398. .capabilities = AV_CODEC_CAP_CHANNEL_CONF | AV_CODEC_CAP_DR1,
  399. .channel_layouts = aac_channel_layout,
  400. .flush = flush,
  401. };