You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1502 lines
48KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "thread.h"
  34. #define VLC_BITS 11
  35. #if HAVE_BIGENDIAN
  36. #define B 3
  37. #define G 2
  38. #define R 1
  39. #define A 0
  40. #else
  41. #define B 0
  42. #define G 1
  43. #define R 2
  44. #define A 3
  45. #endif
  46. typedef enum Predictor{
  47. LEFT= 0,
  48. PLANE,
  49. MEDIAN,
  50. } Predictor;
  51. typedef struct HYuvContext{
  52. AVCodecContext *avctx;
  53. Predictor predictor;
  54. GetBitContext gb;
  55. PutBitContext pb;
  56. int interlaced;
  57. int decorrelate;
  58. int bitstream_bpp;
  59. int version;
  60. int yuy2; //use yuy2 instead of 422P
  61. int bgr32; //use bgr32 instead of bgr24
  62. int width, height;
  63. int flags;
  64. int context;
  65. int picture_number;
  66. int last_slice_end;
  67. uint8_t *temp[3];
  68. uint64_t stats[3][256];
  69. uint8_t len[3][256];
  70. uint32_t bits[3][256];
  71. uint32_t pix_bgr_map[1<<VLC_BITS];
  72. VLC vlc[6]; //Y,U,V,YY,YU,YV
  73. AVFrame picture;
  74. uint8_t *bitstream_buffer;
  75. unsigned int bitstream_buffer_size;
  76. DSPContext dsp;
  77. }HYuvContext;
  78. static const unsigned char classic_shift_luma[] = {
  79. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  80. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  81. 69,68, 0
  82. };
  83. static const unsigned char classic_shift_chroma[] = {
  84. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  85. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  86. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  87. };
  88. static const unsigned char classic_add_luma[256] = {
  89. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  90. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  91. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  92. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  93. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  94. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  95. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  96. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  97. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  98. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  99. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  100. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  101. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  102. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  103. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  104. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  105. };
  106. static const unsigned char classic_add_chroma[256] = {
  107. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  108. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  109. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  110. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  111. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  112. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  113. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  114. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  115. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  116. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  117. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  118. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  119. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  120. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  121. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  122. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  123. };
  124. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  125. int i;
  126. if(w<32){
  127. for(i=0; i<w; i++){
  128. const int temp= src[i];
  129. dst[i]= temp - left;
  130. left= temp;
  131. }
  132. return left;
  133. }else{
  134. for(i=0; i<16; i++){
  135. const int temp= src[i];
  136. dst[i]= temp - left;
  137. left= temp;
  138. }
  139. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  140. return src[w-1];
  141. }
  142. }
  143. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  144. int i;
  145. int r,g,b;
  146. r= *red;
  147. g= *green;
  148. b= *blue;
  149. for(i=0; i<FFMIN(w,4); i++){
  150. const int rt= src[i*4+R];
  151. const int gt= src[i*4+G];
  152. const int bt= src[i*4+B];
  153. dst[i*4+R]= rt - r;
  154. dst[i*4+G]= gt - g;
  155. dst[i*4+B]= bt - b;
  156. r = rt;
  157. g = gt;
  158. b = bt;
  159. }
  160. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  161. *red= src[(w-1)*4+R];
  162. *green= src[(w-1)*4+G];
  163. *blue= src[(w-1)*4+B];
  164. }
  165. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  166. int i, val, repeat;
  167. for(i=0; i<256;){
  168. repeat= get_bits(gb, 3);
  169. val = get_bits(gb, 5);
  170. if(repeat==0)
  171. repeat= get_bits(gb, 8);
  172. //printf("%d %d\n", val, repeat);
  173. if(i+repeat > 256) {
  174. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  175. return -1;
  176. }
  177. while (repeat--)
  178. dst[i++] = val;
  179. }
  180. return 0;
  181. }
  182. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
  183. int len, index;
