You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

657 lines
23KB

  1. /*
  2. * AAC encoder
  3. * Copyright (C) 2008 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder
  24. */
  25. /***********************************
  26. * TODOs:
  27. * add sane pulse detection
  28. * add temporal noise shaping
  29. ***********************************/
  30. #include "avcodec.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "mpeg4audio.h"
  34. #include "aac.h"
  35. #include "aactab.h"
  36. #include "aacenc.h"
  37. #include "psymodel.h"
  38. #define AAC_MAX_CHANNELS 6
  39. static const uint8_t swb_size_1024_96[] = {
  40. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8,
  41. 12, 12, 12, 12, 12, 16, 16, 24, 28, 36, 44,
  42. 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
  43. };
  44. static const uint8_t swb_size_1024_64[] = {
  45. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8,
  46. 12, 12, 12, 16, 16, 16, 20, 24, 24, 28, 36,
  47. 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40
  48. };
  49. static const uint8_t swb_size_1024_48[] = {
  50. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8,
  51. 12, 12, 12, 12, 16, 16, 20, 20, 24, 24, 28, 28,
  52. 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
  53. 96
  54. };
  55. static const uint8_t swb_size_1024_32[] = {
  56. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8,
  57. 12, 12, 12, 12, 16, 16, 20, 20, 24, 24, 28, 28,
  58. 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
  59. };
  60. static const uint8_t swb_size_1024_24[] = {
  61. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  62. 12, 12, 12, 12, 16, 16, 16, 20, 20, 24, 24, 28, 28,
  63. 32, 36, 36, 40, 44, 48, 52, 52, 64, 64, 64, 64, 64
  64. };
  65. static const uint8_t swb_size_1024_16[] = {
  66. 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  67. 12, 12, 12, 12, 12, 12, 12, 12, 12, 16, 16, 16, 16, 20, 20, 20, 24, 24, 28, 28,
  68. 32, 36, 40, 40, 44, 48, 52, 56, 60, 64, 64, 64
  69. };
  70. static const uint8_t swb_size_1024_8[] = {
  71. 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
  72. 16, 16, 16, 16, 16, 16, 16, 20, 20, 20, 20, 24, 24, 24, 28, 28,
  73. 32, 36, 36, 40, 44, 48, 52, 56, 60, 64, 80
  74. };
  75. static const uint8_t *swb_size_1024[] = {
  76. swb_size_1024_96, swb_size_1024_96, swb_size_1024_64,
  77. swb_size_1024_48, swb_size_1024_48, swb_size_1024_32,
  78. swb_size_1024_24, swb_size_1024_24, swb_size_1024_16,
  79. swb_size_1024_16, swb_size_1024_16, swb_size_1024_8
  80. };
  81. static const uint8_t swb_size_128_96[] = {
  82. 4, 4, 4, 4, 4, 4, 8, 8, 8, 16, 28, 36
  83. };
  84. static const uint8_t swb_size_128_48[] = {
  85. 4, 4, 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16
  86. };
  87. static const uint8_t swb_size_128_24[] = {
  88. 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 20
  89. };
  90. static const uint8_t swb_size_128_16[] = {
  91. 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 12, 12, 16, 20, 20
  92. };
  93. static const uint8_t swb_size_128_8[] = {
  94. 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 12, 16, 20, 20
  95. };
  96. static const uint8_t *swb_size_128[] = {
  97. /* the last entry on the following row is swb_size_128_64 but is a
  98. duplicate of swb_size_128_96 */
  99. swb_size_128_96, swb_size_128_96, swb_size_128_96,
  100. swb_size_128_48, swb_size_128_48, swb_size_128_48,
  101. swb_size_128_24, swb_size_128_24, swb_size_128_16,
  102. swb_size_128_16, swb_size_128_16, swb_size_128_8
  103. };
  104. /** default channel configurations */
  105. static const uint8_t aac_chan_configs[6][5] = {
  106. {1, TYPE_SCE}, // 1 channel - single channel element
  107. {1, TYPE_CPE}, // 2 channels - channel pair
  108. {2, TYPE_SCE, TYPE_CPE}, // 3 channels - center + stereo
  109. {3, TYPE_SCE, TYPE_CPE, TYPE_SCE}, // 4 channels - front center + stereo + back center
  110. {3, TYPE_SCE, TYPE_CPE, TYPE_CPE}, // 5 channels - front center + stereo + back stereo
  111. {4, TYPE_SCE, TYPE_CPE, TYPE_CPE, TYPE_LFE}, // 6 channels - front center + stereo + back stereo + LFE
  112. };
  113. /**
  114. * Make AAC audio config object.
