You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1760 lines
62KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/x86/asm.h"
  46. #include "libavutil/x86/cpu.h"
  47. #include "rgb2rgb.h"
  48. #include "swscale.h"
  49. #include "swscale_internal.h"
  50. unsigned swscale_version(void)
  51. {
  52. return LIBSWSCALE_VERSION_INT;
  53. }
  54. const char *swscale_configuration(void)
  55. {
  56. return LIBAV_CONFIGURATION;
  57. }
  58. const char *swscale_license(void)
  59. {
  60. #define LICENSE_PREFIX "libswscale license: "
  61. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  62. }
  63. #define RET 0xC3 // near return opcode for x86
  64. typedef struct FormatEntry {
  65. int is_supported_in, is_supported_out;
  66. } FormatEntry;
  67. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  68. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  69. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  70. [AV_PIX_FMT_RGB24] = { 1, 1 },
  71. [AV_PIX_FMT_BGR24] = { 1, 1 },
  72. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  73. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  74. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  75. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  76. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  77. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  78. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  79. [AV_PIX_FMT_PAL8] = { 1, 0 },
  80. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  81. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  82. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  83. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  84. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  85. [AV_PIX_FMT_BGR8] = { 1, 1 },
  86. [AV_PIX_FMT_BGR4] = { 0, 1 },
  87. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  88. [AV_PIX_FMT_RGB8] = { 1, 1 },
  89. [AV_PIX_FMT_RGB4] = { 0, 1 },
  90. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  91. [AV_PIX_FMT_NV12] = { 1, 1 },
  92. [AV_PIX_FMT_NV21] = { 1, 1 },
  93. [AV_PIX_FMT_ARGB] = { 1, 1 },
  94. [AV_PIX_FMT_RGBA] = { 1, 1 },
  95. [AV_PIX_FMT_ABGR] = { 1, 1 },
  96. [AV_PIX_FMT_BGRA] = { 1, 1 },
  97. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  98. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  99. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  100. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  101. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  102. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  103. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  104. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  105. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  106. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  111. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  112. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  113. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  114. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  115. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  116. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  122. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  123. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  124. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  125. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  126. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  127. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  128. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  129. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  130. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  131. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  132. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  133. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  134. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  138. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  139. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  140. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  141. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  142. [AV_PIX_FMT_Y400A] = { 1, 0 },
  143. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  144. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  146. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  149. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  150. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  151. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  152. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  157. [AV_PIX_FMT_GBRP] = { 1, 1 },
  158. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  159. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  160. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  161. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  162. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  163. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  164. };
  165. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  166. {
  167. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  168. format_entries[pix_fmt].is_supported_in : 0;
  169. }
  170. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  171. {
  172. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  173. format_entries[pix_fmt].is_supported_out : 0;
  174. }
  175. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  176. const char *sws_format_name(enum AVPixelFormat format)
  177. {
  178. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  179. if (desc)
  180. return desc->name;
  181. else
  182. return "Unknown format";
  183. }
  184. static double getSplineCoeff(double a, double b, double c, double d,
  185. double dist)
  186. {
  187. if (dist <= 1.0)
  188. return ((d * dist + c) * dist + b) * dist + a;
  189. else
  190. return getSplineCoeff(0.0,
  191. b + 2.0 * c + 3.0 * d,
  192. c + 3.0 * d,
  193. -b - 3.0 * c - 6.0 * d,
  194. dist - 1.0);
  195. }
  196. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  197. int *outFilterSize, int xInc, int srcW,
  198. int dstW, int filterAlign, int one,
  199. int flags, int cpu_flags,
  200. SwsVector *srcFilter, SwsVector *dstFilter,
  201. double param[2], int is_horizontal)
  202. {
  203. int i;
  204. int filterSize;
  205. int filter2Size;
  206. int minFilterSize;
  207. int64_t *filter = NULL;
  208. int64_t *filter2 = NULL;
  209. const int64_t fone = 1LL << 54;
  210. int ret = -1;
  211. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  212. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  213. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  214. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  215. int i;
  216. filterSize = 1;
  217. FF_ALLOCZ_OR_GOTO(NULL, filter,
  218. dstW * sizeof(*filter) * filterSize, fail);
  219. for (i = 0; i < dstW; i++) {
  220. filter[i * filterSize] = fone;
  221. (*filterPos)[i] = i;
  222. }
  223. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  224. int i;
  225. int xDstInSrc;
  226. filterSize = 1;
  227. FF_ALLOC_OR_GOTO(NULL, filter,
  228. dstW * sizeof(*filter) * filterSize, fail);
  229. xDstInSrc = xInc / 2 - 0x8000;
  230. for (i = 0; i < dstW; i++) {
  231. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  232. (*filterPos)[i] = xx;
