You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

609 lines
25KB

  1. /*
  2. * Copyright (c) 2002 Dieter Shirley
  3. *
  4. * dct_unquantize_h263_altivec:
  5. * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #include "libavutil/cpu.h"
  26. #include "libavcodec/dsputil.h"
  27. #include "libavcodec/mpegvideo.h"
  28. #include "util_altivec.h"
  29. #include "types_altivec.h"
  30. #include "dsputil_altivec.h"
  31. // Swaps two variables (used for altivec registers)
  32. #define SWAP(a,b) \
  33. do { \
  34. __typeof__(a) swap_temp=a; \
  35. a=b; \
  36. b=swap_temp; \
  37. } while (0)
  38. // transposes a matrix consisting of four vectors with four elements each
  39. #define TRANSPOSE4(a,b,c,d) \
  40. do { \
  41. __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  42. __typeof__(a) _trans_acl = vec_mergel(a, c); \
  43. __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  44. __typeof__(a) _trans_bdl = vec_mergel(b, d); \
  45. \
  46. a = vec_mergeh(_trans_ach, _trans_bdh); \
  47. b = vec_mergel(_trans_ach, _trans_bdh); \
  48. c = vec_mergeh(_trans_acl, _trans_bdl); \
  49. d = vec_mergel(_trans_acl, _trans_bdl); \
  50. } while (0)
  51. // Loads a four-byte value (int or float) from the target address
  52. // into every element in the target vector. Only works if the
  53. // target address is four-byte aligned (which should be always).
  54. #define LOAD4(vec, address) \
  55. { \
  56. __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
  57. vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
  58. vec = vec_ld(0, _load_addr); \
  59. vec = vec_perm(vec, vec, _perm_vec); \
  60. vec = vec_splat(vec, 0); \
  61. }
  62. #define FOUROF(a) {a,a,a,a}
  63. static int dct_quantize_altivec(MpegEncContext* s,
  64. DCTELEM* data, int n,
  65. int qscale, int* overflow)
  66. {
  67. int lastNonZero;
  68. vector float row0, row1, row2, row3, row4, row5, row6, row7;
  69. vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
  70. const vector float zero = (const vector float)FOUROF(0.);
  71. // used after quantize step
  72. int oldBaseValue = 0;
  73. // Load the data into the row/alt vectors
  74. {
  75. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  76. data0 = vec_ld(0, data);
  77. data1 = vec_ld(16, data);
  78. data2 = vec_ld(32, data);
  79. data3 = vec_ld(48, data);
  80. data4 = vec_ld(64, data);
  81. data5 = vec_ld(80, data);
  82. data6 = vec_ld(96, data);
  83. data7 = vec_ld(112, data);
  84. // Transpose the data before we start
  85. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  86. // load the data into floating point vectors. We load
  87. // the high half of each row into the main row vectors
  88. // and the low half into the alt vectors.
  89. row0 = vec_ctf(vec_unpackh(data0), 0);
  90. alt0 = vec_ctf(vec_unpackl(data0), 0);
  91. row1 = vec_ctf(vec_unpackh(data1), 0);
  92. alt1 = vec_ctf(vec_unpackl(data1), 0);
  93. row2 = vec_ctf(vec_unpackh(data2), 0);
  94. alt2 = vec_ctf(vec_unpackl(data2), 0);
  95. row3 = vec_ctf(vec_unpackh(data3), 0);
  96. alt3 = vec_ctf(vec_unpackl(data3), 0);
  97. row4 = vec_ctf(vec_unpackh(data4), 0);
  98. alt4 = vec_ctf(vec_unpackl(data4), 0);
  99. row5 = vec_ctf(vec_unpackh(data5), 0);
  100. alt5 = vec_ctf(vec_unpackl(data5), 0);
  101. row6 = vec_ctf(vec_unpackh(data6), 0);
  102. alt6 = vec_ctf(vec_unpackl(data6), 0);
  103. row7 = vec_ctf(vec_unpackh(data7), 0);
  104. alt7 = vec_ctf(vec_unpackl(data7), 0);
  105. }
  106. // The following block could exist as a separate an altivec dct
  107. // function. However, if we put it inline, the DCT data can remain
  108. // in the vector local variables, as floats, which we'll use during the
  109. // quantize step...