  115. * @see 1.6.2.1 "Syntax - AudioSpecificConfig"
  116. */
  117. static void put_audio_specific_config(AVCodecContext *avctx)
  118. {
  119. PutBitContext pb;
  120. AACEncContext *s = avctx->priv_data;
  121. init_put_bits(&pb, avctx->extradata, avctx->extradata_size*8);
  122. put_bits(&pb, 5, 2); //object type - AAC-LC
  123. put_bits(&pb, 4, s->samplerate_index); //sample rate index
  124. put_bits(&pb, 4, avctx->channels);
  125. //GASpecificConfig
  126. put_bits(&pb, 1, 0); //frame length - 1024 samples
  127. put_bits(&pb, 1, 0); //does not depend on core coder
  128. put_bits(&pb, 1, 0); //is not extension
  129. //Explicitly Mark SBR absent
  130. put_bits(&pb, 11, 0x2b7); //sync extension
  131. put_bits(&pb, 5, AOT_SBR);
  132. put_bits(&pb, 1, 0);
  133. flush_put_bits(&pb);
  134. }
  135. static av_cold int aac_encode_init(AVCodecContext *avctx)
  136. {
  137. AACEncContext *s = avctx->priv_data;
  138. int i;
  139. const uint8_t *sizes[2];
  140. int lengths[2];
  141. avctx->frame_size = 1024;
  142. for (i = 0; i < 16; i++)
  143. if (avctx->sample_rate == ff_mpeg4audio_sample_rates[i])
  144. break;
  145. if (i == 16) {
  146. av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d\n", avctx->sample_rate);
  147. return -1;
  148. }
  149. if (avctx->channels > AAC_MAX_CHANNELS) {
  150. av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n", avctx->channels);
  151. return -1;
  152. }
  153. if (avctx->profile != FF_PROFILE_UNKNOWN && avctx->profile != FF_PROFILE_AAC_LOW) {
  154. av_log(avctx, AV_LOG_ERROR, "Unsupported profile %d\n", avctx->profile);
  155. return -1;
  156. }
  157. if (1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * avctx->channels) {
  158. av_log(avctx, AV_LOG_ERROR, "Too many bits per frame requested\n");
  159. return -1;
  160. }
  161. s->samplerate_index = i;
  162. dsputil_init(&s->dsp, avctx);
  163. ff_mdct_init(&s->mdct1024, 11, 0, 1.0);
  164. ff_mdct_init(&s->mdct128, 8, 0, 1.0);
  165. // window init
  166. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  167. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  168. ff_init_ff_sine_windows(10);
  169. ff_init_ff_sine_windows(7);
  170. s->samples = av_malloc(2 * 1024 * avctx->channels * sizeof(s->samples[0]));
  171. s->cpe = av_mallocz(sizeof(ChannelElement) * aac_chan_configs[avctx->channels-1][0]);
  172. avctx->extradata = av_mallocz(5 + FF_INPUT_BUFFER_PADDING_SIZE);
  173. avctx->extradata_size = 5;
  174. put_audio_specific_config(avctx);
  175. sizes[0] = swb_size_1024[i];
  176. sizes[1] = swb_size_128[i];
  177. lengths[0] = ff_aac_num_swb_1024[i];
  178. lengths[1] = ff_aac_num_swb_128[i];
  179. ff_psy_init(&s->psy, avctx, 2, sizes, lengths);
  180. s->psypp = ff_psy_preprocess_init(avctx);
  181. s->coder = &ff_aac_coders[2];
  182. s->lambda = avctx->global_quality ? avctx->global_quality : 120;
  183. ff_aac_tableinit();
  184. return 0;
  185. }
  186. static void apply_window_and_mdct(AVCodecContext *avctx, AACEncContext *s,
  187. SingleChannelElement *sce, short *audio)
