You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1674 lines
58KB

  1. /**
  2. * VP8 compatible video decoder
  3. *
  4. * Copyright (C) 2010 David Conrad
  5. * Copyright (C) 2010 Ronald S. Bultje
  6. * Copyright (C) 2010 Jason Garrett-Glaser
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "avcodec.h"
  25. #include "vp56.h"
  26. #include "vp8data.h"
  27. #include "vp8dsp.h"
  28. #include "h264pred.h"
  29. #include "rectangle.h"
  30. typedef struct {
  31. uint8_t filter_level;
  32. uint8_t inner_limit;
  33. uint8_t inner_filter;
  34. } VP8FilterStrength;
  35. typedef struct {
  36. uint8_t skip;
  37. // todo: make it possible to check for at least (i4x4 or split_mv)
  38. // in one op. are others needed?
  39. uint8_t mode;
  40. uint8_t ref_frame;
  41. uint8_t partitioning;
  42. VP56mv mv;
  43. VP56mv bmv[16];
  44. } VP8Macroblock;
  45. typedef struct {
  46. AVCodecContext *avctx;
  47. DSPContext dsp;
  48. VP8DSPContext vp8dsp;
  49. H264PredContext hpc;
  50. vp8_mc_func put_pixels_tab[3][3][3];
  51. AVFrame frames[4];
  52. AVFrame *framep[4];
  53. uint8_t *edge_emu_buffer;
  54. VP56RangeCoder c; ///< header context, includes mb modes and motion vectors
  55. int profile;
  56. int mb_width; /* number of horizontal MB */
  57. int mb_height; /* number of vertical MB */
  58. int linesize;
  59. int uvlinesize;
  60. int keyframe;
  61. int invisible;
  62. int update_last; ///< update VP56_FRAME_PREVIOUS with the current one
  63. int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so
  64. int update_altref;
  65. int deblock_filter;
  66. /**
  67. * If this flag is not set, all the probability updates
  68. * are discarded after this frame is decoded.
  69. */
  70. int update_probabilities;
  71. /**
  72. * All coefficients are contained in separate arith coding contexts.
  73. * There can be 1, 2, 4, or 8 of these after the header context.
  74. */
  75. int num_coeff_partitions;
  76. VP56RangeCoder coeff_partition[8];
  77. VP8Macroblock *macroblocks;
  78. VP8Macroblock *macroblocks_base;
  79. VP8FilterStrength *filter_strength;
  80. int mb_stride;
  81. uint8_t *intra4x4_pred_mode;
  82. uint8_t *intra4x4_pred_mode_base;
  83. uint8_t *segmentation_map;
  84. int b4_stride;
  85. /**
  86. * Cache of the top row needed for intra prediction
  87. * 16 for luma, 8 for each chroma plane
  88. */
  89. uint8_t (*top_border)[16+8+8];
  90. /**
  91. * For coeff decode, we need to know whether the above block had non-zero
  92. * coefficients. This means for each macroblock, we need data for 4 luma
  93. * blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9
  94. * per macroblock. We keep the last row in top_nnz.
  95. */
  96. uint8_t (*top_nnz)[9];
  97. DECLARE_ALIGNED(8, uint8_t, left_nnz)[9];
  98. /**
  99. * This is the index plus one of the last non-zero coeff
  100. * for each of the blocks in the current macroblock.
  101. * So, 0 -> no coeffs
  102. * 1 -> dc-only (special transform)
  103. * 2+-> full transform
  104. */
  105. DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4];
  106. DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16];
  107. uint8_t intra4x4_pred_mode_mb[16];
  108. int chroma_pred_mode; ///< 8x8c pred mode of the current macroblock
  109. int segment; ///< segment of the current macroblock
  110. int mbskip_enabled;
  111. int sign_bias[4]; ///< one state [0, 1] per ref frame type
  112. int ref_count[3];
  113. /**
  114. * Base parameters for segmentation, i.e. per-macroblock parameters.
  115. * These must be kept unchanged even if segmentation is not used for
  116. * a frame, since the values persist between interframes.
  117. */
  118. struct {
  119. int enabled;
  120. int absolute_vals;
  121. int update_map;
  122. int8_t base_quant[4];
  123. int8_t filter_level[4]; ///< base loop filter level
  124. } segmentation;
  125. /**
  126. * Macroblocks can have one of 4 different quants in a frame when
  127. * segmentation is enabled.
  128. * If segmentation is disabled, only the first segment's values are used.
  129. */
  130. struct {
  131. // [0] - DC qmul [1] - AC qmul
  132. int16_t luma_qmul[2];
  133. int16_t luma_dc_qmul[2]; ///< luma dc-only block quant
  134. int16_t chroma_qmul[2];
  135. } qmat[4];
  136. struct {
  137. int simple;
  138. int level;
  139. int sharpness;
  140. } filter;
  141. struct {
  142. int enabled; ///< whether each mb can have a different strength based on mode/ref
  143. /**
  144. * filter strength adjustment for the following macroblock modes:
  145. * [0] - i4x4
  146. * [1] - zero mv
  147. * [2] - inter modes except for zero or split mv
  148. * [3] - split mv
  149. * i16x16 modes never have any adjustment
  150. */
  151. int8_t mode[4];
  152. /**
  153. * filter strength adjustment for macroblocks that reference:
  154. * [0] - intra / VP56_FRAME_CURRENT
  155. * [1] - VP56_FRAME_PREVIOUS
  156. * [2] - VP56_FRAME_GOLDEN
  157. * [3] - altref / VP56_FRAME_GOLDEN2
  158. */
  159. int8_t ref[4];
  160. } lf_delta;
  161. /**
  162. * These are all of the updatable probabilities for binary decisions.
  163. * They are only implictly reset on keyframes, making it quite likely
  164. * for an interframe to desync if a prior frame's header was corrupt
  165. * or missing outright!