  184. uint32_t bits=0;
  185. for(len=32; len>0; len--){
  186. for(index=0; index<256; index++){
  187. if(len_table[index]==len)
  188. dst[index]= bits++;
  189. }
  190. if(bits & 1){
  191. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  192. return -1;
  193. }
  194. bits >>= 1;
  195. }
  196. return 0;
  197. }
  198. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  199. typedef struct {
  200. uint64_t val;
  201. int name;
  202. } HeapElem;
  203. static void heap_sift(HeapElem *h, int root, int size)
  204. {
  205. while(root*2+1 < size) {
  206. int child = root*2+1;
  207. if(child < size-1 && h[child].val > h[child+1].val)
  208. child++;
  209. if(h[root].val > h[child].val) {
  210. FFSWAP(HeapElem, h[root], h[child]);
  211. root = child;
  212. } else
  213. break;
  214. }
  215. }
  216. static void generate_len_table(uint8_t *dst, const uint64_t *stats){
  217. HeapElem h[256];
  218. int up[2*256];
  219. int len[2*256];
  220. int offset, i, next;
  221. int size = 256;
  222. for(offset=1; ; offset<<=1){
  223. for(i=0; i<size; i++){
  224. h[i].name = i;
  225. h[i].val = (stats[i] << 8) + offset;
  226. }
  227. for(i=size/2-1; i>=0; i--)
  228. heap_sift(h, i, size);
  229. for(next=size; next<size*2-1; next++){
  230. // merge the two smallest entries, and put it back in the heap
  231. uint64_t min1v = h[0].val;
  232. up[h[0].name] = next;
  233. h[0].val = INT64_MAX;
  234. heap_sift(h, 0, size);
  235. up[h[0].name] = next;
  236. h[0].name = next;
  237. h[0].val += min1v;
  238. heap_sift(h, 0, size);
  239. }
  240. len[2*size-2] = 0;
  241. for(i=2*size-3; i>=size; i--)
  242. len[i] = len[up[i]] + 1;
  243. for(i=0; i<size; i++) {
  244. dst[i] = len[up[i]] + 1;
  245. if(dst[i] >= 32) break;
  246. }
  247. if(i==size) break;
  248. }
  249. }
  250. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  251. static void generate_joint_tables(HYuvContext *s){
  252. uint16_t symbols[1<<VLC_BITS];
  253. uint16_t bits[1<<VLC_BITS];
  254. uint8_t len[1<<VLC_BITS];
  255. if(s->bitstream_bpp < 24){
  256. int p, i, y, u;
  257. for(p=0; p<3; p++){
  258. for(i=y=0; y<256; y++){
  259. int len0 = s->len[0][y];
  260. int limit = VLC_BITS - len0;
  261. if(limit <= 0)
  262. continue;
  263. for(u=0; u<256; u++){
  264. int len1 = s->len[p][u];
  265. if(len1 > limit)
  266. continue;
  267. len[i] = len0 + len1;
  268. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  269. symbols[i] = (y<<8) + u;
  270. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  271. i++;
  272. }
  273. }
  274. free_vlc(&s->vlc[3+p]);
  275. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  276. }
  277. }else{
  278. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  279. int i, b, g, r, code;
  280. int p0 = s->decorrelate;
  281. int p1 = !s->decorrelate;
  282. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  283. // cover all the combinations that fit in 11 bits total, and it doesn't
  284. // matter if we miss a few rare codes.
  285. for(i=0, g=-16; g<16; g++){
  286. int len0 = s->len[p0][g&255];
  287. int limit0 = VLC_BITS - len0;
  288. if(limit0 < 2)
  289. continue;
  290. for(b=-16; b<16; b++){
  291. int len1 = s->len[p1][b&255];
  292. int limit1 = limit0 - len1;
  293. if(limit1 < 1)
  294. continue;
  295. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  296. for(r=-16; r<16; r++){
  297. int len2 = s->len[2][r&255];
  298. if(len2 > limit1)
  299. continue;
  300. len[i] = len0 + len1 + len2;
  301. bits[i] = (code << len2) + s->bits[2][r&255];
  302. if(s->decorrelate){
  303. map[i][G] = g;
  304. map[i][B] = g+b;
  305. map[i][R] = g+r;
  306. }else{
  307. map[i][B] = g;
  308. map[i][G] = b;
  309. map[i][R] = r;
  310. }
  311. i++;
  312. }
  313. }
  314. }
  315. free_vlc(&s->vlc[3]);
  316. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  317. }
  318. }
  319. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
  320. GetBitContext gb;
  321. int i;
  322. init_get_bits(&gb, src, length*8);
  323. for(i=0; i<3; i++){
  324. if(read_len_table(s->len[i], &gb)<0)
  325. return -1;
  326. if(generate_bits_table(s->bits[i], s->len[i])<0){
  327. return -1;
  328. }
  329. #if 0
  330. for(j=0; j<256; j++){
  331. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  332. }
  333. #endif
  334. free_vlc(&s->vlc[i]);
  335. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  336. }
  337. generate_joint_tables(s);
  338. return (get_bits_count(&gb)+7)/8;
  339. }
  340. static int read_old_huffman_tables(HYuvContext *s){
  341. #if 1
  342. GetBitContext gb;
  343. int i;
  344. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  345. if(read_len_table(s->len[0], &gb)<0)
  346. return -1;
  347. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  348. if(read_len_table(s->len[1], &gb)<0)
  349. return -1;
  350. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  351. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  352. if(s->bitstream_bpp >= 24){
  353. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  354. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  355. }