  188. {
  189. int i, k;
  190. const int chans = avctx->channels;
  191. const float * lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  192. const float * swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  193. const float * pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  194. float *output = sce->ret;
  195. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  196. memcpy(output, sce->saved, sizeof(float)*1024);
  197. if (sce->ics.window_sequence[0] == LONG_STOP_SEQUENCE) {
  198. memset(output, 0, sizeof(output[0]) * 448);
  199. for (i = 448; i < 576; i++)
  200. output[i] = sce->saved[i] * pwindow[i - 448];
  201. for (i = 576; i < 704; i++)
  202. output[i] = sce->saved[i];
  203. }
  204. if (sce->ics.window_sequence[0] != LONG_START_SEQUENCE) {
  205. for (i = 0; i < 1024; i++) {
  206. output[i+1024] = audio[i * chans] * lwindow[1024 - i - 1];
  207. sce->saved[i] = audio[i * chans] * lwindow[i];
  208. }
  209. } else {
  210. for (i = 0; i < 448; i++)
  211. output[i+1024] = audio[i * chans];
  212. for (; i < 576; i++)
  213. output[i+1024] = audio[i * chans] * swindow[576 - i - 1];
  214. memset(output+1024+576, 0, sizeof(output[0]) * 448);
  215. for (i = 0; i < 1024; i++)
  216. sce->saved[i] = audio[i * chans];
  217. }
  218. ff_mdct_calc(&s->mdct1024, sce->coeffs, output);
  219. } else {
  220. for (k = 0; k < 1024; k += 128) {
  221. for (i = 448 + k; i < 448 + k + 256; i++)
  222. output[i - 448 - k] = (i < 1024)
  223. ? sce->saved[i]
  224. : audio[(i-1024)*chans];
  225. s->dsp.vector_fmul (output, output, k ? swindow : pwindow, 128);
  226. s->dsp.vector_fmul_reverse(output+128, output+128, swindow, 128);
  227. ff_mdct_calc(&s->mdct128, sce->coeffs + k, output);
  228. }
  229. for (i = 0; i < 1024; i++)
  230. sce->saved[i] = audio[i * chans];
  231. }
  232. }
  233. /**
  234. * Encode ics_info element.
  235. * @see Table 4.6 (syntax of ics_info)
  236. */
  237. static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
  238. {
  239. int w;
  240. put_bits(&s->pb, 1, 0); // ics_reserved bit
  241. put_bits(&s->pb, 2, info->window_sequence[0]);
  242. put_bits(&s->pb, 1, info->use_kb_window[0]);
  243. if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  244. put_bits(&s->pb, 6, info->max_sfb);
  245. put_bits(&s->pb, 1, 0); // no prediction
  246. } else {
  247. put_bits(&s->pb, 4, info->max_sfb);
  248. for (w = 1; w < 8; w++)
  249. put_bits(&s->pb, 1, !info->group_len[w]);
  250. }
  251. }
  252. /**
  253. * Encode MS data.
  254. * @see 4.6.8.1 "Joint Coding - M/S Stereo"
  255. */
  256. static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
  257. {
  258. int i, w;
  259. put_bits(pb, 2, cpe->ms_mode);
  260. if (cpe->ms_mode == 1)
  261. for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
  262. for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
  263. put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
  264. }
  265. /**
  266. * Produce integer coefficients from scalefactors provided by the model.