  166. */
  167. struct {
  168. uint8_t segmentid[3];
  169. uint8_t mbskip;
  170. uint8_t intra;
  171. uint8_t last;
  172. uint8_t golden;
  173. uint8_t pred16x16[4];
  174. uint8_t pred8x8c[3];
  175. uint8_t token[4][8][3][NUM_DCT_TOKENS-1];
  176. uint8_t mvc[2][19];
  177. } prob[2];
  178. } VP8Context;
  179. static void vp8_decode_flush(AVCodecContext *avctx)
  180. {
  181. VP8Context *s = avctx->priv_data;
  182. int i;
  183. for (i = 0; i < 4; i++)
  184. if (s->frames[i].data[0])
  185. avctx->release_buffer(avctx, &s->frames[i]);
  186. memset(s->framep, 0, sizeof(s->framep));
  187. av_freep(&s->macroblocks_base);
  188. av_freep(&s->intra4x4_pred_mode_base);
  189. av_freep(&s->top_nnz);
  190. av_freep(&s->edge_emu_buffer);
  191. av_freep(&s->top_border);
  192. av_freep(&s->segmentation_map);
  193. s->macroblocks = NULL;
  194. s->intra4x4_pred_mode = NULL;
  195. }
  196. static int update_dimensions(VP8Context *s, int width, int height)
  197. {
  198. int i;
  199. if (avcodec_check_dimensions(s->avctx, width, height))
  200. return AVERROR_INVALIDDATA;
  201. vp8_decode_flush(s->avctx);
  202. avcodec_set_dimensions(s->avctx, width, height);
  203. s->mb_width = (s->avctx->coded_width +15) / 16;
  204. s->mb_height = (s->avctx->coded_height+15) / 16;
  205. // we allocate a border around the top/left of intra4x4 modes
  206. // this is 4 blocks for intra4x4 to keep 4-byte alignment for fill_rectangle
  207. s->mb_stride = s->mb_width+1;
  208. s->b4_stride = 4*s->mb_stride;
  209. s->macroblocks_base = av_mallocz((s->mb_stride+s->mb_height*2+2)*sizeof(*s->macroblocks));
  210. s->filter_strength = av_mallocz(s->mb_stride*sizeof(*s->filter_strength));
  211. s->intra4x4_pred_mode_base = av_mallocz(s->b4_stride*(4*s->mb_height+1));
  212. s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
  213. s->top_border = av_mallocz((s->mb_width+1)*sizeof(*s->top_border));
  214. s->segmentation_map = av_mallocz(s->mb_stride*s->mb_height);
  215. if (!s->macroblocks_base || !s->filter_strength || !s->intra4x4_pred_mode_base ||
  216. !s->top_nnz || !s->top_border || !s->segmentation_map)
  217. return AVERROR(ENOMEM);
  218. s->macroblocks = s->macroblocks_base + 1;
  219. s->intra4x4_pred_mode = s->intra4x4_pred_mode_base + 4 + s->b4_stride;
  220. memset(s->intra4x4_pred_mode_base, DC_PRED, s->b4_stride);
  221. for (i = 0; i < 4*s->mb_height; i++)
  222. s->intra4x4_pred_mode[i*s->b4_stride-1] = DC_PRED;
  223. return 0;
  224. }
  225. static void parse_segment_info(VP8Context *s)
  226. {
  227. VP56RangeCoder *c = &s->c;
  228. int i;
  229. s->segmentation.update_map = vp8_rac_get(c);
  230. if (vp8_rac_get(c)) { // update segment feature data
  231. s->segmentation.absolute_vals = vp8_rac_get(c);
  232. for (i = 0; i < 4; i++)
  233. s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7);
  234. for (i = 0; i < 4; i++)
  235. s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
  236. }
  237. if (s->segmentation.update_map)
  238. for (i = 0; i < 3; i++)
  239. s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
  240. }
  241. static void update_lf_deltas(VP8Context *s)
  242. {
  243. VP56RangeCoder *c = &s->c;
  244. int i;
  245. for (i = 0; i < 4; i++)
  246. s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6);
  247. for (i = 0; i < 4; i++)
  248. s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6);
  249. }
  250. static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
  251. {
  252. const uint8_t *sizes = buf;
  253. int i;
  254. s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2);
  255. buf += 3*(s->num_coeff_partitions-1);
  256. buf_size -= 3*(s->num_coeff_partitions-1);
  257. if (buf_size < 0)
  258. return -1;
  259. for (i = 0; i < s->num_coeff_partitions-1; i++) {
  260. int size = AV_RL24(sizes + 3*i);
  261. if (buf_size - size < 0)
  262. return -1;
  263. vp56_init_range_decoder(&s->coeff_partition[i], buf, size);
  264. buf += size;
  265. buf_size -= size;
  266. }
  267. vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
  268. return 0;
  269. }
  270. static void get_quants(VP8Context *s)
  271. {
  272. VP56RangeCoder *c = &s->c;
  273. int i, base_qi;
  274. int yac_qi = vp8_rac_get_uint(c, 7);
  275. int ydc_delta = vp8_rac_get_sint(c, 4);
  276. int y2dc_delta = vp8_rac_get_sint(c, 4);
  277. int y2ac_delta = vp8_rac_get_sint(c, 4);
  278. int uvdc_delta = vp8_rac_get_sint(c, 4);
  279. int uvac_delta = vp8_rac_get_sint(c, 4);
  280. for (i = 0; i < 4; i++) {
  281. if (s->segmentation.enabled) {
  282. base_qi = s->segmentation.base_quant[i];
  283. if (!s->segmentation.absolute_vals)
  284. base_qi += yac_qi;
  285. } else
  286. base_qi = yac_qi;
  287. s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)];
  288. s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi , 0, 127)];
  289. s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)];
  290. s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100;
  291. s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)];
  292. s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)];
  293. s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
  294. s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132);
  295. }
  296. }
  297. /**
  298. * Determine which buffers golden and altref should be updated with after this frame.
  299. * The spec isn't clear here, so I'm going by my understanding of what libvpx does
  300. *
  301. * Intra frames update all 3 references
  302. * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
  303. * If the update (golden|altref) flag is set, it's updated with the current frame
  304. * if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
  305. * If the flag is not set, the number read means:
  306. * 0: no update
  307. * 1: VP56_FRAME_PREVIOUS
  308. * 2: update golden with altref, or update altref with golden
  309. */
  310. static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
  311. {
  312. VP56RangeCoder *c = &s->c;
  313. if (update)
  314. return VP56_FRAME_CURRENT;
  315. switch (vp8_rac_get_uint(c, 2)) {
  316. case 1:
  317. return VP56_FRAME_PREVIOUS;
  318. case 2:
  319. return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
  320. }
  321. return VP56_FRAME_NONE;
  322. }
  323. static void update_refs(VP8Context *s)
  324. {
  325. VP56RangeCoder *c = &s->c;
  326. int update_golden = vp8_rac_get(c);
  327. int update_altref = vp8_rac_get(c);
  328. s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN);
  329. s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2);
  330. }
  331. static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
  332. {
  333. VP56RangeCoder *c = &s->c;
  334. int header_size, hscale, vscale, i, j, k, l, ret;
  335. int width = s->avctx->width;
  336. int height = s->avctx->height;
  337. s->keyframe = !(buf[0] & 1);
  338. s->profile = (buf[0]>>1) & 7;
  339. s->invisible = !(buf[0] & 0x10);
  340. header_size = AV_RL24(buf) >> 5;
  341. buf += 3;
  342. buf_size -= 3;
  343. if (s->profile > 3)
  344. av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
  345. if (!s->profile)
  346. memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
  347. else // profile 1-3 use bilinear, 4+ aren't defined so whatever
  348. memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
  349. if (header_size > buf_size - 7*s->keyframe) {
  350. av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
  351. return AVERROR_INVALIDDATA;
  352. }
  353. if (s->keyframe) {
  354. if (AV_RL24(buf) != 0x2a019d) {
  355. av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", AV_RL24(buf));
  356. return AVERROR_INVALIDDATA;
  357. }
  358. width = AV_RL16(buf+3) & 0x3fff;
  359. height = AV_RL16(buf+5) & 0x3fff;
  360. hscale = buf[4] >> 6;
  361. vscale = buf[6] >> 6;
  362. buf += 7;
  363. buf_size -= 7;
  364. if (hscale || vscale)
  365. av_log_missing_feature(s->avctx, "Upscaling", 1);
  366. s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
  367. memcpy(s->prob->token , vp8_token_default_probs , sizeof(s->prob->token));
  368. memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
  369. memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
  370. memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc));
  371. memset(&s->segmentation, 0, sizeof(s->segmentation));
  372. }
  373. if (!s->macroblocks_base || /* first frame */
  374. width != s->avctx->width || height != s->avctx->height) {
  375. if ((ret = update_dimensions(s, width, height) < 0))
  376. return ret;
  377. }
  378. vp56_init_range_decoder(c, buf, header_size);
  379. buf += header_size;
  380. buf_size -= header_size;
  381. if (s->keyframe) {
  382. if (vp8_rac_get(c))
  383. av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
  384. vp8_rac_get(c); // whether we can skip clamping in dsp functions
  385. }
  386. if ((s->segmentation.enabled = vp8_rac_get(c)))
  387. parse_segment_info(s);
  388. else
  389. s->segmentation.update_map = 0; // FIXME: move this to some init function?