  356. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  357. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  358. for(i=0; i<3; i++){
  359. free_vlc(&s->vlc[i]);
  360. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  361. }
  362. generate_joint_tables(s);
  363. return 0;
  364. #else
  365. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  366. return -1;
  367. #endif
  368. }
  369. static av_cold void alloc_temp(HYuvContext *s){
  370. int i;
  371. if(s->bitstream_bpp<24){
  372. for(i=0; i<3; i++){
  373. s->temp[i]= av_malloc(s->width + 16);
  374. }
  375. }else{
  376. s->temp[0]= av_mallocz(4*s->width + 16);
  377. }
  378. }
  379. static av_cold int common_init(AVCodecContext *avctx){
  380. HYuvContext *s = avctx->priv_data;
  381. s->avctx= avctx;
  382. s->flags= avctx->flags;
  383. dsputil_init(&s->dsp, avctx);
  384. s->width= avctx->width;
  385. s->height= avctx->height;
  386. assert(s->width>0 && s->height>0);
  387. return 0;
  388. }
  389. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  390. static av_cold int decode_init(AVCodecContext *avctx)
  391. {
  392. HYuvContext *s = avctx->priv_data;
  393. common_init(avctx);
  394. memset(s->vlc, 0, 3*sizeof(VLC));
  395. avctx->coded_frame= &s->picture;
  396. s->interlaced= s->height > 288;
  397. s->bgr32=1;
  398. //if(avctx->extradata)
  399. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  400. if(avctx->extradata_size){
  401. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  402. s->version=1; // do such files exist at all?
  403. else
  404. s->version=2;
  405. }else
  406. s->version=0;
  407. if(s->version==2){
  408. int method, interlace;
  409. if (avctx->extradata_size < 4)
  410. return -1;
  411. method= ((uint8_t*)avctx->extradata)[0];
  412. s->decorrelate= method&64 ? 1 : 0;
  413. s->predictor= method&63;
  414. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  415. if(s->bitstream_bpp==0)
  416. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  417. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  418. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  419. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  420. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
  421. return -1;
  422. }else{
  423. switch(avctx->bits_per_coded_sample&7){
  424. case 1:
  425. s->predictor= LEFT;
  426. s->decorrelate= 0;
  427. break;
  428. case 2:
  429. s->predictor= LEFT;
  430. s->decorrelate= 1;
  431. break;
  432. case 3:
  433. s->predictor= PLANE;
  434. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  435. break;
  436. case 4:
  437. s->predictor= MEDIAN;
  438. s->decorrelate= 0;
  439. break;
  440. default:
  441. s->predictor= LEFT; //OLD
  442. s->decorrelate= 0;
  443. break;
  444. }
  445. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  446. s->context= 0;
  447. if(read_old_huffman_tables(s) < 0)
  448. return -1;
  449. }
  450. switch(s->bitstream_bpp){
  451. case 12:
  452. avctx->pix_fmt = PIX_FMT_YUV420P;
  453. break;
  454. case 16:
  455. if(s->yuy2){
  456. avctx->pix_fmt = PIX_FMT_YUYV422;
  457. }else{
  458. avctx->pix_fmt = PIX_FMT_YUV422P;
  459. }
  460. break;
  461. case 24:
  462. case 32:
  463. if(s->bgr32){
  464. avctx->pix_fmt = PIX_FMT_RGB32;
  465. }else{
  466. avctx->pix_fmt = PIX_FMT_BGR24;
  467. }
  468. break;
  469. default:
  470. assert(0);
  471. }
  472. alloc_temp(s);
  473. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  474. return 0;
  475. }
  476. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  477. {
  478. HYuvContext *s = avctx->priv_data;
  479. int i;
  480. avctx->coded_frame= &s->picture;
  481. alloc_temp(s);
  482. for (i = 0; i < 6; i++)
  483. s->vlc[i].table = NULL;
  484. if(s->version==2){
  485. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  486. return -1;
  487. }else{
  488. if(read_old_huffman_tables(s) < 0)
  489. return -1;
  490. }
  491. return 0;
  492. }
  493. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  494. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  495. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
  496. int i;
  497. int index= 0;
  498. for(i=0; i<256;){
  499. int val= len[i];
  500. int repeat=0;
  501. for(; i<256 && len[i]==val && repeat<255; i++)
  502. repeat++;
  503. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  504. if(repeat>7){
  505. buf[index++]= val;
  506. buf[index++]= repeat;
  507. }else{
  508. buf[index++]= val | (repeat<<5);
  509. }
  510. }
  511. return index;
  512. }
  513. static av_cold int encode_init(AVCodecContext *avctx)
  514. {
  515. HYuvContext *s = avctx->priv_data;
  516. int i, j;
  517. common_init(avctx);
  518. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  519. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  520. s->version=2;
  521. avctx->coded_frame= &s->picture;
  522. switch(avctx->pix_fmt){
  523. case PIX_FMT_YUV420P:
  524. s->bitstream_bpp= 12;
  525. break;
  526. case PIX_FMT_YUV422P:
  527. s->bitstream_bpp= 16;
  528. break;
  529. case PIX_FMT_RGB32:
  530. s->bitstream_bpp= 24;
  531. break;
  532. default:
  533. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  534. return -1;
  535. }
  536. avctx->bits_per_coded_sample= s->bitstream_bpp;