  267. */
  268. static void adjust_frame_information(AACEncContext *apc, ChannelElement *cpe, int chans)
  269. {
  270. int i, w, w2, g, ch;
  271. int start, maxsfb, cmaxsfb;
  272. for (ch = 0; ch < chans; ch++) {
  273. IndividualChannelStream *ics = &cpe->ch[ch].ics;
  274. start = 0;
  275. maxsfb = 0;
  276. cpe->ch[ch].pulse.num_pulse = 0;
  277. for (w = 0; w < ics->num_windows*16; w += 16) {
  278. for (g = 0; g < ics->num_swb; g++) {
  279. //apply M/S
  280. if (cpe->common_window && !ch && cpe->ms_mask[w + g]) {
  281. for (i = 0; i < ics->swb_sizes[g]; i++) {
  282. cpe->ch[0].coeffs[start+i] = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) / 2.0;
  283. cpe->ch[1].coeffs[start+i] = cpe->ch[0].coeffs[start+i] - cpe->ch[1].coeffs[start+i];
  284. }
  285. }
  286. start += ics->swb_sizes[g];
  287. }
  288. for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w+cmaxsfb-1]; cmaxsfb--)
  289. ;
  290. maxsfb = FFMAX(maxsfb, cmaxsfb);
  291. }
  292. ics->max_sfb = maxsfb;
  293. //adjust zero bands for window groups
  294. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  295. for (g = 0; g < ics->max_sfb; g++) {
  296. i = 1;
  297. for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
  298. if (!cpe->ch[ch].zeroes[w2*16 + g]) {
  299. i = 0;
  300. break;
  301. }
  302. }
  303. cpe->ch[ch].zeroes[w*16 + g] = i;
  304. }
  305. }
  306. }
  307. if (chans > 1 && cpe->common_window) {
  308. IndividualChannelStream *ics0 = &cpe->ch[0].ics;
  309. IndividualChannelStream *ics1 = &cpe->ch[1].ics;
  310. int msc = 0;
  311. ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
  312. ics1->max_sfb = ics0->max_sfb;
  313. for (w = 0; w < ics0->num_windows*16; w += 16)
  314. for (i = 0; i < ics0->max_sfb; i++)
  315. if (cpe->ms_mask[w+i])
  316. msc++;
  317. if (msc == 0 || ics0->max_sfb == 0)
  318. cpe->ms_mode = 0;
  319. else
  320. cpe->ms_mode = msc < ics0->max_sfb ? 1 : 2;
  321. }
  322. }
  323. /**
  324. * Encode scalefactor band coding type.
  325. */
  326. static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
  327. {
  328. int w;
  329. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  330. s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
  331. }
  332. /**
  333. * Encode scalefactors.
  334. */
  335. static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
  336. SingleChannelElement *sce)
  337. {
  338. int off = sce->sf_idx[0], diff;
  339. int i, w;
  340. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  341. for (i = 0; i < sce->ics.max_sfb; i++) {
  342. if (!sce->zeroes[w*16 + i]) {
  343. diff = sce->sf_idx[w*16 + i] - off + SCALE_DIFF_ZERO;
  344. if (diff < 0 || diff > 120)
  345. av_log(avctx, AV_LOG_ERROR, "Scalefactor difference is too big to be coded\n");
  346. off = sce->sf_idx[w*16 + i];
  347. put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
  348. }
  349. }
  350. }
  351. }
  352. /**
  353. * Encode pulse data.
  354. */
  355. static void encode_pulses(AACEncContext *s, Pulse *pulse)
  356. {
  357. int i;
  358. put_bits(&s->pb, 1, !!pulse->num_pulse);
  359. if (!pulse->num_pulse)
  360. return;
  361. put_bits(&s->pb, 2, pulse->num_pulse - 1);
  362. put_bits(&s->pb, 6, pulse->start);
  363. for (i = 0; i < pulse->num_pulse; i++) {
  364. put_bits(&s->pb, 5, pulse->pos[i]);
  365. put_bits(&s->pb, 4, pulse->amp[i]);
  366. }
  367. }
  368. /**
  369. * Encode spectral coefficients processed by psychoacoustic model.