  390. s->filter.simple = vp8_rac_get(c);
  391. s->filter.level = vp8_rac_get_uint(c, 6);
  392. s->filter.sharpness = vp8_rac_get_uint(c, 3);
  393. if ((s->lf_delta.enabled = vp8_rac_get(c)))
  394. if (vp8_rac_get(c))
  395. update_lf_deltas(s);
  396. if (setup_partitions(s, buf, buf_size)) {
  397. av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
  398. return AVERROR_INVALIDDATA;
  399. }
  400. get_quants(s);
  401. if (!s->keyframe) {
  402. update_refs(s);
  403. s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c);
  404. s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
  405. }
  406. // if we aren't saving this frame's probabilities for future frames,
  407. // make a copy of the current probabilities
  408. if (!(s->update_probabilities = vp8_rac_get(c)))
  409. s->prob[1] = s->prob[0];
  410. s->update_last = s->keyframe || vp8_rac_get(c);
  411. for (i = 0; i < 4; i++)
  412. for (j = 0; j < 8; j++)
  413. for (k = 0; k < 3; k++)
  414. for (l = 0; l < NUM_DCT_TOKENS-1; l++)
  415. if (vp56_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l]))
  416. s->prob->token[i][j][k][l] = vp8_rac_get_uint(c, 8);
  417. if ((s->mbskip_enabled = vp8_rac_get(c)))
  418. s->prob->mbskip = vp8_rac_get_uint(c, 8);
  419. if (!s->keyframe) {
  420. s->prob->intra = vp8_rac_get_uint(c, 8);
  421. s->prob->last = vp8_rac_get_uint(c, 8);
  422. s->prob->golden = vp8_rac_get_uint(c, 8);
  423. if (vp8_rac_get(c))
  424. for (i = 0; i < 4; i++)
  425. s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
  426. if (vp8_rac_get(c))
  427. for (i = 0; i < 3; i++)
  428. s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8);
  429. // 17.2 MV probability update
  430. for (i = 0; i < 2; i++)
  431. for (j = 0; j < 19; j++)
  432. if (vp56_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j]))
  433. s->prob->mvc[i][j] = vp8_rac_get_nn(c);
  434. }
  435. return 0;
  436. }
  437. static av_always_inline
  438. void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src, int mb_x, int mb_y)
  439. {
  440. #define MARGIN (16 << 2)
  441. dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN),
  442. ((s->mb_width - 1 - mb_x) << 6) + MARGIN);
  443. dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN),
  444. ((s->mb_height - 1 - mb_y) << 6) + MARGIN);
  445. }
  446. static av_always_inline
  447. void find_near_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
  448. VP56mv near[2], VP56mv *best, uint8_t cnt[4])
  449. {
  450. VP8Macroblock *mb_edge[3] = { mb + 2 /* top */,
  451. mb - 1 /* left */,
  452. mb + 1 /* top-left */ };
  453. enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT };
  454. VP56mv near_mv[4] = {{ 0 }};
  455. enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
  456. int idx = CNT_ZERO;
  457. int best_idx = CNT_ZERO;
  458. int cur_sign_bias = s->sign_bias[mb->ref_frame];
  459. int *sign_bias = s->sign_bias;
  460. /* Process MB on top, left and top-left */
  461. #define MV_EDGE_CHECK(n)\
  462. {\
  463. VP8Macroblock *edge = mb_edge[n];\
  464. int edge_ref = edge->ref_frame;\
  465. if (edge_ref != VP56_FRAME_CURRENT) {\
  466. uint32_t mv = AV_RN32A(&edge->mv);\
  467. if (mv) {\
  468. if (cur_sign_bias != sign_bias[edge_ref]) {\
  469. /* SWAR negate of the values in mv. */\
  470. mv = ~mv;\
  471. mv = ((mv&0x7fff7fff) + 0x00010001) ^ (mv&0x80008000);\
  472. }\
  473. if (!n || mv != AV_RN32A(&near_mv[idx]))\
  474. AV_WN32A(&near_mv[++idx], mv);\
  475. cnt[idx] += 1 + (n != 2);\
  476. } else\
  477. cnt[CNT_ZERO] += 1 + (n != 2);\
  478. }\
  479. }
  480. MV_EDGE_CHECK(0)
  481. MV_EDGE_CHECK(1)
  482. MV_EDGE_CHECK(2)
  483. /* If we have three distinct MVs, merge first and last if they're the same */
  484. if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1+EDGE_TOP]) == AV_RN32A(&near_mv[1+EDGE_TOPLEFT]))
  485. cnt[CNT_NEAREST] += 1;
  486. cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) +
  487. (mb_edge[EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 +
  488. (mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
  489. /* Swap near and nearest if necessary */
  490. if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
  491. FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]);
  492. FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
  493. }
  494. /* Choose the best mv out of 0,0 and the nearest mv */
  495. if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])
  496. best_idx = CNT_NEAREST;
  497. mb->mv = near_mv[best_idx];
  498. near[0] = near_mv[CNT_NEAREST];
  499. near[1] = near_mv[CNT_NEAR];
  500. }
  501. /**
  502. * Motion vector coding, 17.1.
  503. */
  504. static int read_mv_component(VP56RangeCoder *c, const uint8_t *p)
  505. {
  506. int bit, x = 0;
  507. if (vp56_rac_get_prob_branchy(c, p[0])) {
  508. int i;
  509. for (i = 0; i < 3; i++)
  510. x += vp56_rac_get_prob(c, p[9 + i]) << i;
  511. for (i = 9; i > 3; i--)
  512. x += vp56_rac_get_prob(c, p[9 + i]) << i;
  513. if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12]))
  514. x += 8;
  515. } else {
  516. // small_mvtree
  517. const uint8_t *ps = p+2;
  518. bit = vp56_rac_get_prob(c, *ps);
  519. ps += 1 + 3*bit;
  520. x += 4*bit;
  521. bit = vp56_rac_get_prob(c, *ps);
  522. ps += 1 + bit;
  523. x += 2*bit;
  524. x += vp56_rac_get_prob(c, *ps);
  525. }
  526. return (x && vp56_rac_get_prob(c, p[1])) ? -x : x;
  527. }
  528. static av_always_inline
  529. const uint8_t *get_submv_prob(uint32_t left, uint32_t top)
  530. {
  531. if (left == top)
  532. return vp8_submv_prob[4-!!left];
  533. if (!top)
  534. return vp8_submv_prob[2];
  535. return vp8_submv_prob[1-!!left];
  536. }
  537. /**
  538. * Split motion vector prediction, 16.4.