  233. filter[i] = fone;
  234. xDstInSrc += xInc;
  235. }
  236. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  237. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  238. int i;
  239. int xDstInSrc;
  240. filterSize = 2;
  241. FF_ALLOC_OR_GOTO(NULL, filter,
  242. dstW * sizeof(*filter) * filterSize, fail);
  243. xDstInSrc = xInc / 2 - 0x8000;
  244. for (i = 0; i < dstW; i++) {
  245. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  246. int j;
  247. (*filterPos)[i] = xx;
  248. // bilinear upscale / linear interpolate / area averaging
  249. for (j = 0; j < filterSize; j++) {
  250. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  251. (fone >> 16);
  252. if (coeff < 0)
  253. coeff = 0;
  254. filter[i * filterSize + j] = coeff;
  255. xx++;
  256. }
  257. xDstInSrc += xInc;
  258. }
  259. } else {
  260. int64_t xDstInSrc;
  261. int sizeFactor;
  262. if (flags & SWS_BICUBIC)
  263. sizeFactor = 4;
  264. else if (flags & SWS_X)
  265. sizeFactor = 8;
  266. else if (flags & SWS_AREA)
  267. sizeFactor = 1; // downscale only, for upscale it is bilinear
  268. else if (flags & SWS_GAUSS)
  269. sizeFactor = 8; // infinite ;)
  270. else if (flags & SWS_LANCZOS)
  271. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  272. else if (flags & SWS_SINC)
  273. sizeFactor = 20; // infinite ;)
  274. else if (flags & SWS_SPLINE)
  275. sizeFactor = 20; // infinite ;)
  276. else if (flags & SWS_BILINEAR)
  277. sizeFactor = 2;
  278. else {
  279. sizeFactor = 0; // GCC warning killer
  280. assert(0);
  281. }
  282. if (xInc <= 1 << 16)
  283. filterSize = 1 + sizeFactor; // upscale
  284. else
  285. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  286. filterSize = FFMIN(filterSize, srcW - 2);
  287. filterSize = FFMAX(filterSize, 1);
  288. FF_ALLOC_OR_GOTO(NULL, filter,
  289. dstW * sizeof(*filter) * filterSize, fail);
  290. xDstInSrc = xInc - 0x10000;
  291. for (i = 0; i < dstW; i++) {
  292. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  293. int j;
  294. (*filterPos)[i] = xx;
  295. for (j = 0; j < filterSize; j++) {
  296. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  297. double floatd;
  298. int64_t coeff;
  299. if (xInc > 1 << 16)
  300. d = d * dstW / srcW;
  301. floatd = d * (1.0 / (1 << 30));
  302. if (flags & SWS_BICUBIC) {
  303. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  304. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  305. if (d >= 1LL << 31) {
  306. coeff = 0.0;
  307. } else {
  308. int64_t dd = (d * d) >> 30;
  309. int64_t ddd = (dd * d) >> 30;
  310. if (d < 1LL << 30)
  311. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  312. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  313. (6 * (1 << 24) - 2 * B) * (1 << 30);
  314. else
  315. coeff = (-B - 6 * C) * ddd +
  316. (6 * B + 30 * C) * dd +
  317. (-12 * B - 48 * C) * d +
  318. (8 * B + 24 * C) * (1 << 30);
  319. }
  320. coeff *= fone >> (30 + 24);
  321. }
  322. #if 0
  323. else if (flags & SWS_X) {
  324. double p = param ? param * 0.01 : 0.3;
  325. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  326. coeff *= pow(2.0, -p * d * d);
  327. }
  328. #endif
  329. else if (flags & SWS_X) {
  330. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  331. double c;
  332. if (floatd < 1.0)
  333. c = cos(floatd * M_PI);
  334. else
  335. c = -1.0;
  336. if (c < 0.0)
  337. c = -pow(-c, A);
  338. else
  339. c = pow(c, A);
  340. coeff = (c * 0.5 + 0.5) * fone;
  341. } else if (flags & SWS_AREA) {
  342. int64_t d2 = d - (1 << 29);
  343. if (d2 * xInc < -(1LL << (29 + 16)))
  344. coeff = 1.0 * (1LL << (30 + 16));
  345. else if (d2 * xInc < (1LL << (29 + 16)))
  346. coeff = -d2 * xInc + (1LL << (29 + 16));
  347. else
  348. coeff = 0.0;
  349. coeff *= fone >> (30 + 16);
  350. } else if (flags & SWS_GAUSS) {
  351. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  352. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  353. } else if (flags & SWS_SINC) {
  354. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  355. } else if (flags & SWS_LANCZOS) {
  356. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  357. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  358. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  359. if (floatd > p)
  360. coeff = 0;
  361. } else if (flags & SWS_BILINEAR) {
  362. coeff = (1 << 30) - d;
  363. if (coeff < 0)
  364. coeff = 0;
  365. coeff *= fone >> 30;
  366. } else if (flags & SWS_SPLINE) {
  367. double p = -2.196152422706632;
  368. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  369. } else {
  370. coeff = 0.0; // GCC warning killer
  371. assert(0);
  372. }
  373. filter[i * filterSize + j] = coeff;
  374. xx++;
  375. }
  376. xDstInSrc += 2 * xInc;
  377. }
  378. }
  379. /* apply src & dst Filter to filter -> filter2
  380. * av_free(filter);
  381. */
  382. assert(filterSize > 0);
  383. filter2Size = filterSize;
  384. if (srcFilter)
  385. filter2Size += srcFilter->length - 1;
  386. if (dstFilter)
  387. filter2Size += dstFilter->length - 1;
  388. assert(filter2Size > 0);
  389. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  390. for (i = 0; i < dstW; i++) {
  391. int j, k;
  392. if (srcFilter) {
  393. for (k = 0; k < srcFilter->length; k++) {
  394. for (j = 0; j < filterSize; j++)
  395. filter2[i * filter2Size + k + j] +=
  396. srcFilter->coeff[k] * filter[i * filterSize + j];
  397. }
  398. } else {
  399. for (j = 0; j < filterSize; j++)
  400. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  401. }
  402. // FIXME dstFilter
  403. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  404. }
  405. av_freep(&filter);
  406. /* try to reduce the filter-size (step1 find size and shift left) */
  407. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  408. minFilterSize = 0;
  409. for (i = dstW - 1; i >= 0; i--) {
  410. int min = filter2Size;
  411. int j;
  412. int64_t cutOff = 0.0;
  413. /* get rid of near zero elements on the left by shifting left */
  414. for (j = 0; j < filter2Size; j++) {
  415. int k;
  416. cutOff += FFABS(filter2[i * filter2Size]);
  417. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  418. break;
  419. /* preserve monotonicity because the core can't handle the
  420. * filter otherwise */
  421. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  422. break;
  423. // move filter coefficients left
  424. for (k = 1; k < filter2Size; k++)
  425. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  426. filter2[i * filter2Size + k - 1] = 0;
  427. (*filterPos)[i]++;
  428. }
  429. cutOff = 0;
  430. /* count near zeros on the right */
  431. for (j = filter2Size - 1; j > 0; j--) {
  432. cutOff += FFABS(filter2[i * filter2Size + j]);
  433. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  434. break;
  435. min--;
  436. }
  437. if (min > minFilterSize)
  438. minFilterSize = min;
  439. }
  440. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  441. // we can handle the special case 4, so we don't want to go the full 8
  442. if (minFilterSize < 5)
  443. filterAlign = 4;
  444. /* We really don't want to waste our time doing useless computation, so
  445. * fall back on the scalar C code for very small filters.