  110. {
  111. const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
  112. const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
  113. const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
  114. const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
  115. const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
  116. const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
  117. const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
  118. const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
  119. const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
  120. const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
  121. const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
  122. const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
  123. int whichPass, whichHalf;
  124. for(whichPass = 1; whichPass<=2; whichPass++) {
  125. for(whichHalf = 1; whichHalf<=2; whichHalf++) {
  126. vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  127. vector float tmp10, tmp11, tmp12, tmp13;
  128. vector float z1, z2, z3, z4, z5;
  129. tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
  130. tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
  131. tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
  132. tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
  133. tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
  134. tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
  135. tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
  136. tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
  137. tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
  138. tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
  139. tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
  140. tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
  141. // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  142. row0 = vec_add(tmp10, tmp11);
  143. // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  144. row4 = vec_sub(tmp10, tmp11);
  145. // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  146. z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
  147. // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  148. // CONST_BITS-PASS1_BITS);
  149. row2 = vec_madd(tmp13, vec_0_765366865, z1);
  150. // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  151. // CONST_BITS-PASS1_BITS);
  152. row6 = vec_madd(tmp12, vec_1_847759065, z1);
  153. z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
  154. z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
  155. z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
  156. z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
  157. // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  158. z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
  159. // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  160. z3 = vec_madd(z3, vec_1_961570560, z5);
  161. // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  162. z4 = vec_madd(z4, vec_0_390180644, z5);
  163. // The following adds are rolled into the multiplies above
  164. // z3 = vec_add(z3, z5); // z3 += z5;
  165. // z4 = vec_add(z4, z5); // z4 += z5;
  166. // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  167. // Wow! It's actually more efficient to roll this multiply
  168. // into the adds below, even thought the multiply gets done twice!
  169. // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
  170. // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  171. // Same with this one...
  172. // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
  173. // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  174. // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  175. row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
  176. // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  177. // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  178. row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
  179. // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  180. // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  181. row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
  182. // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  183. // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  184. row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
  185. // Swap the row values with the alts. If this is the first half,
  186. // this sets up the low values to be acted on in the second half.
  187. // If this is the second half, it puts the high values back in
  188. // the row values where they are expected to be when we're done.
  189. SWAP(row0, alt0);
  190. SWAP(row1, alt1);
  191. SWAP(row2, alt2);
  192. SWAP(row3, alt3);
  193. SWAP(row4, alt4);
  194. SWAP(row5, alt5);
  195. SWAP(row6, alt6);
  196. SWAP(row7, alt7);
  197. }
  198. if (whichPass == 1) {
  199. // transpose the data for the second pass
  200. // First, block transpose the upper right with lower left.
  201. SWAP(row4, alt0);
  202. SWAP(row5, alt1);
  203. SWAP(row6, alt2);
  204. SWAP(row7, alt3);
  205. // Now, transpose each block of four
  206. TRANSPOSE4(row0, row1, row2, row3);
  207. TRANSPOSE4(row4, row5, row6, row7);
  208. TRANSPOSE4(alt0, alt1, alt2, alt3);
  209. TRANSPOSE4(alt4, alt5, alt6, alt7);
  210. }
  211. }
  212. }
  213. // perform the quantize step, using the floating point data
  214. // still in the row/alt registers
  215. {
  216. const int* biasAddr;
  217. const vector signed int* qmat;
  218. vector float bias, negBias;
  219. if (s->mb_intra) {
  220. vector signed int baseVector;
  221. // We must cache element 0 in the intra case
  222. // (it needs special handling).