  537. s->decorrelate= s->bitstream_bpp >= 24;
  538. s->predictor= avctx->prediction_method;
  539. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  540. if(avctx->context_model==1){
  541. s->context= avctx->context_model;
  542. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  543. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  544. return -1;
  545. }
  546. }else s->context= 0;
  547. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  548. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  549. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  550. return -1;
  551. }
  552. if(avctx->context_model){
  553. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  554. return -1;
  555. }
  556. if(s->interlaced != ( s->height > 288 ))
  557. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  558. }
  559. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  560. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  561. return -1;
  562. }
  563. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  564. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  565. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  566. if(s->context)
  567. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  568. ((uint8_t*)avctx->extradata)[3]= 0;
  569. s->avctx->extradata_size= 4;
  570. if(avctx->stats_in){
  571. char *p= avctx->stats_in;
  572. for(i=0; i<3; i++)
  573. for(j=0; j<256; j++)
  574. s->stats[i][j]= 1;
  575. for(;;){
  576. for(i=0; i<3; i++){
  577. char *next;
  578. for(j=0; j<256; j++){
  579. s->stats[i][j]+= strtol(p, &next, 0);
  580. if(next==p) return -1;
  581. p=next;
  582. }
  583. }
  584. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  585. }
  586. }else{
  587. for(i=0; i<3; i++)
  588. for(j=0; j<256; j++){
  589. int d= FFMIN(j, 256-j);
  590. s->stats[i][j]= 100000000/(d+1);
  591. }
  592. }
  593. for(i=0; i<3; i++){
  594. generate_len_table(s->len[i], s->stats[i]);
  595. if(generate_bits_table(s->bits[i], s->len[i])<0){
  596. return -1;
  597. }
  598. s->avctx->extradata_size+=
  599. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  600. }
  601. if(s->context){
  602. for(i=0; i<3; i++){
  603. int pels = s->width*s->height / (i?40:10);
  604. for(j=0; j<256; j++){
  605. int d= FFMIN(j, 256-j);
  606. s->stats[i][j]= pels/(d+1);
  607. }
  608. }
  609. }else{
  610. for(i=0; i<3; i++)
  611. for(j=0; j<256; j++)
  612. s->stats[i][j]= 0;
  613. }
  614. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  615. alloc_temp(s);
  616. s->picture_number=0;
  617. return 0;
  618. }
  619. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  620. /* TODO instead of restarting the read when the code isn't in the first level
  621. * of the joint table, jump into the 2nd level of the individual table. */
  622. #define READ_2PIX(dst0, dst1, plane1){\
  623. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  624. if(code != 0xffff){\
  625. dst0 = code>>8;\
  626. dst1 = code;\
  627. }else{\
  628. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  629. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  630. }\
  631. }
  632. static void decode_422_bitstream(HYuvContext *s, int count){
  633. int i;
  634. count/=2;
  635. if(count >= (get_bits_left(&s->gb))/(31*4)){
  636. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  637. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  638. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  639. }
  640. }else{
  641. for(i=0; i<count; i++){
  642. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  643. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  644. }
  645. }
  646. }
  647. static void decode_gray_bitstream(HYuvContext *s, int count){
  648. int i;
  649. count/=2;
  650. if(count >= (get_bits_left(&s->gb))/(31*2)){
  651. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  652. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  653. }
  654. }else{
  655. for(i=0; i<count; i++){
  656. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  657. }
  658. }
  659. }
  660. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  661. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  662. int i;
  663. const uint8_t *y = s->temp[0] + offset;
  664. const uint8_t *u = s->temp[1] + offset/2;
  665. const uint8_t *v = s->temp[2] + offset/2;
  666. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  667. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  668. return -1;
  669. }
  670. #define LOAD4\
  671. int y0 = y[2*i];\
  672. int y1 = y[2*i+1];\
  673. int u0 = u[i];\
  674. int v0 = v[i];
  675. count/=2;
  676. if(s->flags&CODEC_FLAG_PASS1){
  677. for(i=0; i<count; i++){
  678. LOAD4;
  679. s->stats[0][y0]++;
  680. s->stats[1][u0]++;
  681. s->stats[0][y1]++;
  682. s->stats[2][v0]++;
  683. }
  684. }
  685. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  686. return 0;
  687. if(s->context){
  688. for(i=0; i<count; i++){
  689. LOAD4;
  690. s->stats[0][y0]++;
  691. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  692. s->stats[1][u0]++;
  693. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  694. s->stats[0][y1]++;