  446. * Vectorizing is worth it only if you have a decent-sized vector. */
  447. if (minFilterSize < 3)
  448. filterAlign = 1;
  449. }
  450. if (INLINE_MMX(cpu_flags)) {
  451. // special case for unscaled vertical filtering
  452. if (minFilterSize == 1 && filterAlign == 2)
  453. filterAlign = 1;
  454. }
  455. assert(minFilterSize > 0);
  456. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  457. assert(filterSize > 0);
  458. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  459. if (filterSize >= MAX_FILTER_SIZE * 16 /
  460. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  461. goto fail;
  462. *outFilterSize = filterSize;
  463. if (flags & SWS_PRINT_INFO)
  464. av_log(NULL, AV_LOG_VERBOSE,
  465. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  466. filter2Size, filterSize);
  467. /* try to reduce the filter-size (step2 reduce it) */
  468. for (i = 0; i < dstW; i++) {
  469. int j;
  470. for (j = 0; j < filterSize; j++) {
  471. if (j >= filter2Size)
  472. filter[i * filterSize + j] = 0;
  473. else
  474. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  475. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  476. filter[i * filterSize + j] = 0;
  477. }
  478. }
  479. // FIXME try to align filterPos if possible
  480. // fix borders
  481. if (is_horizontal) {
  482. for (i = 0; i < dstW; i++) {
  483. int j;
  484. if ((*filterPos)[i] < 0) {
  485. // move filter coefficients left to compensate for filterPos
  486. for (j = 1; j < filterSize; j++) {
  487. int left = FFMAX(j + (*filterPos)[i], 0);
  488. filter[i * filterSize + left] += filter[i * filterSize + j];
  489. filter[i * filterSize + j] = 0;
  490. }
  491. (*filterPos)[i] = 0;
  492. }
  493. if ((*filterPos)[i] + filterSize > srcW) {
  494. int shift = (*filterPos)[i] + filterSize - srcW;
  495. // move filter coefficients right to compensate for filterPos
  496. for (j = filterSize - 2; j >= 0; j--) {
  497. int right = FFMIN(j + shift, filterSize - 1);
  498. filter[i * filterSize + right] += filter[i * filterSize + j];
  499. filter[i * filterSize + j] = 0;
  500. }
  501. (*filterPos)[i] = srcW - filterSize;
  502. }
  503. }
  504. }
  505. // Note the +1 is for the MMX scaler which reads over the end
  506. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  507. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  508. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  509. /* normalize & store in outFilter */
  510. for (i = 0; i < dstW; i++) {
  511. int j;
  512. int64_t error = 0;
  513. int64_t sum = 0;
  514. for (j = 0; j < filterSize; j++) {
  515. sum += filter[i * filterSize + j];
  516. }
  517. sum = (sum + one / 2) / one;
  518. for (j = 0; j < *outFilterSize; j++) {
  519. int64_t v = filter[i * filterSize + j] + error;
  520. int intV = ROUNDED_DIV(v, sum);
  521. (*outFilter)[i * (*outFilterSize) + j] = intV;
  522. error = v - intV * sum;
  523. }
  524. }
  525. (*filterPos)[dstW + 0] =
  526. (*filterPos)[dstW + 1] =
  527. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  528. * read over the end */
  529. for (i = 0; i < *outFilterSize; i++) {
  530. int k = (dstW - 1) * (*outFilterSize) + i;
  531. (*outFilter)[k + 1 * (*outFilterSize)] =
  532. (*outFilter)[k + 2 * (*outFilterSize)] =
  533. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  534. }
  535. ret = 0;
  536. fail:
  537. av_free(filter);
  538. av_free(filter2);
  539. return ret;
  540. }
  541. #if HAVE_MMXEXT_INLINE
  542. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  543. int16_t *filter, int32_t *filterPos,
  544. int numSplits)
  545. {
  546. uint8_t *fragmentA;
  547. x86_reg imm8OfPShufW1A;
  548. x86_reg imm8OfPShufW2A;
  549. x86_reg fragmentLengthA;
  550. uint8_t *fragmentB;
  551. x86_reg imm8OfPShufW1B;
  552. x86_reg imm8OfPShufW2B;
  553. x86_reg fragmentLengthB;
  554. int fragmentPos;
  555. int xpos, i;
  556. // create an optimized horizontal scaling routine
  557. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  558. * pshufw instructions. For every four output pixels, if four input pixels
  559. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  560. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  561. */
  562. // code fragment
  563. __asm__ volatile (
  564. "jmp 9f \n\t"
  565. // Begin
  566. "0: \n\t"
  567. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  568. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  569. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  570. "punpcklbw %%mm7, %%mm1 \n\t"
  571. "punpcklbw %%mm7, %%mm0 \n\t"
  572. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  573. "1: \n\t"
  574. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  575. "2: \n\t"
  576. "psubw %%mm1, %%mm0 \n\t"
  577. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  578. "pmullw %%mm3, %%mm0 \n\t"
  579. "psllw $7, %%mm1 \n\t"
  580. "paddw %%mm1, %%mm0 \n\t"
  581. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  582. "add $8, %%"REG_a" \n\t"
  583. // End
  584. "9: \n\t"
  585. // "int $3 \n\t"
  586. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  587. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  588. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  589. "dec %1 \n\t"
  590. "dec %2 \n\t"
  591. "sub %0, %1 \n\t"
  592. "sub %0, %2 \n\t"
  593. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  594. "sub %0, %3 \n\t"
  595. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  596. "=r" (fragmentLengthA)
  597. );
  598. __asm__ volatile (
  599. "jmp 9f \n\t"
  600. // Begin
  601. "0: \n\t"
  602. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  603. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  604. "punpcklbw %%mm7, %%mm0 \n\t"
  605. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  606. "1: \n\t"
  607. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  608. "2: \n\t"
  609. "psubw %%mm1, %%mm0 \n\t"
  610. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  611. "pmullw %%mm3, %%mm0 \n\t"
  612. "psllw $7, %%mm1 \n\t"
  613. "paddw %%mm1, %%mm0 \n\t"
  614. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  615. "add $8, %%"REG_a" \n\t"
  616. // End
  617. "9: \n\t"