  539. * @returns the number of motion vectors parsed (2, 4 or 16)
  540. */
  541. static av_always_inline
  542. int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb)
  543. {
  544. int part_idx = mb->partitioning =
  545. vp8_rac_get_tree(c, vp8_mbsplit_tree, vp8_mbsplit_prob);
  546. int n, num = vp8_mbsplit_count[part_idx];
  547. VP8Macroblock *top_mb = &mb[2];
  548. VP8Macroblock *left_mb = &mb[-1];
  549. const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning],
  550. *mbsplits_top = vp8_mbsplits[top_mb->partitioning],
  551. *mbsplits_cur = vp8_mbsplits[part_idx],
  552. *firstidx = vp8_mbfirstidx[part_idx];
  553. VP56mv *top_mv = top_mb->bmv;
  554. VP56mv *left_mv = left_mb->bmv;
  555. VP56mv *cur_mv = mb->bmv;
  556. for (n = 0; n < num; n++) {
  557. int k = firstidx[n];
  558. uint32_t left, above;
  559. const uint8_t *submv_prob;
  560. if (!(k & 3))
  561. left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
  562. else
  563. left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
  564. if (k <= 3)
  565. above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
  566. else
  567. above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
  568. submv_prob = get_submv_prob(left, above);
  569. switch (vp8_rac_get_tree(c, vp8_submv_ref_tree, submv_prob)) {
  570. case VP8_SUBMVMODE_NEW4X4:
  571. mb->bmv[n].y = mb->mv.y + read_mv_component(c, s->prob->mvc[0]);
  572. mb->bmv[n].x = mb->mv.x + read_mv_component(c, s->prob->mvc[1]);
  573. break;
  574. case VP8_SUBMVMODE_ZERO4X4:
  575. AV_ZERO32(&mb->bmv[n]);
  576. break;
  577. case VP8_SUBMVMODE_LEFT4X4:
  578. AV_WN32A(&mb->bmv[n], left);
  579. break;
  580. case VP8_SUBMVMODE_TOP4X4:
  581. AV_WN32A(&mb->bmv[n], above);
  582. break;
  583. }
  584. }
  585. return num;
  586. }
  587. static av_always_inline
  588. void decode_intra4x4_modes(VP56RangeCoder *c, uint8_t *intra4x4,
  589. int stride, int keyframe)
  590. {
  591. int x, y, t, l, i;
  592. if (keyframe) {
  593. const uint8_t *ctx;
  594. for (y = 0; y < 4; y++) {
  595. for (x = 0; x < 4; x++) {
  596. t = intra4x4[x - stride];
  597. l = intra4x4[x - 1];
  598. ctx = vp8_pred4x4_prob_intra[t][l];
  599. intra4x4[x] = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx);
  600. }
  601. intra4x4 += stride;
  602. }
  603. } else {
  604. for (i = 0; i < 16; i++)
  605. intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter);
  606. }
  607. }
  608. static av_always_inline
  609. void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
  610. uint8_t *intra4x4, uint8_t *segment)
  611. {
  612. VP56RangeCoder *c = &s->c;
  613. if (s->segmentation.update_map)
  614. *segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid);
  615. s->segment = *segment;
  616. mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
  617. if (s->keyframe) {
  618. mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra);
  619. if (mb->mode == MODE_I4x4) {
  620. decode_intra4x4_modes(c, intra4x4, s->b4_stride, 1);
  621. } else
  622. fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1);
  623. s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra);
  624. mb->ref_frame = VP56_FRAME_CURRENT;
  625. } else if (vp56_rac_get_prob_branchy(c, s->prob->intra)) {
  626. VP56mv near[2], best;
  627. uint8_t cnt[4] = { 0 };
  628. uint8_t p[4];
  629. // inter MB, 16.2
  630. if (vp56_rac_get_prob_branchy(c, s->prob->last))
  631. mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ?
  632. VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
  633. else
  634. mb->ref_frame = VP56_FRAME_PREVIOUS;
  635. s->ref_count[mb->ref_frame-1]++;
  636. // motion vectors, 16.3
  637. find_near_mvs(s, mb, mb_x, mb_y, near, &best, cnt);
  638. p[0] = vp8_mode_contexts[cnt[0]][0];
  639. p[1] = vp8_mode_contexts[cnt[1]][1];
  640. p[2] = vp8_mode_contexts[cnt[2]][2];
  641. p[3] = vp8_mode_contexts[cnt[3]][3];
  642. mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_mvinter, p);
  643. switch (mb->mode) {
  644. case VP8_MVMODE_SPLIT:
  645. clamp_mv(s, &mb->mv, &mb->mv, mb_x, mb_y);
  646. mb->mv = mb->bmv[decode_splitmvs(s, c, mb) - 1];
  647. break;
  648. case VP8_MVMODE_ZERO:
  649. AV_ZERO32(&mb->mv);
  650. break;
  651. case VP8_MVMODE_NEAREST:
  652. clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y);
  653. break;
  654. case VP8_MVMODE_NEAR:
  655. clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y);
  656. break;
  657. case VP8_MVMODE_NEW:
  658. clamp_mv(s, &mb->mv, &mb->mv, mb_x, mb_y);
  659. mb->mv.y += + read_mv_component(c, s->prob->mvc[0]);
  660. mb->mv.x += + read_mv_component(c, s->prob->mvc[1]);
  661. break;
  662. }
  663. if (mb->mode != VP8_MVMODE_SPLIT) {
  664. mb->partitioning = VP8_SPLITMVMODE_NONE;
  665. mb->bmv[0] = mb->mv;
  666. }
  667. } else {
  668. // intra MB, 16.1
  669. mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16);
  670. if (mb->mode == MODE_I4x4)
  671. decode_intra4x4_modes(c, intra4x4, 4, 0);
  672. s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c);
  673. mb->ref_frame = VP56_FRAME_CURRENT;
  674. mb->partitioning = VP8_SPLITMVMODE_NONE;
  675. AV_ZERO32(&mb->bmv[0]);
  676. }
  677. }
  678. /**
  679. * @param c arithmetic bitstream reader context
  680. * @param block destination for block coefficients
  681. * @param probs probabilities to use when reading trees from the bitstream
  682. * @param i initial coeff index, 0 unless a separate DC block is coded
  683. * @param zero_nhood the initial prediction context for number of surrounding
  684. * all-zero blocks (only left/top, so 0-2)
  685. * @param qmul array holding the dc/ac dequant factor at position 0/1
  686. * @return 0 if no coeffs were decoded
  687. * otherwise, the index of the last coeff decoded plus one
  688. */
  689. static int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16],
  690. uint8_t probs[8][3][NUM_DCT_TOKENS-1],
  691. int i, int zero_nhood, int16_t qmul[2])
  692. {
  693. uint8_t *token_prob;
  694. int nonzero = 0;
  695. int coeff;
  696. do {
  697. token_prob = probs[vp8_coeff_band[i]][zero_nhood];
  698. if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB
  699. return nonzero;
  700. skip_eob:
  701. if (!vp56_rac_get_prob_branchy(c, token_prob[1])) { // DCT_0
  702. zero_nhood = 0;
  703. token_prob = probs[vp8_coeff_band[++i]][0];
  704. if (i < 16)
  705. goto skip_eob;
  706. return nonzero; // invalid input; blocks should end with EOB
  707. }
  708. if (!vp56_rac_get_prob_branchy(c, token_prob[2])) { // DCT_1
  709. coeff = 1;
  710. zero_nhood = 1;
  711. } else {
  712. zero_nhood = 2;
  713. if (!vp56_rac_get_prob_branchy(c, token_prob[3])) { // DCT 2,3,4
  714. coeff = vp56_rac_get_prob(c, token_prob[4]);
  715. if (coeff)
  716. coeff += vp56_rac_get_prob(c, token_prob[5]);
  717. coeff += 2;
  718. } else {
  719. // DCT_CAT*
  720. if (!vp56_rac_get_prob_branchy(c, token_prob[6])) {
  721. if (!vp56_rac_get_prob_branchy(c, token_prob[7])) { // DCT_CAT1
  722. coeff = 5 + vp56_rac_get_prob(c, vp8_dct_cat1_prob[0]);
  723. } else { // DCT_CAT2
  724. coeff = 7;
  725. coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[0]) << 1;
  726. coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[1]);
  727. }
  728. } else { // DCT_CAT3 and up
  729. int a = vp56_rac_get_prob(c, token_prob[8]);
  730. int b = vp56_rac_get_prob(c, token_prob[9+a]);
  731. int cat = (a<<1) + b;
  732. coeff = 3 + (8<<cat);
  733. coeff += vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]);
  734. }
  735. }
  736. }
  737. // todo: full [16] qmat? load into register?