  695. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  696. s->stats[2][v0]++;
  697. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  698. }
  699. }else{
  700. for(i=0; i<count; i++){
  701. LOAD4;
  702. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  703. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  704. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  705. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  706. }
  707. }
  708. return 0;
  709. }
  710. static int encode_gray_bitstream(HYuvContext *s, int count){
  711. int i;
  712. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  713. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  714. return -1;
  715. }
  716. #define LOAD2\
  717. int y0 = s->temp[0][2*i];\
  718. int y1 = s->temp[0][2*i+1];
  719. #define STAT2\
  720. s->stats[0][y0]++;\
  721. s->stats[0][y1]++;
  722. #define WRITE2\
  723. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  724. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  725. count/=2;
  726. if(s->flags&CODEC_FLAG_PASS1){
  727. for(i=0; i<count; i++){
  728. LOAD2;
  729. STAT2;
  730. }
  731. }
  732. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  733. return 0;
  734. if(s->context){
  735. for(i=0; i<count; i++){
  736. LOAD2;
  737. STAT2;
  738. WRITE2;
  739. }
  740. }else{
  741. for(i=0; i<count; i++){
  742. LOAD2;
  743. WRITE2;
  744. }
  745. }
  746. return 0;
  747. }
  748. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  749. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  750. int i;
  751. for(i=0; i<count; i++){
  752. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  753. if(code != -1){
  754. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  755. }else if(decorrelate){
  756. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  757. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  758. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  759. }else{
  760. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  761. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  762. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  763. }
  764. if(alpha)
  765. s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  766. }
  767. }
  768. static void decode_bgr_bitstream(HYuvContext *s, int count){
  769. if(s->decorrelate){
  770. if(s->bitstream_bpp==24)
  771. decode_bgr_1(s, count, 1, 0);
  772. else
  773. decode_bgr_1(s, count, 1, 1);
  774. }else{
  775. if(s->bitstream_bpp==24)
  776. decode_bgr_1(s, count, 0, 0);
  777. else
  778. decode_bgr_1(s, count, 0, 1);
  779. }
  780. }
  781. static int encode_bgr_bitstream(HYuvContext *s, int count){
  782. int i;
  783. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  784. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  785. return -1;
  786. }
  787. #define LOAD3\
  788. int g= s->temp[0][4*i+G];\
  789. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  790. int r= (s->temp[0][4*i+R] - g) & 0xff;
  791. #define STAT3\
  792. s->stats[0][b]++;\
  793. s->stats[1][g]++;\
  794. s->stats[2][r]++;
  795. #define WRITE3\
  796. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  797. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  798. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  799. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  800. for(i=0; i<count; i++){
  801. LOAD3;
  802. STAT3;
  803. }
  804. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  805. for(i=0; i<count; i++){
  806. LOAD3;
  807. STAT3;
  808. WRITE3;
  809. }
  810. }else{
  811. for(i=0; i<count; i++){
  812. LOAD3;
  813. WRITE3;
  814. }
  815. }
  816. return 0;
  817. }
  818. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  819. static void draw_slice(HYuvContext *s, int y){
  820. int h, cy;
  821. int offset[4];
  822. if(s->avctx->draw_horiz_band==NULL)
  823. return;
  824. h= y - s->last_slice_end;
  825. y -= h;
  826. if(s->bitstream_bpp==12){
  827. cy= y>>1;
  828. }else{
  829. cy= y;
  830. }
  831. offset[0] = s->picture.linesize[0]*y;
  832. offset[1] = s->picture.linesize[1]*cy;
  833. offset[2] = s->picture.linesize[2]*cy;
  834. offset[3] = 0;
  835. emms_c();
  836. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  837. s->last_slice_end= y + h;
  838. }
  839. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  840. const uint8_t *buf = avpkt->data;
  841. int buf_size = avpkt->size;
  842. HYuvContext *s = avctx->priv_data;
  843. const int width= s->width;
  844. const int width2= s->width>>1;
  845. const int height= s->height;
  846. int fake_ystride, fake_ustride, fake_vstride;
  847. AVFrame * const p= &s->picture;
  848. int table_size= 0;
  849. AVFrame *picture = data;
  850. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  851. if (!s->bitstream_buffer)
  852. return AVERROR(ENOMEM);
  853. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  854. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  855. if(p->data[0])
  856. ff_thread_release_buffer(avctx, p);
  857. p->reference= 0;
  858. if(ff_thread_get_buffer(avctx, p) < 0){
  859. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  860. return -1;
  861. }
  862. if(s->context){