  618. // "int $3 \n\t"
  619. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  620. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  621. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  622. "dec %1 \n\t"
  623. "dec %2 \n\t"
  624. "sub %0, %1 \n\t"
  625. "sub %0, %2 \n\t"
  626. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  627. "sub %0, %3 \n\t"
  628. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  629. "=r" (fragmentLengthB)
  630. );
  631. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  632. fragmentPos = 0;
  633. for (i = 0; i < dstW / numSplits; i++) {
  634. int xx = xpos >> 16;
  635. if ((i & 3) == 0) {
  636. int a = 0;
  637. int b = ((xpos + xInc) >> 16) - xx;
  638. int c = ((xpos + xInc * 2) >> 16) - xx;
  639. int d = ((xpos + xInc * 3) >> 16) - xx;
  640. int inc = (d + 1 < 4);
  641. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  642. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  643. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  644. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  645. int maxShift = 3 - (d + inc);
  646. int shift = 0;
  647. if (filterCode) {
  648. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  649. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  650. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  651. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  652. filterPos[i / 2] = xx;
  653. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  654. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  655. ((b + inc) << 2) |
  656. ((c + inc) << 4) |
  657. ((d + inc) << 6);
  658. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  659. (c << 4) |
  660. (d << 6);
  661. if (i + 4 - inc >= dstW)
  662. shift = maxShift; // avoid overread
  663. else if ((filterPos[i / 2] & 3) <= maxShift)
  664. shift = filterPos[i / 2] & 3; // align
  665. if (shift && i >= shift) {
  666. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  667. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  668. filterPos[i / 2] -= shift;
  669. }
  670. }
  671. fragmentPos += fragmentLength;
  672. if (filterCode)
  673. filterCode[fragmentPos] = RET;
  674. }
  675. xpos += xInc;
  676. }
  677. if (filterCode)
  678. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  679. return fragmentPos + 1;
  680. }
  681. #endif /* HAVE_MMXEXT_INLINE */
  682. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  683. {
  684. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  685. *h = desc->log2_chroma_w;
  686. *v = desc->log2_chroma_h;
  687. }
  688. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  689. int srcRange, const int table[4], int dstRange,
  690. int brightness, int contrast, int saturation)
  691. {
  692. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  693. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  694. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  695. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  696. c->brightness = brightness;
  697. c->contrast = contrast;
  698. c->saturation = saturation;
  699. c->srcRange = srcRange;
  700. c->dstRange = dstRange;
  701. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  702. return -1;
  703. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  704. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  705. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  706. contrast, saturation);
  707. // FIXME factorize
  708. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  709. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  710. contrast, saturation);
  711. return 0;
  712. }
  713. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  714. int *srcRange, int **table, int *dstRange,
  715. int *brightness, int *contrast, int *saturation)
  716. {
  717. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  718. return -1;
  719. *inv_table = c->srcColorspaceTable;
  720. *table = c->dstColorspaceTable;
  721. *srcRange = c->srcRange;
  722. *dstRange = c->dstRange;
  723. *brightness = c->brightness;
  724. *contrast = c->contrast;
  725. *saturation = c->saturation;
  726. return 0;
  727. }
  728. static int handle_jpeg(enum AVPixelFormat *format)
  729. {
  730. switch (*format) {
  731. case AV_PIX_FMT_YUVJ420P:
  732. *format = AV_PIX_FMT_YUV420P;
  733. return 1;
  734. case AV_PIX_FMT_YUVJ422P:
  735. *format = AV_PIX_FMT_YUV422P;
  736. return 1;
  737. case AV_PIX_FMT_YUVJ444P:
  738. *format = AV_PIX_FMT_YUV444P;
  739. return 1;
  740. case AV_PIX_FMT_YUVJ440P:
  741. *format = AV_PIX_FMT_YUV440P;
  742. return 1;
  743. default:
  744. return 0;
  745. }
  746. }
  747. SwsContext *sws_alloc_context(void)
  748. {
  749. SwsContext *c = av_mallocz(sizeof(SwsContext));
  750. if (c) {
  751. c->av_class = &sws_context_class;
  752. av_opt_set_defaults(c);
  753. }
  754. return c;
  755. }
  756. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  757. SwsFilter *dstFilter)
  758. {
  759. int i;
  760. int usesVFilter, usesHFilter;
  761. int unscaled;
  762. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  763. int srcW = c->srcW;
  764. int srcH = c->srcH;
  765. int dstW = c->dstW;
  766. int dstH = c->dstH;
  767. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  768. int dst_stride_px = dst_stride >> 1;
  769. int flags, cpu_flags;
  770. enum AVPixelFormat srcFormat = c->srcFormat;
  771. enum AVPixelFormat dstFormat = c->dstFormat;
  772. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  773. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  774. cpu_flags = av_get_cpu_flags();
  775. flags = c->flags;
  776. emms_c();
  777. if (!rgb15to16)
  778. sws_rgb2rgb_init();
  779. unscaled = (srcW == dstW && srcH == dstH);
  780. if (!sws_isSupportedInput(srcFormat)) {
  781. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  782. sws_format_name(srcFormat));
  783. return AVERROR(EINVAL);
  784. }
  785. if (!sws_isSupportedOutput(dstFormat)) {
  786. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  787. sws_format_name(dstFormat));
  788. return AVERROR(EINVAL);
  789. }
  790. i = flags & (SWS_POINT |
  791. SWS_AREA |
  792. SWS_BILINEAR |
  793. SWS_FAST_BILINEAR |