  223. baseVector = vec_cts(vec_splat(row0, 0), 0);
  224. vec_ste(baseVector, 0, &oldBaseValue);
  225. qmat = (vector signed int*)s->q_intra_matrix[qscale];
  226. biasAddr = &(s->intra_quant_bias);
  227. } else {
  228. qmat = (vector signed int*)s->q_inter_matrix[qscale];
  229. biasAddr = &(s->inter_quant_bias);
  230. }
  231. // Load the bias vector (We add 0.5 to the bias so that we're
  232. // rounding when we convert to int, instead of flooring.)
  233. {
  234. vector signed int biasInt;
  235. const vector float negOneFloat = (vector float)FOUROF(-1.0f);
  236. LOAD4(biasInt, biasAddr);
  237. bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
  238. negBias = vec_madd(bias, negOneFloat, zero);
  239. }
  240. {
  241. vector float q0, q1, q2, q3, q4, q5, q6, q7;
  242. q0 = vec_ctf(qmat[0], QMAT_SHIFT);
  243. q1 = vec_ctf(qmat[2], QMAT_SHIFT);
  244. q2 = vec_ctf(qmat[4], QMAT_SHIFT);
  245. q3 = vec_ctf(qmat[6], QMAT_SHIFT);
  246. q4 = vec_ctf(qmat[8], QMAT_SHIFT);
  247. q5 = vec_ctf(qmat[10], QMAT_SHIFT);
  248. q6 = vec_ctf(qmat[12], QMAT_SHIFT);
  249. q7 = vec_ctf(qmat[14], QMAT_SHIFT);
  250. row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
  251. vec_cmpgt(row0, zero));
  252. row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
  253. vec_cmpgt(row1, zero));
  254. row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
  255. vec_cmpgt(row2, zero));
  256. row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
  257. vec_cmpgt(row3, zero));
  258. row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
  259. vec_cmpgt(row4, zero));
  260. row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
  261. vec_cmpgt(row5, zero));
  262. row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
  263. vec_cmpgt(row6, zero));
  264. row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
  265. vec_cmpgt(row7, zero));
  266. q0 = vec_ctf(qmat[1], QMAT_SHIFT);
  267. q1 = vec_ctf(qmat[3], QMAT_SHIFT);
  268. q2 = vec_ctf(qmat[5], QMAT_SHIFT);
  269. q3 = vec_ctf(qmat[7], QMAT_SHIFT);
  270. q4 = vec_ctf(qmat[9], QMAT_SHIFT);
  271. q5 = vec_ctf(qmat[11], QMAT_SHIFT);
  272. q6 = vec_ctf(qmat[13], QMAT_SHIFT);
  273. q7 = vec_ctf(qmat[15], QMAT_SHIFT);
  274. alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
  275. vec_cmpgt(alt0, zero));
  276. alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
  277. vec_cmpgt(alt1, zero));
  278. alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
  279. vec_cmpgt(alt2, zero));
  280. alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
  281. vec_cmpgt(alt3, zero));
  282. alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
  283. vec_cmpgt(alt4, zero));
  284. alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
  285. vec_cmpgt(alt5, zero));
  286. alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
  287. vec_cmpgt(alt6, zero));
  288. alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
  289. vec_cmpgt(alt7, zero));
  290. }
  291. }
  292. // Store the data back into the original block
  293. {
  294. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  295. data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
  296. data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
  297. data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
  298. data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
  299. data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
  300. data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
  301. data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
  302. data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
  303. {
  304. // Clamp for overflow
  305. vector signed int max_q_int, min_q_int;
  306. vector signed short max_q, min_q;
  307. LOAD4(max_q_int, &(s->max_qcoeff));
  308. LOAD4(min_q_int, &(s->min_qcoeff));
  309. max_q = vec_pack(max_q_int, max_q_int);
  310. min_q = vec_pack(min_q_int, min_q_int);
  311. data0 = vec_max(vec_min(data0, max_q), min_q);
  312. data1 = vec_max(vec_min(data1, max_q), min_q);
  313. data2 = vec_max(vec_min(data2, max_q), min_q);
  314. data4 = vec_max(vec_min(data4, max_q), min_q);
  315. data5 = vec_max(vec_min(data5, max_q), min_q);
  316. data6 = vec_max(vec_min(data6, max_q), min_q);
  317. data7 = vec_max(vec_min(data7, max_q), min_q);
  318. }
  319. {
  320. vector bool char zero_01, zero_23, zero_45, zero_67;
  321. vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
  322. vector signed char negOne = vec_splat_s8(-1);
  323. vector signed char* scanPtr =
  324. (vector signed char*)(s->intra_scantable.inverse);
  325. signed char lastNonZeroChar;
  326. // Determine the largest non-zero index.