  738. block[zigzag_scan[i]] = (vp8_rac_get(c) ? -coeff : coeff) * qmul[!!i];
  739. nonzero = ++i;
  740. } while (i < 16);
  741. return nonzero;
  742. }
  743. static av_always_inline
  744. void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
  745. uint8_t t_nnz[9], uint8_t l_nnz[9])
  746. {
  747. LOCAL_ALIGNED_16(DCTELEM, dc,[16]);
  748. int i, x, y, luma_start = 0, luma_ctx = 3;
  749. int nnz_pred, nnz, nnz_total = 0;
  750. int segment = s->segment;
  751. if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
  752. AV_ZERO128(dc);
  753. AV_ZERO128(dc+8);
  754. nnz_pred = t_nnz[8] + l_nnz[8];
  755. // decode DC values and do hadamard
  756. nnz = decode_block_coeffs(c, dc, s->prob->token[1], 0, nnz_pred,
  757. s->qmat[segment].luma_dc_qmul);
  758. l_nnz[8] = t_nnz[8] = !!nnz;
  759. nnz_total += nnz;
  760. s->vp8dsp.vp8_luma_dc_wht(s->block, dc);
  761. luma_start = 1;
  762. luma_ctx = 0;
  763. }
  764. // luma blocks
  765. for (y = 0; y < 4; y++)
  766. for (x = 0; x < 4; x++) {
  767. nnz_pred = l_nnz[y] + t_nnz[x];
  768. nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start,
  769. nnz_pred, s->qmat[segment].luma_qmul);
  770. // nnz+luma_start may be one more than the actual last index, but we don't care
  771. s->non_zero_count_cache[y][x] = nnz + luma_start;
  772. t_nnz[x] = l_nnz[y] = !!nnz;
  773. nnz_total += nnz;
  774. }
  775. // chroma blocks
  776. // TODO: what to do about dimensions? 2nd dim for luma is x,
  777. // but for chroma it's (y<<1)|x
  778. for (i = 4; i < 6; i++)
  779. for (y = 0; y < 2; y++)
  780. for (x = 0; x < 2; x++) {
  781. nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x];
  782. nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0,
  783. nnz_pred, s->qmat[segment].chroma_qmul);
  784. s->non_zero_count_cache[i][(y<<1)+x] = nnz;
  785. t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz;
  786. nnz_total += nnz;
  787. }
  788. // if there were no coded coeffs despite the macroblock not being marked skip,
  789. // we MUST not do the inner loop filter and should not do IDCT
  790. // Since skip isn't used for bitstream prediction, just manually set it.
  791. if (!nnz_total)
  792. mb->skip = 1;
  793. }
  794. static av_always_inline
  795. void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
  796. int linesize, int uvlinesize, int simple)
  797. {
  798. AV_COPY128(top_border, src_y + 15*linesize);
  799. if (!simple) {
  800. AV_COPY64(top_border+16, src_cb + 7*uvlinesize);
  801. AV_COPY64(top_border+24, src_cr + 7*uvlinesize);
  802. }
  803. }
  804. static av_always_inline
  805. void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
  806. int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width,
  807. int simple, int xchg)
  808. {
  809. uint8_t *top_border_m1 = top_border-32; // for TL prediction
  810. src_y -= linesize;
  811. src_cb -= uvlinesize;
  812. src_cr -= uvlinesize;
  813. #define XCHG(a,b,xchg) do { \
  814. if (xchg) AV_SWAP64(b,a); \
  815. else AV_COPY64(b,a); \
  816. } while (0)
  817. XCHG(top_border_m1+8, src_y-8, xchg);
  818. XCHG(top_border, src_y, xchg);
  819. XCHG(top_border+8, src_y+8, 1);
  820. if (mb_x < mb_width-1)
  821. XCHG(top_border+32, src_y+16, 1);
  822. // only copy chroma for normal loop filter
  823. // or to initialize the top row to 127
  824. if (!simple || !mb_y) {
  825. XCHG(top_border_m1+16, src_cb-8, xchg);
  826. XCHG(top_border_m1+24, src_cr-8, xchg);
  827. XCHG(top_border+16, src_cb, 1);
  828. XCHG(top_border+24, src_cr, 1);
  829. }
  830. }
  831. static av_always_inline
  832. int check_intra_pred_mode(int mode, int mb_x, int mb_y)
  833. {
  834. if (mode == DC_PRED8x8) {
  835. if (!mb_x) {
  836. mode = mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8;
  837. } else if (!mb_y) {
  838. mode = LEFT_DC_PRED8x8;
  839. }
  840. }
  841. return mode;
  842. }
  843. static av_always_inline
  844. void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
  845. uint8_t *intra4x4, int mb_x, int mb_y)
  846. {
  847. int x, y, mode, nnz, tr;
  848. // for the first row, we need to run xchg_mb_border to init the top edge to 127
  849. // otherwise, skip it if we aren't going to deblock
  850. if (s->deblock_filter || !mb_y)
  851. xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
  852. s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
  853. s->filter.simple, 1);
  854. if (mb->mode < MODE_I4x4) {
  855. mode = check_intra_pred_mode(mb->mode, mb_x, mb_y);
  856. s->hpc.pred16x16[mode](dst[0], s->linesize);
  857. } else {
  858. uint8_t *ptr = dst[0];
  859. int stride = s->keyframe ? s->b4_stride : 4;
  860. // all blocks on the right edge of the macroblock use bottom edge
  861. // the top macroblock for their topright edge
  862. uint8_t *tr_right = ptr - s->linesize + 16;
  863. // if we're on the right edge of the frame, said edge is extended
  864. // from the top macroblock
  865. if (mb_x == s->mb_width-1) {
  866. tr = tr_right[-1]*0x01010101;
  867. tr_right = (uint8_t *)&tr;
  868. }
  869. if (mb->skip)
  870. AV_ZERO128(s->non_zero_count_cache);
  871. for (y = 0; y < 4; y++) {
  872. uint8_t *topright = ptr + 4 - s->linesize;
  873. for (x = 0; x < 4; x++) {
  874. if (x == 3)
  875. topright = tr_right;
  876. s->hpc.pred4x4[intra4x4[x]](ptr+4*x, topright, s->linesize);
  877. nnz = s->non_zero_count_cache[y][x];
  878. if (nnz) {
  879. if (nnz == 1)
  880. s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize);
  881. else
  882. s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize);
  883. }
  884. topright += 4;
  885. }
  886. ptr += 4*s->linesize;
  887. intra4x4 += stride;
  888. }
  889. }
  890. mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y);
  891. s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
  892. s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
  893. if (s->deblock_filter || !mb_y)
  894. xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
  895. s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
  896. s->filter.simple, 0);
  897. }
  898. /**
  899. * Generic MC function.