  794. SWS_BICUBIC |
  795. SWS_X |
  796. SWS_GAUSS |
  797. SWS_LANCZOS |
  798. SWS_SINC |
  799. SWS_SPLINE |
  800. SWS_BICUBLIN);
  801. if (!i || (i & (i - 1))) {
  802. av_log(c, AV_LOG_ERROR,
  803. "Exactly one scaler algorithm must be chosen\n");
  804. return AVERROR(EINVAL);
  805. }
  806. /* sanity check */
  807. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  808. /* FIXME check if these are enough and try to lower them after
  809. * fixing the relevant parts of the code */
  810. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  811. srcW, srcH, dstW, dstH);
  812. return AVERROR(EINVAL);
  813. }
  814. if (!dstFilter)
  815. dstFilter = &dummyFilter;
  816. if (!srcFilter)
  817. srcFilter = &dummyFilter;
  818. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  819. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  820. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  821. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  822. c->vRounder = 4 * 0x0001000100010001ULL;
  823. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  824. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  825. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  826. (dstFilter->chrV && dstFilter->chrV->length > 1);
  827. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  828. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  829. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  830. (dstFilter->chrH && dstFilter->chrH->length > 1);
  831. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  832. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  833. if (isPlanarRGB(dstFormat)) {
  834. if (!(flags & SWS_FULL_CHR_H_INT)) {
  835. av_log(c, AV_LOG_DEBUG,
  836. "%s output is not supported with half chroma resolution, switching to full\n",
  837. av_get_pix_fmt_name(dstFormat));
  838. flags |= SWS_FULL_CHR_H_INT;
  839. c->flags = flags;
  840. }
  841. }
  842. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  843. * chroma interpolation */
  844. if (flags & SWS_FULL_CHR_H_INT &&
  845. isAnyRGB(dstFormat) &&
  846. !isPlanarRGB(dstFormat) &&
  847. dstFormat != AV_PIX_FMT_RGBA &&
  848. dstFormat != AV_PIX_FMT_ARGB &&
  849. dstFormat != AV_PIX_FMT_BGRA &&
  850. dstFormat != AV_PIX_FMT_ABGR &&
  851. dstFormat != AV_PIX_FMT_RGB24 &&
  852. dstFormat != AV_PIX_FMT_BGR24) {
  853. av_log(c, AV_LOG_ERROR,
  854. "full chroma interpolation for destination format '%s' not yet implemented\n",
  855. sws_format_name(dstFormat));
  856. flags &= ~SWS_FULL_CHR_H_INT;
  857. c->flags = flags;
  858. }
  859. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  860. c->chrDstHSubSample = 1;
  861. // drop some chroma lines if the user wants it
  862. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  863. SWS_SRC_V_CHR_DROP_SHIFT;
  864. c->chrSrcVSubSample += c->vChrDrop;
  865. /* drop every other pixel for chroma calculation unless user
  866. * wants full chroma */
  867. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  868. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  869. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  870. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  871. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  872. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  873. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  874. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  875. (flags & SWS_FAST_BILINEAR)))
  876. c->chrSrcHSubSample = 1;
  877. // Note the -((-x)>>y) is so that we always round toward +inf.
  878. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  879. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  880. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  881. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  882. /* unscaled special cases */
  883. if (unscaled && !usesHFilter && !usesVFilter &&
  884. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  885. ff_get_unscaled_swscale(c);
  886. if (c->swScale) {
  887. if (flags & SWS_PRINT_INFO)
  888. av_log(c, AV_LOG_INFO,
  889. "using unscaled %s -> %s special converter\n",
  890. sws_format_name(srcFormat), sws_format_name(dstFormat));
  891. return 0;
  892. }
  893. }
  894. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  895. if (c->srcBpc < 8)
  896. c->srcBpc = 8;
  897. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  898. if (c->dstBpc < 8)
  899. c->dstBpc = 8;
  900. if (c->dstBpc == 16)
  901. dst_stride <<= 1;
  902. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  903. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  904. fail);
  905. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
  906. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  907. (srcW & 15) == 0) ? 1 : 0;
  908. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  909. && (flags & SWS_FAST_BILINEAR)) {
  910. if (flags & SWS_PRINT_INFO)
  911. av_log(c, AV_LOG_INFO,
  912. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  913. }
  914. if (usesHFilter)
  915. c->canMMXEXTBeUsed = 0;
  916. } else
  917. c->canMMXEXTBeUsed = 0;
  918. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  919. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  920. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  921. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  922. * correct scaling.
  923. * n-2 is the last chrominance sample available.
  924. * This is not perfect, but no one should notice the difference, the more
  925. * correct variant would be like the vertical one, but that would require
  926. * some special code for the first and last pixel */
  927. if (flags & SWS_FAST_BILINEAR) {
  928. if (c->canMMXEXTBeUsed) {
  929. c->lumXInc += 20;
  930. c->chrXInc += 20;
  931. }
  932. // we don't use the x86 asm scaler if MMX is available
  933. else if (INLINE_MMX(cpu_flags)) {
  934. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  935. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  936. }
  937. }
  938. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  939. /* precalculate horizontal scaler filter coefficients */
  940. {
  941. #if HAVE_MMXEXT_INLINE
  942. // can't downscale !!!