  370. */
  371. static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
  372. {
  373. int start, i, w, w2;
  374. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  375. start = 0;
  376. for (i = 0; i < sce->ics.max_sfb; i++) {
  377. if (sce->zeroes[w*16 + i]) {
  378. start += sce->ics.swb_sizes[i];
  379. continue;
  380. }
  381. for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++)
  382. s->coder->quantize_and_encode_band(s, &s->pb, sce->coeffs + start + w2*128,
  383. sce->ics.swb_sizes[i],
  384. sce->sf_idx[w*16 + i],
  385. sce->band_type[w*16 + i],
  386. s->lambda);
  387. start += sce->ics.swb_sizes[i];
  388. }
  389. }
  390. }
  391. /**
  392. * Encode one channel of audio data.
  393. */
  394. static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
  395. SingleChannelElement *sce,
  396. int common_window)
  397. {
  398. put_bits(&s->pb, 8, sce->sf_idx[0]);
  399. if (!common_window)
  400. put_ics_info(s, &sce->ics);
  401. encode_band_info(s, sce);
  402. encode_scale_factors(avctx, s, sce);
  403. encode_pulses(s, &sce->pulse);
  404. put_bits(&s->pb, 1, 0); //tns
  405. put_bits(&s->pb, 1, 0); //ssr
  406. encode_spectral_coeffs(s, sce);
  407. return 0;
  408. }
  409. /**
  410. * Write some auxiliary information about the created AAC file.
  411. */
  412. static void put_bitstream_info(AVCodecContext *avctx, AACEncContext *s,
  413. const char *name)
  414. {
  415. int i, namelen, padbits;
  416. namelen = strlen(name) + 2;
  417. put_bits(&s->pb, 3, TYPE_FIL);
  418. put_bits(&s->pb, 4, FFMIN(namelen, 15));
  419. if (namelen >= 15)
  420. put_bits(&s->pb, 8, namelen - 16);
  421. put_bits(&s->pb, 4, 0); //extension type - filler
  422. padbits = 8 - (put_bits_count(&s->pb) & 7);
  423. align_put_bits(&s->pb);
  424. for (i = 0; i < namelen - 2; i++)
  425. put_bits(&s->pb, 8, name[i]);
  426. put_bits(&s->pb, 12 - padbits, 0);
  427. }
  428. static int aac_encode_frame(AVCodecContext *avctx,
  429. uint8_t *frame, int buf_size, void *data)
  430. {
  431. AACEncContext *s = avctx->priv_data;
  432. int16_t *samples = s->samples, *samples2, *la;
  433. ChannelElement *cpe;
  434. int i, j, chans, tag, start_ch;
  435. const uint8_t *chan_map = aac_chan_configs[avctx->channels-1];
  436. int chan_el_counter[4];
  437. FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
  438. if (s->last_frame)
  439. return 0;
  440. if (data) {
  441. if (!s->psypp) {
  442. memcpy(s->samples + 1024 * avctx->channels, data,
  443. 1024 * avctx->channels * sizeof(s->samples[0]));
  444. } else {
  445. start_ch = 0;
  446. samples2 = s->samples + 1024 * avctx->channels;
  447. for (i = 0; i < chan_map[0]; i++) {
  448. tag = chan_map[i+1];
  449. chans = tag == TYPE_CPE ? 2 : 1;
  450. ff_psy_preprocess(s->psypp, (uint16_t*)data + start_ch,
  451. samples2 + start_ch, start_ch, chans);
  452. start_ch += chans;
  453. }
  454. }
  455. }
  456. if (!avctx->frame_number) {
  457. memcpy(s->samples, s->samples + 1024 * avctx->channels,
  458. 1024 * avctx->channels * sizeof(s->samples[0]));
  459. return 0;
  460. }
  461. start_ch = 0;
  462. for (i = 0; i < chan_map[0]; i++) {