  900. *
  901. * @param s VP8 decoding context
  902. * @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes
  903. * @param dst target buffer for block data at block position
  904. * @param src reference picture buffer at origin (0, 0)
  905. * @param mv motion vector (relative to block position) to get pixel data from
  906. * @param x_off horizontal position of block from origin (0, 0)
  907. * @param y_off vertical position of block from origin (0, 0)
  908. * @param block_w width of block (16, 8 or 4)
  909. * @param block_h height of block (always same as block_w)
  910. * @param width width of src/dst plane data
  911. * @param height height of src/dst plane data
  912. * @param linesize size of a single line of plane data, including padding
  913. * @param mc_func motion compensation function pointers (bilinear or sixtap MC)
  914. */
  915. static av_always_inline
  916. void vp8_mc(VP8Context *s, int luma,
  917. uint8_t *dst, uint8_t *src, const VP56mv *mv,
  918. int x_off, int y_off, int block_w, int block_h,
  919. int width, int height, int linesize,
  920. vp8_mc_func mc_func[3][3])
  921. {
  922. if (AV_RN32A(mv)) {
  923. static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 };
  924. int mx = (mv->x << luma)&7, mx_idx = idx[mx];
  925. int my = (mv->y << luma)&7, my_idx = idx[my];
  926. x_off += mv->x >> (3 - luma);
  927. y_off += mv->y >> (3 - luma);
  928. // edge emulation
  929. src += y_off * linesize + x_off;
  930. if (x_off < 2 || x_off >= width - block_w - 3 ||
  931. y_off < 2 || y_off >= height - block_h - 3) {
  932. ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize,
  933. block_w + 5, block_h + 5,
  934. x_off - 2, y_off - 2, width, height);
  935. src = s->edge_emu_buffer + 2 + linesize * 2;
  936. }
  937. mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my);
  938. } else
  939. mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0);
  940. }
  941. static av_always_inline
  942. void vp8_mc_part(VP8Context *s, uint8_t *dst[3],
  943. AVFrame *ref_frame, int x_off, int y_off,
  944. int bx_off, int by_off,
  945. int block_w, int block_h,
  946. int width, int height, VP56mv *mv)
  947. {
  948. VP56mv uvmv = *mv;
  949. /* Y */
  950. vp8_mc(s, 1, dst[0] + by_off * s->linesize + bx_off,
  951. ref_frame->data[0], mv, x_off + bx_off, y_off + by_off,
  952. block_w, block_h, width, height, s->linesize,
  953. s->put_pixels_tab[block_w == 8]);
  954. /* U/V */
  955. if (s->profile == 3) {
  956. uvmv.x &= ~7;
  957. uvmv.y &= ~7;
  958. }
  959. x_off >>= 1; y_off >>= 1;
  960. bx_off >>= 1; by_off >>= 1;
  961. width >>= 1; height >>= 1;
  962. block_w >>= 1; block_h >>= 1;
  963. vp8_mc(s, 0, dst[1] + by_off * s->uvlinesize + bx_off,
  964. ref_frame->data[1], &uvmv, x_off + bx_off, y_off + by_off,
  965. block_w, block_h, width, height, s->uvlinesize,
  966. s->put_pixels_tab[1 + (block_w == 4)]);
  967. vp8_mc(s, 0, dst[2] + by_off * s->uvlinesize + bx_off,
  968. ref_frame->data[2], &uvmv, x_off + bx_off, y_off + by_off,
  969. block_w, block_h, width, height, s->uvlinesize,
  970. s->put_pixels_tab[1 + (block_w == 4)]);
  971. }
  972. /* Fetch pixels for estimated mv 4 macroblocks ahead.
  973. * Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */
  974. static av_always_inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref)
  975. {
  976. /* Don't prefetch refs that haven't been used very often this frame. */
  977. if (s->ref_count[ref-1] > (mb_xy >> 5)) {
  978. int x_off = mb_x << 4, y_off = mb_y << 4;
  979. int mx = mb->mv.x + x_off + 8;
  980. int my = mb->mv.y + y_off;
  981. uint8_t **src= s->framep[ref]->data;
  982. int off= mx + (my + (mb_x&3)*4)*s->linesize + 64;
  983. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  984. off= (mx>>1) + ((my>>1) + (mb_x&7))*s->uvlinesize + 64;
  985. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  986. }
  987. }
  988. /**
  989. * Apply motion vectors to prediction buffer, chapter 18.
  990. */
  991. static av_always_inline
  992. void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
  993. int mb_x, int mb_y)
  994. {
  995. int x_off = mb_x << 4, y_off = mb_y << 4;
  996. int width = 16*s->mb_width, height = 16*s->mb_height;
  997. AVFrame *ref = s->framep[mb->ref_frame];
  998. VP56mv *bmv = mb->bmv;
  999. if (mb->mode < VP8_MVMODE_SPLIT) {
  1000. vp8_mc_part(s, dst, ref, x_off, y_off,
  1001. 0, 0, 16, 16, width, height, &mb->mv);
  1002. } else switch (mb->partitioning) {
  1003. case VP8_SPLITMVMODE_4x4: {
  1004. int x, y;
  1005. VP56mv uvmv;
  1006. /* Y */
  1007. for (y = 0; y < 4; y++) {
  1008. for (x = 0; x < 4; x++) {
  1009. vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4,
  1010. ref->data[0], &bmv[4*y + x],
  1011. 4*x + x_off, 4*y + y_off, 4, 4,
  1012. width, height, s->linesize,
  1013. s->put_pixels_tab[2]);
  1014. }
  1015. }
  1016. /* U/V */
  1017. x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1;
  1018. for (y = 0; y < 2; y++) {
  1019. for (x = 0; x < 2; x++) {
  1020. uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x +
  1021. mb->bmv[ 2*y * 4 + 2*x+1].x +
  1022. mb->bmv[(2*y+1) * 4 + 2*x ].x +
  1023. mb->bmv[(2*y+1) * 4 + 2*x+1].x;
  1024. uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y +
  1025. mb->bmv[ 2*y * 4 + 2*x+1].y +
  1026. mb->bmv[(2*y+1) * 4 + 2*x ].y +
  1027. mb->bmv[(2*y+1) * 4 + 2*x+1].y;
  1028. uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2;
  1029. uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2;
  1030. if (s->profile == 3) {
  1031. uvmv.x &= ~7;
  1032. uvmv.y &= ~7;
  1033. }
  1034. vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4,
  1035. ref->data[1], &uvmv,
  1036. 4*x + x_off, 4*y + y_off, 4, 4,
  1037. width, height, s->uvlinesize,
  1038. s->put_pixels_tab[2]);
  1039. vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4,
  1040. ref->data[2], &uvmv,
  1041. 4*x + x_off, 4*y + y_off, 4, 4,
  1042. width, height, s->uvlinesize,
  1043. s->put_pixels_tab[2]);
  1044. }
  1045. }
  1046. break;
  1047. }
  1048. case VP8_SPLITMVMODE_16x8:
  1049. vp8_mc_part(s, dst, ref, x_off, y_off,
  1050. 0, 0, 16, 8, width, height, &bmv[0]);
  1051. vp8_mc_part(s, dst, ref, x_off, y_off,
  1052. 0, 8, 16, 8, width, height, &bmv[1]);
  1053. break;
  1054. case VP8_SPLITMVMODE_8x16:
  1055. vp8_mc_part(s, dst, ref, x_off, y_off,
  1056. 0, 0, 8, 16, width, height, &bmv[0]);
  1057. vp8_mc_part(s, dst, ref, x_off, y_off,
  1058. 8, 0, 8, 16, width, height, &bmv[1]);
  1059. break;
  1060. case VP8_SPLITMVMODE_8x8:
  1061. vp8_mc_part(s, dst, ref, x_off, y_off,
  1062. 0, 0, 8, 8, width, height, &bmv[0]);
  1063. vp8_mc_part(s, dst, ref, x_off, y_off,
  1064. 8, 0, 8, 8, width, height, &bmv[1]);
  1065. vp8_mc_part(s, dst, ref, x_off, y_off,
  1066. 0, 8, 8, 8, width, height, &bmv[2]);
  1067. vp8_mc_part(s, dst, ref, x_off, y_off,
  1068. 8, 8, 8, 8, width, height, &bmv[3]);
  1069. break;
  1070. }
  1071. }
  1072. static av_always_inline void idct_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb)
  1073. {
  1074. int x, y, ch;
  1075. if (mb->mode != MODE_I4x4) {
  1076. uint8_t *y_dst = dst[0];
  1077. for (y = 0; y < 4; y++) {
  1078. uint32_t nnz4 = AV_RN32A(s->non_zero_count_cache[y]);
  1079. if (nnz4) {
  1080. if (nnz4&~0x01010101) {
  1081. for (x = 0; x < 4; x++) {
  1082. int nnz = s->non_zero_count_cache[y][x];
  1083. if (nnz) {
  1084. if (nnz == 1)
  1085. s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize);
  1086. else
  1087. s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize);
  1088. }
  1089. }
  1090. } else {
  1091. s->vp8dsp.vp8_idct_dc_add4y(y_dst, s->block[y], s->linesize);
  1092. }
  1093. }
  1094. y_dst += 4*s->linesize;
  1095. }
  1096. }
  1097. for (ch = 0; ch < 2; ch++) {
  1098. uint32_t nnz4 = AV_RN32A(s->non_zero_count_cache[4+ch]);
  1099. if (nnz4) {
  1100. uint8_t *ch_dst = dst[1+ch];
  1101. if (nnz4&~0x01010101) {
  1102. for (y = 0; y < 2; y++) {
  1103. for (x = 0; x < 2; x++) {
  1104. int nnz = s->non_zero_count_cache[4+ch][(y<<1)+x];
  1105. if (nnz) {
  1106. if (nnz == 1)
  1107. s->vp8dsp.vp8_idct_dc_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize);