  943. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  944. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  945. NULL, NULL, 8);
  946. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  947. NULL, NULL, NULL, 4);
  948. #if USE_MMAP
  949. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  950. PROT_READ | PROT_WRITE,
  951. MAP_PRIVATE | MAP_ANONYMOUS,
  952. -1, 0);
  953. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  954. PROT_READ | PROT_WRITE,
  955. MAP_PRIVATE | MAP_ANONYMOUS,
  956. -1, 0);
  957. #elif HAVE_VIRTUALALLOC
  958. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  959. c->lumMmxextFilterCodeSize,
  960. MEM_COMMIT,
  961. PAGE_EXECUTE_READWRITE);
  962. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  963. c->chrMmxextFilterCodeSize,
  964. MEM_COMMIT,
  965. PAGE_EXECUTE_READWRITE);
  966. #else
  967. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  968. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  969. #endif
  970. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  971. return AVERROR(ENOMEM);
  972. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  973. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  974. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  975. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  976. init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
  977. c->hLumFilter, c->hLumFilterPos, 8);
  978. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  979. c->hChrFilter, c->hChrFilterPos, 4);
  980. #if USE_MMAP
  981. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  982. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  983. #endif
  984. } else
  985. #endif /* HAVE_MMXEXT_INLINE */
  986. {
  987. const int filterAlign =
  988. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  989. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  990. 1;
  991. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  992. &c->hLumFilterSize, c->lumXInc,
  993. srcW, dstW, filterAlign, 1 << 14,
  994. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  995. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  996. c->param, 1) < 0)
  997. goto fail;
  998. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  999. &c->hChrFilterSize, c->chrXInc,
  1000. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1001. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1002. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1003. c->param, 1) < 0)
  1004. goto fail;
  1005. }
  1006. } // initialize horizontal stuff
  1007. /* precalculate vertical scaler filter coefficients */
  1008. {
  1009. const int filterAlign =
  1010. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  1011. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1012. 1;
  1013. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1014. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1015. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1016. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1017. c->param, 0) < 0)
  1018. goto fail;
  1019. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1020. c->chrYInc, c->chrSrcH, c->chrDstH,
  1021. filterAlign, (1 << 12),
  1022. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1023. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1024. c->param, 0) < 0)
  1025. goto fail;
  1026. #if HAVE_ALTIVEC
  1027. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1028. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1029. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1030. int j;
  1031. short *p = (short *)&c->vYCoeffsBank[i];
  1032. for (j = 0; j < 8; j++)
  1033. p[j] = c->vLumFilter[i];
  1034. }
  1035. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1036. int j;
  1037. short *p = (short *)&c->vCCoeffsBank[i];
  1038. for (j = 0; j < 8; j++)
  1039. p[j] = c->vChrFilter[i];
  1040. }
  1041. #endif
  1042. }
  1043. // calculate buffer sizes so that they won't run out while handling these damn slices
  1044. c->vLumBufSize = c->vLumFilterSize;
  1045. c->vChrBufSize = c->vChrFilterSize;
  1046. for (i = 0; i < dstH; i++) {
  1047. int chrI = (int64_t)i * c->chrDstH / dstH;
  1048. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1049. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1050. << c->chrSrcVSubSample));
  1051. nextSlice >>= c->chrSrcVSubSample;
  1052. nextSlice <<= c->chrSrcVSubSample;
  1053. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1054. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1055. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1056. (nextSlice >> c->chrSrcVSubSample))
  1057. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1058. c->vChrFilterPos[chrI];
  1059. }
  1060. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1061. * need to allocate several megabytes to handle all possible cases) */
  1062. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1063. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1064. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1065. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1066. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1067. /* Note we need at least one pixel more at the end because of the MMX code
  1068. * (just in case someone wants to replace the 4000/8000). */
  1069. /* align at 16 bytes for AltiVec */
  1070. for (i = 0; i < c->vLumBufSize; i++) {
  1071. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1072. dst_stride + 16, fail);
  1073. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1074. }
  1075. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1076. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1077. c->uv_off_byte = dst_stride + 16;
  1078. for (i = 0; i < c->vChrBufSize; i++) {
  1079. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1080. dst_stride * 2 + 32, fail);
  1081. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1082. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1083. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1084. }
  1085. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1086. for (i = 0; i < c->vLumBufSize; i++) {
  1087. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1088. dst_stride + 16, fail);
  1089. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1090. }
  1091. // try to avoid drawing green stuff between the right end and the stride end
  1092. for (i = 0; i < c->vChrBufSize; i++)
  1093. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1094. assert(c->chrDstH <= dstH);
  1095. if (flags & SWS_PRINT_INFO) {
  1096. if (flags & SWS_FAST_BILINEAR)
  1097. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1098. else if (flags & SWS_BILINEAR)
  1099. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1100. else if (flags & SWS_BICUBIC)
  1101. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1102. else if (flags & SWS_X)
  1103. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1104. else if (flags & SWS_POINT)
  1105. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1106. else if (flags & SWS_AREA)
  1107. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1108. else if (flags & SWS_BICUBLIN)