  863. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  864. if(table_size < 0)
  865. return -1;
  866. }
  867. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  868. return -1;
  869. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  870. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  871. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  872. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  873. s->last_slice_end= 0;
  874. if(s->bitstream_bpp<24){
  875. int y, cy;
  876. int lefty, leftu, leftv;
  877. int lefttopy, lefttopu, lefttopv;
  878. if(s->yuy2){
  879. p->data[0][3]= get_bits(&s->gb, 8);
  880. p->data[0][2]= get_bits(&s->gb, 8);
  881. p->data[0][1]= get_bits(&s->gb, 8);
  882. p->data[0][0]= get_bits(&s->gb, 8);
  883. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  884. return -1;
  885. }else{
  886. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  887. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  888. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  889. p->data[0][0]= get_bits(&s->gb, 8);
  890. switch(s->predictor){
  891. case LEFT:
  892. case PLANE:
  893. decode_422_bitstream(s, width-2);
  894. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  895. if(!(s->flags&CODEC_FLAG_GRAY)){
  896. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  897. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  898. }
  899. for(cy=y=1; y<s->height; y++,cy++){
  900. uint8_t *ydst, *udst, *vdst;
  901. if(s->bitstream_bpp==12){
  902. decode_gray_bitstream(s, width);
  903. ydst= p->data[0] + p->linesize[0]*y;
  904. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  905. if(s->predictor == PLANE){
  906. if(y>s->interlaced)
  907. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  908. }
  909. y++;
  910. if(y>=s->height) break;
  911. }
  912. draw_slice(s, y);
  913. ydst= p->data[0] + p->linesize[0]*y;
  914. udst= p->data[1] + p->linesize[1]*cy;
  915. vdst= p->data[2] + p->linesize[2]*cy;
  916. decode_422_bitstream(s, width);
  917. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  918. if(!(s->flags&CODEC_FLAG_GRAY)){
  919. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  920. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  921. }
  922. if(s->predictor == PLANE){
  923. if(cy>s->interlaced){
  924. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  925. if(!(s->flags&CODEC_FLAG_GRAY)){
  926. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  927. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  928. }
  929. }
  930. }
  931. }
  932. draw_slice(s, height);
  933. break;
  934. case MEDIAN:
  935. /* first line except first 2 pixels is left predicted */
  936. decode_422_bitstream(s, width-2);
  937. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  938. if(!(s->flags&CODEC_FLAG_GRAY)){
  939. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  940. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  941. }
  942. cy=y=1;
  943. /* second line is left predicted for interlaced case */
  944. if(s->interlaced){
  945. decode_422_bitstream(s, width);
  946. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  947. if(!(s->flags&CODEC_FLAG_GRAY)){
  948. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  949. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  950. }
  951. y++; cy++;
  952. }
  953. /* next 4 pixels are left predicted too */
  954. decode_422_bitstream(s, 4);
  955. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  956. if(!(s->flags&CODEC_FLAG_GRAY)){
  957. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  958. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  959. }
  960. /* next line except the first 4 pixels is median predicted */
  961. lefttopy= p->data[0][3];
  962. decode_422_bitstream(s, width-4);
  963. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  964. if(!(s->flags&CODEC_FLAG_GRAY)){
  965. lefttopu= p->data[1][1];
  966. lefttopv= p->data[2][1];
  967. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  968. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  969. }
  970. y++; cy++;
  971. for(; y<height; y++,cy++){
  972. uint8_t *ydst, *udst, *vdst;
  973. if(s->bitstream_bpp==12){
  974. while(2*cy > y){
  975. decode_gray_bitstream(s, width);
  976. ydst= p->data[0] + p->linesize[0]*y;
  977. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  978. y++;
  979. }
  980. if(y>=height) break;
  981. }
  982. draw_slice(s, y);
  983. decode_422_bitstream(s, width);
  984. ydst= p->data[0] + p->linesize[0]*y;
  985. udst= p->data[1] + p->linesize[1]*cy;
  986. vdst= p->data[2] + p->linesize[2]*cy;
  987. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  988. if(!(s->flags&CODEC_FLAG_GRAY)){
  989. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  990. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  991. }
  992. }
  993. draw_slice(s, height);
  994. break;
  995. }
  996. }
  997. }else{
  998. int y;
  999. int leftr, leftg, leftb, lefta;
  1000. const int last_line= (height-1)*p->linesize[0];
  1001. if(s->bitstream_bpp==32){
  1002. lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