  1108. else
  1109. s->vp8dsp.vp8_idct_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize);
  1110. }
  1111. }
  1112. ch_dst += 4*s->uvlinesize;
  1113. }
  1114. } else {
  1115. s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, s->block[4+ch], s->uvlinesize);
  1116. }
  1117. }
  1118. }
  1119. }
  1120. static av_always_inline void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f )
  1121. {
  1122. int interior_limit, filter_level;
  1123. if (s->segmentation.enabled) {
  1124. filter_level = s->segmentation.filter_level[s->segment];
  1125. if (!s->segmentation.absolute_vals)
  1126. filter_level += s->filter.level;
  1127. } else
  1128. filter_level = s->filter.level;
  1129. if (s->lf_delta.enabled) {
  1130. filter_level += s->lf_delta.ref[mb->ref_frame];
  1131. if (mb->ref_frame == VP56_FRAME_CURRENT) {
  1132. if (mb->mode == MODE_I4x4)
  1133. filter_level += s->lf_delta.mode[0];
  1134. } else {
  1135. if (mb->mode == VP8_MVMODE_ZERO)
  1136. filter_level += s->lf_delta.mode[1];
  1137. else if (mb->mode == VP8_MVMODE_SPLIT)
  1138. filter_level += s->lf_delta.mode[3];
  1139. else
  1140. filter_level += s->lf_delta.mode[2];
  1141. }
  1142. }
  1143. filter_level = av_clip(filter_level, 0, 63);
  1144. interior_limit = filter_level;
  1145. if (s->filter.sharpness) {
  1146. interior_limit >>= s->filter.sharpness > 4 ? 2 : 1;
  1147. interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
  1148. }
  1149. interior_limit = FFMAX(interior_limit, 1);
  1150. f->filter_level = filter_level;
  1151. f->inner_limit = interior_limit;
  1152. f->inner_filter = !mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT;
  1153. }
  1154. static av_always_inline void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, int mb_x, int mb_y)
  1155. {
  1156. int mbedge_lim, bedge_lim, hev_thresh;
  1157. int filter_level = f->filter_level;
  1158. int inner_limit = f->inner_limit;
  1159. int inner_filter = f->inner_filter;
  1160. int linesize = s->linesize;
  1161. int uvlinesize = s->uvlinesize;
  1162. if (!filter_level)
  1163. return;
  1164. mbedge_lim = 2*(filter_level+2) + inner_limit;
  1165. bedge_lim = 2* filter_level + inner_limit;
  1166. hev_thresh = filter_level >= 15;
  1167. if (s->keyframe) {
  1168. if (filter_level >= 40)
  1169. hev_thresh = 2;
  1170. } else {
  1171. if (filter_level >= 40)
  1172. hev_thresh = 3;
  1173. else if (filter_level >= 20)
  1174. hev_thresh = 2;
  1175. }
  1176. if (mb_x) {
  1177. s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize,
  1178. mbedge_lim, inner_limit, hev_thresh);
  1179. s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize,
  1180. mbedge_lim, inner_limit, hev_thresh);
  1181. }
  1182. if (inner_filter) {
  1183. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, linesize, bedge_lim,
  1184. inner_limit, hev_thresh);
  1185. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, linesize, bedge_lim,
  1186. inner_limit, hev_thresh);
  1187. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, linesize, bedge_lim,
  1188. inner_limit, hev_thresh);
  1189. s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4,
  1190. uvlinesize, bedge_lim,
  1191. inner_limit, hev_thresh);
  1192. }
  1193. if (mb_y) {
  1194. s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize,
  1195. mbedge_lim, inner_limit, hev_thresh);
  1196. s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize,
  1197. mbedge_lim, inner_limit, hev_thresh);
  1198. }
  1199. if (inner_filter) {
  1200. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*linesize,
  1201. linesize, bedge_lim,
  1202. inner_limit, hev_thresh);
  1203. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*linesize,
  1204. linesize, bedge_lim,
  1205. inner_limit, hev_thresh);
  1206. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*linesize,
  1207. linesize, bedge_lim,
  1208. inner_limit, hev_thresh);
  1209. s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize,
  1210. dst[2] + 4 * uvlinesize,
  1211. uvlinesize, bedge_lim,
  1212. inner_limit, hev_thresh);
  1213. }
  1214. }
  1215. static av_always_inline void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, int mb_x, int mb_y)
  1216. {
  1217. int mbedge_lim, bedge_lim;
  1218. int filter_level = f->filter_level;
  1219. int inner_limit = f->inner_limit;
  1220. int inner_filter = f->inner_filter;
  1221. int linesize = s->linesize;
  1222. if (!filter_level)
  1223. return;
  1224. mbedge_lim = 2*(filter_level+2) + inner_limit;
  1225. bedge_lim = 2* filter_level + inner_limit;
  1226. if (mb_x)
  1227. s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim);
  1228. if (inner_filter) {
  1229. s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, linesize, bedge_lim);
  1230. s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, linesize, bedge_lim);
  1231. s->vp8dsp.vp8_h_loop_filter_simple(dst+12, linesize, bedge_lim);
  1232. }
  1233. if (mb_y)
  1234. s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim);
  1235. if (inner_filter) {
  1236. s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*linesize, linesize, bedge_lim);
  1237. s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*linesize, linesize, bedge_lim);
  1238. s->vp8dsp.vp8_v_loop_filter_simple(dst+12*linesize, linesize, bedge_lim);
  1239. }
  1240. }
  1241. static void filter_mb_row(VP8Context *s, int mb_y)
  1242. {
  1243. VP8FilterStrength *f = s->filter_strength;
  1244. uint8_t *dst[3] = {
  1245. s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize,
  1246. s->framep[VP56_FRAME_CURRENT]->data[1] + 8*mb_y*s->uvlinesize,
  1247. s->framep[VP56_FRAME_CURRENT]->data[2] + 8*mb_y*s->uvlinesize
  1248. };
  1249. int mb_x;
  1250. for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
  1251. backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0);
  1252. filter_mb(s, dst, f++, mb_x, mb_y);
  1253. dst[0] += 16;
  1254. dst[1] += 8;
  1255. dst[2] += 8;
  1256. }
  1257. }
  1258. static void filter_mb_row_simple(VP8Context *s, int mb_y)
  1259. {
  1260. VP8FilterStrength *f = s->filter_strength;
  1261. uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize;
  1262. int mb_x;
  1263. for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
  1264. backup_mb_border(s->top_border[mb_x+1], dst, NULL, NULL, s->linesize, 0, 1);
  1265. filter_mb_simple(s, dst, f++, mb_x, mb_y);
  1266. dst += 16;
  1267. }
  1268. }
  1269. static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  1270. AVPacket *avpkt)
  1271. {
  1272. VP8Context *s = avctx->priv_data;
  1273. int ret, mb_x, mb_y, i, y, referenced;
  1274. enum AVDiscard skip_thresh;
  1275. AVFrame *av_uninit(curframe);
  1276. if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0)
  1277. return ret;
  1278. referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT
  1279. || s->update_altref == VP56_FRAME_CURRENT;
  1280. skip_thresh = !referenced ? AVDISCARD_NONREF :
  1281. !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL;
  1282. if (avctx->skip_frame >= skip_thresh) {
  1283. s->invisible = 1;
  1284. goto skip_decode;
  1285. }
  1286. s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh;
  1287. for (i = 0; i < 4; i++)
  1288. if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
  1289. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
  1290. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) {
  1291. curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i];
  1292. break;
  1293. }
  1294. if (curframe->data[0])
  1295. avctx->release_buffer(avctx, curframe);
  1296. curframe->key_frame = s->keyframe;
  1297. curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
  1298. curframe->reference = referenced ? 3 : 0;
  1299. if ((ret = avctx->get_buffer(avctx, curframe))) {
  1300. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
  1301. return ret;
  1302. }
  1303. // Given that arithmetic probabilities are updated every frame, it's quite likely
  1304. // that the values we have on a random interframe are complete junk if we didn't
  1305. // start decode on a keyframe. So just don't display anything rather than junk.