  1109. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1110. else if (flags & SWS_GAUSS)
  1111. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1112. else if (flags & SWS_SINC)
  1113. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1114. else if (flags & SWS_LANCZOS)
  1115. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1116. else if (flags & SWS_SPLINE)
  1117. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1118. else
  1119. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1120. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1121. sws_format_name(srcFormat),
  1122. #ifdef DITHER1XBPP
  1123. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1124. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1125. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1126. "dithered " : "",
  1127. #else
  1128. "",
  1129. #endif
  1130. sws_format_name(dstFormat));
  1131. if (INLINE_MMXEXT(cpu_flags))
  1132. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1133. else if (INLINE_AMD3DNOW(cpu_flags))
  1134. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1135. else if (INLINE_MMX(cpu_flags))
  1136. av_log(c, AV_LOG_INFO, "using MMX\n");
  1137. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1138. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1139. else
  1140. av_log(c, AV_LOG_INFO, "using C\n");
  1141. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1142. av_log(c, AV_LOG_DEBUG,
  1143. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1144. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1145. av_log(c, AV_LOG_DEBUG,
  1146. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1147. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1148. c->chrXInc, c->chrYInc);
  1149. }
  1150. c->swScale = ff_getSwsFunc(c);
  1151. return 0;
  1152. fail: // FIXME replace things by appropriate error codes
  1153. return -1;
  1154. }
  1155. #if FF_API_SWS_GETCONTEXT
  1156. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1157. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1158. int flags, SwsFilter *srcFilter,
  1159. SwsFilter *dstFilter, const double *param)
  1160. {
  1161. SwsContext *c;
  1162. if (!(c = sws_alloc_context()))
  1163. return NULL;
  1164. c->flags = flags;
  1165. c->srcW = srcW;
  1166. c->srcH = srcH;
  1167. c->dstW = dstW;
  1168. c->dstH = dstH;
  1169. c->srcRange = handle_jpeg(&srcFormat);
  1170. c->dstRange = handle_jpeg(&dstFormat);
  1171. c->srcFormat = srcFormat;
  1172. c->dstFormat = dstFormat;
  1173. if (param) {
  1174. c->param[0] = param[0];
  1175. c->param[1] = param[1];
  1176. }
  1177. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1178. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1179. c->dstRange, 0, 1 << 16, 1 << 16);
  1180. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1181. sws_freeContext(c);
  1182. return NULL;
  1183. }
  1184. return c;
  1185. }
  1186. #endif
  1187. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1188. float lumaSharpen, float chromaSharpen,
  1189. float chromaHShift, float chromaVShift,
  1190. int verbose)
  1191. {
  1192. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1193. if (!filter)
  1194. return NULL;
  1195. if (lumaGBlur != 0.0) {
  1196. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1197. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1198. } else {
  1199. filter->lumH = sws_getIdentityVec();
  1200. filter->lumV = sws_getIdentityVec();
  1201. }
  1202. if (chromaGBlur != 0.0) {
  1203. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1204. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1205. } else {
  1206. filter->chrH = sws_getIdentityVec();
  1207. filter->chrV = sws_getIdentityVec();
  1208. }
  1209. if (chromaSharpen != 0.0) {
  1210. SwsVector *id = sws_getIdentityVec();
  1211. sws_scaleVec(filter->chrH, -chromaSharpen);
  1212. sws_scaleVec(filter->chrV, -chromaSharpen);
  1213. sws_addVec(filter->chrH, id);
  1214. sws_addVec(filter->chrV, id);
  1215. sws_freeVec(id);
  1216. }
  1217. if (lumaSharpen != 0.0) {
  1218. SwsVector *id = sws_getIdentityVec();
  1219. sws_scaleVec(filter->lumH, -lumaSharpen);
  1220. sws_scaleVec(filter->lumV, -lumaSharpen);
  1221. sws_addVec(filter->lumH, id);
  1222. sws_addVec(filter->lumV, id);
  1223. sws_freeVec(id);
  1224. }
  1225. if (chromaHShift != 0.0)
  1226. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1227. if (chromaVShift != 0.0)
  1228. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1229. sws_normalizeVec(filter->chrH, 1.0);
  1230. sws_normalizeVec(filter->chrV, 1.0);
  1231. sws_normalizeVec(filter->lumH, 1.0);
  1232. sws_normalizeVec(filter->lumV, 1.0);
  1233. if (verbose)
  1234. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1235. if (verbose)
  1236. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1237. return filter;
  1238. }
  1239. SwsVector *sws_allocVec(int length)
  1240. {
  1241. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1242. if (!vec)
  1243. return NULL;
  1244. vec->length = length;
  1245. vec->coeff = av_malloc(sizeof(double) * length);
  1246. if (!vec->coeff)
  1247. av_freep(&vec);
  1248. return vec;
  1249. }
  1250. SwsVector *sws_getGaussianVec(double variance, double quality)
  1251. {
  1252. const int length = (int)(variance * quality + 0.5) | 1;
  1253. int i;
  1254. double middle = (length - 1) * 0.5;
  1255. SwsVector *vec = sws_allocVec(length);
  1256. if (!vec)
  1257. return NULL;
  1258. for (i = 0; i < length; i++) {
  1259. double dist = i - middle;
  1260. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1261. sqrt(2 * variance * M_PI);
  1262. }
  1263. sws_normalizeVec(vec, 1.0);
  1264. return vec;
  1265. }
  1266. SwsVector *sws_getConstVec(double c, int length)
  1267. {
  1268. int i;
  1269. SwsVector *vec = sws_allocVec(length);
  1270. if (!vec)
  1271. return NULL;
  1272. for (i = 0; i < length; i++)
  1273. vec->coeff[i] = c;
  1274. return vec;
  1275. }
  1276. SwsVector *sws_getIdentityVec(void)
  1277. {
  1278. return sws_getConstVec(1.0, 1);
  1279. }
  1280. static double sws_dcVec(SwsVector *a)
  1281. {
  1282. int i;
  1283. double sum = 0;
  1284. for (i = 0; i < a->length; i++)
  1285. sum += a->coeff[i];
  1286. return sum;
  1287. }
  1288. void sws_scaleVec(SwsVector *a, double scalar)
  1289. {
  1290. int i;
  1291. for (i = 0; i < a->length; i++)
  1292. a->coeff[i] *= scalar;
  1293. }
  1294. void sws_normalizeVec(SwsVector *a, double height)
  1295. {
  1296. sws_scaleVec(a, height / sws_dcVec(a));
  1297. }
  1298. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1299. {
  1300. int length = a->length + b->length - 1;
  1301. int i, j;
  1302. SwsVector *vec = sws_getConstVec(0.0, length);
  1303. if (!vec)
  1304. return NULL;
  1305. for (i = 0; i < a->length; i++) {
  1306. for (j = 0; j < b->length; j++) {
  1307. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1308. }
  1309. }
  1310. return vec;
  1311. }
  1312. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1313. {
  1314. int length = FFMAX(a->length, b->length);
  1315. int i;