  1003. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1004. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1005. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1006. }else{
  1007. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1008. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1009. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1010. lefta= p->data[0][last_line+A]= 255;
  1011. skip_bits(&s->gb, 8);
  1012. }
  1013. if(s->bgr32){
  1014. switch(s->predictor){
  1015. case LEFT:
  1016. case PLANE:
  1017. decode_bgr_bitstream(s, width-1);
  1018. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
  1019. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1020. decode_bgr_bitstream(s, width);
  1021. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1022. if(s->predictor == PLANE){
  1023. if(s->bitstream_bpp!=32) lefta=0;
  1024. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1025. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1026. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1027. }
  1028. }
  1029. }
  1030. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1031. break;
  1032. default:
  1033. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1034. }
  1035. }else{
  1036. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1037. return -1;
  1038. }
  1039. }
  1040. emms_c();
  1041. *picture= *p;
  1042. *data_size = sizeof(AVFrame);
  1043. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1044. }
  1045. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1046. static int common_end(HYuvContext *s){
  1047. int i;
  1048. for(i=0; i<3; i++){
  1049. av_freep(&s->temp[i]);
  1050. }
  1051. return 0;
  1052. }
  1053. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1054. static av_cold int decode_end(AVCodecContext *avctx)
  1055. {
  1056. HYuvContext *s = avctx->priv_data;
  1057. int i;
  1058. if (s->picture.data[0])
  1059. avctx->release_buffer(avctx, &s->picture);
  1060. common_end(s);
  1061. av_freep(&s->bitstream_buffer);
  1062. for(i=0; i<6; i++){
  1063. free_vlc(&s->vlc[i]);
  1064. }
  1065. return 0;
  1066. }
  1067. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1068. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1069. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1070. HYuvContext *s = avctx->priv_data;
  1071. AVFrame *pict = data;
  1072. const int width= s->width;
  1073. const int width2= s->width>>1;
  1074. const int height= s->height;
  1075. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1076. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1077. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1078. AVFrame * const p= &s->picture;
  1079. int i, j, size=0;
  1080. *p = *pict;
  1081. p->pict_type= FF_I_TYPE;
  1082. p->key_frame= 1;
  1083. if(s->context){
  1084. for(i=0; i<3; i++){
  1085. generate_len_table(s->len[i], s->stats[i]);
  1086. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1087. return -1;
  1088. size+= store_table(s, s->len[i], &buf[size]);
  1089. }
  1090. for(i=0; i<3; i++)
  1091. for(j=0; j<256; j++)
  1092. s->stats[i][j] >>= 1;
  1093. }
  1094. init_put_bits(&s->pb, buf+size, buf_size-size);
  1095. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1096. int lefty, leftu, leftv, y, cy;
  1097. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1098. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1099. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1100. put_bits(&s->pb, 8, p->data[0][0]);
  1101. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1102. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1103. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1104. encode_422_bitstream(s, 2, width-2);
  1105. if(s->predictor==MEDIAN){
  1106. int lefttopy, lefttopu, lefttopv;
  1107. cy=y=1;
  1108. if(s->interlaced){
  1109. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1110. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1111. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1112. encode_422_bitstream(s, 0, width);
  1113. y++; cy++;
  1114. }
  1115. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1116. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1117. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1118. encode_422_bitstream(s, 0, 4);
  1119. lefttopy= p->data[0][3];
  1120. lefttopu= p->data[1][1];
  1121. lefttopv= p->data[2][1];
  1122. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1123. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1124. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1125. encode_422_bitstream(s, 0, width-4);
  1126. y++; cy++;
  1127. for(; y<height; y++,cy++){
  1128. uint8_t *ydst, *udst, *vdst;
  1129. if(s->bitstream_bpp==12){
  1130. while(2*cy > y){
  1131. ydst= p->data[0] + p->linesize[0]*y;
  1132. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1133. encode_gray_bitstream(s, width);
  1134. y++;
  1135. }
  1136. if(y>=height) break;
  1137. }
  1138. ydst= p->data[0] + p->linesize[0]*y;
  1139. udst= p->data[1] + p->linesize[1]*cy;
  1140. vdst= p->data[2] + p->linesize[2]*cy;
  1141. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1142. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1143. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1144. encode_422_bitstream(s, 0, width);