  327. zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
  328. vec_cmpeq(data1, (vector signed short)zero));
  329. zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
  330. vec_cmpeq(data3, (vector signed short)zero));
  331. zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
  332. vec_cmpeq(data5, (vector signed short)zero));
  333. zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
  334. vec_cmpeq(data7, (vector signed short)zero));
  335. // 64 biggest values
  336. scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
  337. scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
  338. scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
  339. scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);
  340. // 32 largest values
  341. scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
  342. scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);
  343. // 16 largest values
  344. scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);
  345. // 8 largest values
  346. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  347. vec_mergel(scanIndexes_01, negOne));
  348. // 4 largest values
  349. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  350. vec_mergel(scanIndexes_01, negOne));
  351. // 2 largest values
  352. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  353. vec_mergel(scanIndexes_01, negOne));
  354. // largest value
  355. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  356. vec_mergel(scanIndexes_01, negOne));
  357. scanIndexes_01 = vec_splat(scanIndexes_01, 0);
  358. vec_ste(scanIndexes_01, 0, &lastNonZeroChar);
  359. lastNonZero = lastNonZeroChar;
  360. // While the data is still in vectors we check for the transpose IDCT permute
  361. // and handle it using the vector unit if we can. This is the permute used
  362. // by the altivec idct, so it is common when using the altivec dct.
  363. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) {
  364. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  365. }
  366. vec_st(data0, 0, data);
  367. vec_st(data1, 16, data);
  368. vec_st(data2, 32, data);
  369. vec_st(data3, 48, data);
  370. vec_st(data4, 64, data);
  371. vec_st(data5, 80, data);
  372. vec_st(data6, 96, data);
  373. vec_st(data7, 112, data);
  374. }
  375. }
  376. // special handling of block[0]
  377. if (s->mb_intra) {
  378. if (!s->h263_aic) {
  379. if (n < 4)
  380. oldBaseValue /= s->y_dc_scale;
  381. else
  382. oldBaseValue /= s->c_dc_scale;
  383. }
  384. // Divide by 8, rounding the result
  385. data[0] = (oldBaseValue + 4) >> 3;
  386. }
  387. // We handled the transpose permutation above and we don't
  388. // need to permute the "no" permutation case.