  1316. SwsVector *vec = sws_getConstVec(0.0, length);
  1317. if (!vec)
  1318. return NULL;
  1319. for (i = 0; i < a->length; i++)
  1320. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1321. for (i = 0; i < b->length; i++)
  1322. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1323. return vec;
  1324. }
  1325. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1326. {
  1327. int length = FFMAX(a->length, b->length);
  1328. int i;
  1329. SwsVector *vec = sws_getConstVec(0.0, length);
  1330. if (!vec)
  1331. return NULL;
  1332. for (i = 0; i < a->length; i++)
  1333. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1334. for (i = 0; i < b->length; i++)
  1335. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1336. return vec;
  1337. }
  1338. /* shift left / or right if "shift" is negative */
  1339. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1340. {
  1341. int length = a->length + FFABS(shift) * 2;
  1342. int i;
  1343. SwsVector *vec = sws_getConstVec(0.0, length);
  1344. if (!vec)
  1345. return NULL;
  1346. for (i = 0; i < a->length; i++) {
  1347. vec->coeff[i + (length - 1) / 2 -
  1348. (a->length - 1) / 2 - shift] = a->coeff[i];
  1349. }
  1350. return vec;
  1351. }
  1352. void sws_shiftVec(SwsVector *a, int shift)
  1353. {
  1354. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1355. av_free(a->coeff);
  1356. a->coeff = shifted->coeff;
  1357. a->length = shifted->length;
  1358. av_free(shifted);
  1359. }
  1360. void sws_addVec(SwsVector *a, SwsVector *b)
  1361. {
  1362. SwsVector *sum = sws_sumVec(a, b);
  1363. av_free(a->coeff);
  1364. a->coeff = sum->coeff;
  1365. a->length = sum->length;
  1366. av_free(sum);
  1367. }
  1368. void sws_subVec(SwsVector *a, SwsVector *b)
  1369. {
  1370. SwsVector *diff = sws_diffVec(a, b);
  1371. av_free(a->coeff);
  1372. a->coeff = diff->coeff;
  1373. a->length = diff->length;
  1374. av_free(diff);
  1375. }
  1376. void sws_convVec(SwsVector *a, SwsVector *b)
  1377. {
  1378. SwsVector *conv = sws_getConvVec(a, b);
  1379. av_free(a->coeff);
  1380. a->coeff = conv->coeff;
  1381. a->length = conv->length;
  1382. av_free(conv);
  1383. }
  1384. SwsVector *sws_cloneVec(SwsVector *a)
  1385. {
  1386. int i;
  1387. SwsVector *vec = sws_allocVec(a->length);
  1388. if (!vec)
  1389. return NULL;
  1390. for (i = 0; i < a->length; i++)
  1391. vec->coeff[i] = a->coeff[i];
  1392. return vec;
  1393. }
  1394. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1395. {
  1396. int i;
  1397. double max = 0;
  1398. double min = 0;
  1399. double range;
  1400. for (i = 0; i < a->length; i++)
  1401. if (a->coeff[i] > max)
  1402. max = a->coeff[i];
  1403. for (i = 0; i < a->length; i++)
  1404. if (a->coeff[i] < min)
  1405. min = a->coeff[i];
  1406. range = max - min;
  1407. for (i = 0; i < a->length; i++) {
  1408. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1409. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1410. for (; x > 0; x--)
  1411. av_log(log_ctx, log_level, " ");
  1412. av_log(log_ctx, log_level, "|\n");
  1413. }
  1414. }
  1415. void sws_freeVec(SwsVector *a)
  1416. {
  1417. if (!a)
  1418. return;
  1419. av_freep(&a->coeff);
  1420. a->length = 0;
  1421. av_free(a);
  1422. }
  1423. void sws_freeFilter(SwsFilter *filter)
  1424. {
  1425. if (!filter)
  1426. return;
  1427. if (filter->lumH)
  1428. sws_freeVec(filter->lumH);
  1429. if (filter->lumV)
  1430. sws_freeVec(filter->lumV);
  1431. if (filter->chrH)
  1432. sws_freeVec(filter->chrH);
  1433. if (filter->chrV)
  1434. sws_freeVec(filter->chrV);
  1435. av_free(filter);
  1436. }
  1437. void sws_freeContext(SwsContext *c)
  1438. {
  1439. int i;
  1440. if (!c)
  1441. return;
  1442. if (c->lumPixBuf) {
  1443. for (i = 0; i < c->vLumBufSize; i++)
  1444. av_freep(&c->lumPixBuf[i]);
  1445. av_freep(&c->lumPixBuf);
  1446. }
  1447. if (c->chrUPixBuf) {
  1448. for (i = 0; i < c->vChrBufSize; i++)
  1449. av_freep(&c->chrUPixBuf[i]);
  1450. av_freep(&c->chrUPixBuf);
  1451. av_freep(&c->chrVPixBuf);
  1452. }
  1453. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1454. for (i = 0; i < c->vLumBufSize; i++)
  1455. av_freep(&c->alpPixBuf[i]);
  1456. av_freep(&c->alpPixBuf);
  1457. }
  1458. av_freep(&c->vLumFilter);
  1459. av_freep(&c->vChrFilter);
  1460. av_freep(&c->hLumFilter);
  1461. av_freep(&c->hChrFilter);
  1462. #if HAVE_ALTIVEC
  1463. av_freep(&c->vYCoeffsBank);
  1464. av_freep(&c->vCCoeffsBank);
  1465. #endif
  1466. av_freep(&c->vLumFilterPos);
  1467. av_freep(&c->vChrFilterPos);
  1468. av_freep(&c->hLumFilterPos);
  1469. av_freep(&c->hChrFilterPos);
  1470. #if HAVE_MMX_INLINE
  1471. #if USE_MMAP
  1472. if (c->lumMmxextFilterCode)
  1473. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1474. if (c->chrMmxextFilterCode)
  1475. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1476. #elif HAVE_VIRTUALALLOC
  1477. if (c->lumMmxextFilterCode)
  1478. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1479. if (c->chrMmxextFilterCode)
  1480. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1481. #else
  1482. av_free(c->lumMmxextFilterCode);
  1483. av_free(c->chrMmxextFilterCode);
  1484. #endif
  1485. c->lumMmxextFilterCode = NULL;
  1486. c->chrMmxextFilterCode = NULL;
  1487. #endif /* HAVE_MMX_INLINE */
  1488. av_freep(&c->yuvTable);
  1489. av_free(c->formatConvBuffer);
  1490. av_free(c);
  1491. }
  1492. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1493. int srcH, enum AVPixelFormat srcFormat,
  1494. int dstW, int dstH,
  1495. enum AVPixelFormat dstFormat, int flags,
  1496. SwsFilter *srcFilter,
  1497. SwsFilter *dstFilter,
  1498. const double *param)
  1499. {
  1500. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1501. SWS_PARAM_DEFAULT };
  1502. if (!param)
  1503. param = default_param;
  1504. if (context &&
  1505. (context->srcW != srcW ||
  1506. context->srcH != srcH ||
  1507. context->srcFormat != srcFormat ||
  1508. context->dstW != dstW ||
  1509. context->dstH != dstH ||
  1510. context->dstFormat != dstFormat ||
  1511. context->flags != flags ||
  1512. context->param[0] != param[0] ||
  1513. context->param[1] != param[1])) {
  1514. sws_freeContext(context);
  1515. context = NULL;
  1516. }
  1517. if (!context) {
  1518. if (!(context = sws_alloc_context()))
  1519. return NULL;
  1520. context->srcW = srcW;
  1521. context->srcH = srcH;
  1522. context->srcRange = handle_jpeg(&srcFormat);
  1523. context->srcFormat = srcFormat;
  1524. context->dstW = dstW;
  1525. context->dstH = dstH;
  1526. context->dstRange = handle_jpeg(&dstFormat);
  1527. context->dstFormat = dstFormat;
  1528. context->flags = flags;
  1529. context->param[0] = param[0];
  1530. context->param[1] = param[1];
  1531. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1532. context->srcRange,
  1533. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1534. context->dstRange, 0, 1 << 16, 1 << 16);
  1535. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1536. sws_freeContext(context);
  1537. return NULL;
  1538. }
  1539. }
  1540. return context;
  1541. }