  1145. }
  1146. }else{
  1147. for(cy=y=1; y<height; y++,cy++){
  1148. uint8_t *ydst, *udst, *vdst;
  1149. /* encode a luma only line & y++ */
  1150. if(s->bitstream_bpp==12){
  1151. ydst= p->data[0] + p->linesize[0]*y;
  1152. if(s->predictor == PLANE && s->interlaced < y){
  1153. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1154. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1155. }else{
  1156. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1157. }
  1158. encode_gray_bitstream(s, width);
  1159. y++;
  1160. if(y>=height) break;
  1161. }
  1162. ydst= p->data[0] + p->linesize[0]*y;
  1163. udst= p->data[1] + p->linesize[1]*cy;
  1164. vdst= p->data[2] + p->linesize[2]*cy;
  1165. if(s->predictor == PLANE && s->interlaced < cy){
  1166. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1167. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1168. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1169. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1170. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1171. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1172. }else{
  1173. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1174. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1175. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1176. }
  1177. encode_422_bitstream(s, 0, width);
  1178. }
  1179. }
  1180. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1181. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1182. const int stride = -p->linesize[0];
  1183. const int fake_stride = -fake_ystride;
  1184. int y;
  1185. int leftr, leftg, leftb;
  1186. put_bits(&s->pb, 8, leftr= data[R]);
  1187. put_bits(&s->pb, 8, leftg= data[G]);
  1188. put_bits(&s->pb, 8, leftb= data[B]);
  1189. put_bits(&s->pb, 8, 0);
  1190. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1191. encode_bgr_bitstream(s, width-1);
  1192. for(y=1; y<s->height; y++){
  1193. uint8_t *dst = data + y*stride;
  1194. if(s->predictor == PLANE && s->interlaced < y){
  1195. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1196. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1197. }else{
  1198. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1199. }
  1200. encode_bgr_bitstream(s, width);
  1201. }
  1202. }else{
  1203. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1204. }
  1205. emms_c();
  1206. size+= (put_bits_count(&s->pb)+31)/8;
  1207. put_bits(&s->pb, 16, 0);
  1208. put_bits(&s->pb, 15, 0);
  1209. size/= 4;
  1210. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1211. int j;
  1212. char *p= avctx->stats_out;
  1213. char *end= p + 1024*30;
  1214. for(i=0; i<3; i++){
  1215. for(j=0; j<256; j++){
  1216. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1217. p+= strlen(p);
  1218. s->stats[i][j]= 0;
  1219. }
  1220. snprintf(p, end-p, "\n");
  1221. p++;
  1222. }
  1223. } else
  1224. avctx->stats_out[0] = '\0';
  1225. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1226. flush_put_bits(&s->pb);
  1227. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1228. }
  1229. s->picture_number++;
  1230. return size*4;
  1231. }
  1232. static av_cold int encode_end(AVCodecContext *avctx)
  1233. {
  1234. HYuvContext *s = avctx->priv_data;
  1235. common_end(s);
  1236. av_freep(&avctx->extradata);
  1237. av_freep(&avctx->stats_out);
  1238. return 0;
  1239. }
  1240. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1241. #if CONFIG_HUFFYUV_DECODER
  1242. AVCodec ff_huffyuv_decoder = {
  1243. "huffyuv",
  1244. AVMEDIA_TYPE_VIDEO,
  1245. CODEC_ID_HUFFYUV,
  1246. sizeof(HYuvContext),
  1247. decode_init,
  1248. NULL,
  1249. decode_end,
  1250. decode_frame,
  1251. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1252. NULL,
  1253. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1254. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1255. };
  1256. #endif
  1257. #if CONFIG_FFVHUFF_DECODER
  1258. AVCodec ff_ffvhuff_decoder = {
  1259. "ffvhuff",
  1260. AVMEDIA_TYPE_VIDEO,
  1261. CODEC_ID_FFVHUFF,
  1262. sizeof(HYuvContext),
  1263. decode_init,
  1264. NULL,
  1265. decode_end,
  1266. decode_frame,
  1267. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1268. NULL,
  1269. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1270. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1271. };
  1272. #endif
  1273. #if CONFIG_HUFFYUV_ENCODER
  1274. AVCodec ff_huffyuv_encoder = {
  1275. "huffyuv",
  1276. AVMEDIA_TYPE_VIDEO,
  1277. CODEC_ID_HUFFYUV,
  1278. sizeof(HYuvContext),
  1279. encode_init,
  1280. encode_frame,
  1281. encode_end,
  1282. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1283. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1284. };
  1285. #endif
  1286. #if CONFIG_FFVHUFF_ENCODER
  1287. AVCodec ff_ffvhuff_encoder = {
  1288. "ffvhuff",
  1289. AVMEDIA_TYPE_VIDEO,
  1290. CODEC_ID_FFVHUFF,
  1291. sizeof(HYuvContext),
  1292. encode_init,
  1293. encode_frame,
  1294. encode_end,
  1295. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1296. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1297. };
  1298. #endif