  389. if ((lastNonZero > 0) &&
  390. (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
  391. (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) {
  392. ff_block_permute(data, s->dsp.idct_permutation,
  393. s->intra_scantable.scantable, lastNonZero);
  394. }
  395. return lastNonZero;
  396. }
  397. /* AltiVec version of dct_unquantize_h263
  398. this code assumes `block' is 16 bytes-aligned */
  399. static void dct_unquantize_h263_altivec(MpegEncContext *s,
  400. DCTELEM *block, int n, int qscale)
  401. {
  402. int i, level, qmul, qadd;
  403. int nCoeffs;
  404. assert(s->block_last_index[n]>=0);
  405. qadd = (qscale - 1) | 1;
  406. qmul = qscale << 1;
  407. if (s->mb_intra) {
  408. if (!s->h263_aic) {
  409. if (n < 4)
  410. block[0] = block[0] * s->y_dc_scale;
  411. else
  412. block[0] = block[0] * s->c_dc_scale;
  413. }else
  414. qadd = 0;
  415. i = 1;
  416. nCoeffs= 63; //does not always use zigzag table
  417. } else {
  418. i = 0;
  419. nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
  420. }
  421. {
  422. register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
  423. DECLARE_ALIGNED(16, short, qmul8) = qmul;
  424. DECLARE_ALIGNED(16, short, qadd8) = qadd;
  425. register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
  426. register vector bool short blockv_null, blockv_neg;
  427. register short backup_0 = block[0];
  428. register int j = 0;
  429. qmulv = vec_splat((vec_s16)vec_lde(0, &qmul8), 0);
  430. qaddv = vec_splat((vec_s16)vec_lde(0, &qadd8), 0);
  431. nqaddv = vec_sub(vczero, qaddv);
  432. #if 0 // block *is* 16 bytes-aligned, it seems.
  433. // first make sure block[j] is 16 bytes-aligned
  434. for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
  435. level = block[j];
  436. if (level) {
  437. if (level < 0) {
  438. level = level * qmul - qadd;
  439. } else {
  440. level = level * qmul + qadd;
  441. }
  442. block[j] = level;
  443. }
  444. }
  445. #endif
  446. // vectorize all the 16 bytes-aligned blocks
  447. // of 8 elements
  448. for(; (j + 7) <= nCoeffs ; j+=8) {
  449. blockv = vec_ld(j << 1, block);
  450. blockv_neg = vec_cmplt(blockv, vczero);
  451. blockv_null = vec_cmpeq(blockv, vczero);
  452. // choose between +qadd or -qadd as the third operand
  453. temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
  454. // multiply & add (block{i,i+7} * qmul [+-] qadd)
  455. temp1 = vec_mladd(blockv, qmulv, temp1);
  456. // put 0 where block[{i,i+7} used to have 0
  457. blockv = vec_sel(temp1, blockv, blockv_null);
  458. vec_st(blockv, j << 1, block);
  459. }
  460. // if nCoeffs isn't a multiple of 8, finish the job
  461. // using good old scalar units.
  462. // (we could do it using a truncated vector,
  463. // but I'm not sure it's worth the hassle)
  464. for(; j <= nCoeffs ; j++) {
  465. level = block[j];
  466. if (level) {
  467. if (level < 0) {
  468. level = level * qmul - qadd;
  469. } else {
  470. level = level * qmul + qadd;
  471. }
  472. block[j] = level;
  473. }
  474. }
  475. if (i == 1) {
  476. // cheat. this avoid special-casing the first iteration
  477. block[0] = backup_0;
  478. }
  479. }
  480. }
  481. void MPV_common_init_altivec(MpegEncContext *s)
  482. {
  483. if (!(av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)) return;
  484. if (s->avctx->lowres==0) {
  485. if ((s->avctx->idct_algo == FF_IDCT_AUTO) ||
  486. (s->avctx->idct_algo == FF_IDCT_ALTIVEC)) {
  487. s->dsp.idct_put = idct_put_altivec;
  488. s->dsp.idct_add = idct_add_altivec;
  489. s->dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM;
  490. }
  491. }
  492. // Test to make sure that the dct required alignments are met.
  493. if ((((long)(s->q_intra_matrix) & 0x0f) != 0) ||
  494. (((long)(s->q_inter_matrix) & 0x0f) != 0)) {
  495. av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
  496. "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
  497. return;
  498. }
  499. if (((long)(s->intra_scantable.inverse) & 0x0f) != 0) {
  500. av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
  501. "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
  502. return;
  503. }
  504. if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
  505. (s->avctx->dct_algo == FF_DCT_ALTIVEC)) {
  506. #if 0 /* seems to cause trouble under some circumstances */
  507. s->dct_quantize = dct_quantize_altivec;
  508. #endif
  509. s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec;
  510. s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec;
  511. }
  512. }