  1306. if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
  1307. !s->framep[VP56_FRAME_GOLDEN] ||
  1308. !s->framep[VP56_FRAME_GOLDEN2])) {
  1309. av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
  1310. return AVERROR_INVALIDDATA;
  1311. }
  1312. s->linesize = curframe->linesize[0];
  1313. s->uvlinesize = curframe->linesize[1];
  1314. if (!s->edge_emu_buffer)
  1315. s->edge_emu_buffer = av_malloc(21*s->linesize);
  1316. memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz));
  1317. /* Zero macroblock structures for top/left prediction from outside the frame. */
  1318. memset(s->macroblocks, 0, (s->mb_width + s->mb_height*2)*sizeof(*s->macroblocks));
  1319. // top edge of 127 for intra prediction
  1320. memset(s->top_border, 127, (s->mb_width+1)*sizeof(*s->top_border));
  1321. memset(s->ref_count, 0, sizeof(s->ref_count));
  1322. for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
  1323. VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
  1324. VP8Macroblock *mb = s->macroblocks + (s->mb_height - mb_y - 1)*2;
  1325. uint8_t *intra4x4 = s->intra4x4_pred_mode + 4*mb_y*s->b4_stride;
  1326. uint8_t *segment_map = s->segmentation_map + mb_y*s->mb_stride;
  1327. int mb_xy = mb_y * s->mb_stride;
  1328. uint8_t *dst[3] = {
  1329. curframe->data[0] + 16*mb_y*s->linesize,
  1330. curframe->data[1] + 8*mb_y*s->uvlinesize,
  1331. curframe->data[2] + 8*mb_y*s->uvlinesize
  1332. };
  1333. memset(s->left_nnz, 0, sizeof(s->left_nnz));
  1334. // left edge of 129 for intra prediction
  1335. if (!(avctx->flags & CODEC_FLAG_EMU_EDGE))
  1336. for (i = 0; i < 3; i++)
  1337. for (y = 0; y < 16>>!!i; y++)
  1338. dst[i][y*curframe->linesize[i]-1] = 129;
  1339. if (mb_y)
  1340. memset(s->top_border, 129, sizeof(*s->top_border));
  1341. for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
  1342. uint8_t *intra4x4_mb = s->keyframe ? intra4x4 + 4*mb_x : s->intra4x4_pred_mode_mb;
  1343. uint8_t *segment_mb = segment_map+mb_x;
  1344. /* Prefetch the current frame, 4 MBs ahead */
  1345. s->dsp.prefetch(dst[0] + (mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  1346. s->dsp.prefetch(dst[1] + (mb_x&7)*s->uvlinesize + 64, dst[2] - dst[1], 2);
  1347. decode_mb_mode(s, mb, mb_x, mb_y, intra4x4_mb, segment_mb);
  1348. prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_PREVIOUS);
  1349. if (!mb->skip)
  1350. decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz);
  1351. if (mb->mode <= MODE_I4x4)
  1352. intra_predict(s, dst, mb, intra4x4_mb, mb_x, mb_y);
  1353. else
  1354. inter_predict(s, dst, mb, mb_x, mb_y);
  1355. prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN);
  1356. if (!mb->skip) {
  1357. idct_mb(s, dst, mb);
  1358. } else {
  1359. AV_ZERO64(s->left_nnz);
  1360. AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned
  1361. // Reset DC block predictors if they would exist if the mb had coefficients
  1362. if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
  1363. s->left_nnz[8] = 0;
  1364. s->top_nnz[mb_x][8] = 0;
  1365. }
  1366. }
  1367. if (s->deblock_filter)
  1368. filter_level_for_mb(s, mb, &s->filter_strength[mb_x]);
  1369. prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN2);
  1370. dst[0] += 16;
  1371. dst[1] += 8;
  1372. dst[2] += 8;
  1373. }
  1374. if (s->deblock_filter) {
  1375. if (s->filter.simple)
  1376. filter_mb_row_simple(s, mb_y);
  1377. else
  1378. filter_mb_row(s, mb_y);
  1379. }
  1380. }
  1381. skip_decode:
  1382. // if future frames don't use the updated probabilities,
  1383. // reset them to the values we saved
  1384. if (!s->update_probabilities)
  1385. s->prob[0] = s->prob[1];
  1386. // check if golden and altref are swapped
  1387. if (s->update_altref == VP56_FRAME_GOLDEN &&
  1388. s->update_golden == VP56_FRAME_GOLDEN2)
  1389. FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]);
  1390. else {
  1391. if (s->update_altref != VP56_FRAME_NONE)
  1392. s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref];
  1393. if (s->update_golden != VP56_FRAME_NONE)
  1394. s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden];
  1395. }
  1396. if (s->update_last) // move cur->prev
  1397. s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT];
  1398. // release no longer referenced frames
  1399. for (i = 0; i < 4; i++)
  1400. if (s->frames[i].data[0] &&
  1401. &s->frames[i] != s->framep[VP56_FRAME_CURRENT] &&
  1402. &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
  1403. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
  1404. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2])
  1405. avctx->release_buffer(avctx, &s->frames[i]);
  1406. if (!s->invisible) {
  1407. *(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT];
  1408. *data_size = sizeof(AVFrame);
  1409. }
  1410. return avpkt->size;
  1411. }
  1412. static av_cold int vp8_decode_init(AVCodecContext *avctx)
  1413. {
  1414. VP8Context *s = avctx->priv_data;
  1415. s->avctx = avctx;
  1416. avctx->pix_fmt = PIX_FMT_YUV420P;
  1417. dsputil_init(&s->dsp, avctx);
  1418. ff_h264_pred_init(&s->hpc, CODEC_ID_VP8);
  1419. ff_vp8dsp_init(&s->vp8dsp);
  1420. // intra pred needs edge emulation among other things
  1421. if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
  1422. av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported\n");
  1423. return AVERROR_PATCHWELCOME;
  1424. }
  1425. return 0;
  1426. }
  1427. static av_cold int vp8_decode_free(AVCodecContext *avctx)
  1428. {
  1429. vp8_decode_flush(avctx);
  1430. return 0;
  1431. }
  1432. AVCodec vp8_decoder = {
  1433. "vp8",
  1434. AVMEDIA_TYPE_VIDEO,
  1435. CODEC_ID_VP8,
  1436. sizeof(VP8Context),
  1437. vp8_decode_init,
  1438. NULL,
  1439. vp8_decode_free,
  1440. vp8_decode_frame,
  1441. CODEC_CAP_DR1,
  1442. .flush = vp8_decode_flush,
  1443. .long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
  1444. };