  463. FFPsyWindowInfo* wi = windows + start_ch;
  464. tag = chan_map[i+1];
  465. chans = tag == TYPE_CPE ? 2 : 1;
  466. cpe = &s->cpe[i];
  467. for (j = 0; j < chans; j++) {
  468. IndividualChannelStream *ics = &cpe->ch[j].ics;
  469. int k;
  470. int cur_channel = start_ch + j;
  471. samples2 = samples + cur_channel;
  472. la = samples2 + (448+64) * avctx->channels;
  473. if (!data)
  474. la = NULL;
  475. if (tag == TYPE_LFE) {
  476. wi[j].window_type[0] = ONLY_LONG_SEQUENCE;
  477. wi[j].window_shape = 0;
  478. wi[j].num_windows = 1;
  479. wi[j].grouping[0] = 1;
  480. } else {
  481. wi[j] = ff_psy_suggest_window(&s->psy, samples2, la, cur_channel,
  482. ics->window_sequence[0]);
  483. }
  484. ics->window_sequence[1] = ics->window_sequence[0];
  485. ics->window_sequence[0] = wi[j].window_type[0];
  486. ics->use_kb_window[1] = ics->use_kb_window[0];
  487. ics->use_kb_window[0] = wi[j].window_shape;
  488. ics->num_windows = wi[j].num_windows;
  489. ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
  490. ics->num_swb = tag == TYPE_LFE ? 12 : s->psy.num_bands[ics->num_windows == 8];
  491. for (k = 0; k < ics->num_windows; k++)
  492. ics->group_len[k] = wi[j].grouping[k];
  493. apply_window_and_mdct(avctx, s, &cpe->ch[j], samples2);
  494. }
  495. start_ch += chans;
  496. }
  497. do {
  498. int frame_bits;
  499. init_put_bits(&s->pb, frame, buf_size*8);
  500. if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & CODEC_FLAG_BITEXACT))
  501. put_bitstream_info(avctx, s, LIBAVCODEC_IDENT);
  502. start_ch = 0;
  503. memset(chan_el_counter, 0, sizeof(chan_el_counter));
  504. for (i = 0; i < chan_map[0]; i++) {
  505. FFPsyWindowInfo* wi = windows + start_ch;
  506. tag = chan_map[i+1];
  507. chans = tag == TYPE_CPE ? 2 : 1;
  508. cpe = &s->cpe[i];
  509. put_bits(&s->pb, 3, tag);
  510. put_bits(&s->pb, 4, chan_el_counter[tag]++);
  511. for (j = 0; j < chans; j++) {
  512. s->cur_channel = start_ch + j;
  513. ff_psy_set_band_info(&s->psy, s->cur_channel, cpe->ch[j].coeffs, &wi[j]);
  514. s->coder->search_for_quantizers(avctx, s, &cpe->ch[j], s->lambda);
  515. }
  516. cpe->common_window = 0;
  517. if (chans > 1
  518. && wi[0].window_type[0] == wi[1].window_type[0]
  519. && wi[0].window_shape == wi[1].window_shape) {
  520. cpe->common_window = 1;
  521. for (j = 0; j < wi[0].num_windows; j++) {
  522. if (wi[0].grouping[j] != wi[1].grouping[j]) {
  523. cpe->common_window = 0;
  524. break;
  525. }
  526. }
  527. }
  528. s->cur_channel = start_ch;
  529. if (cpe->common_window && s->coder->search_for_ms)
  530. s->coder->search_for_ms(s, cpe, s->lambda);
  531. adjust_frame_information(s, cpe, chans);
  532. if (chans == 2) {
  533. put_bits(&s->pb, 1, cpe->common_window);
  534. if (cpe->common_window) {
  535. put_ics_info(s, &cpe->ch[0].ics);
  536. encode_ms_info(&s->pb, cpe);
  537. }
  538. }
  539. for (j = 0; j < chans; j++) {
  540. s->cur_channel = start_ch + j;
  541. encode_individual_channel(avctx, s, &cpe->ch[j], cpe->common_window);
  542. }
  543. start_ch += chans;
  544. }
  545. frame_bits = put_bits_count(&s->pb);
  546. if (frame_bits <= 6144 * avctx->channels - 3)
  547. break;
  548. s->lambda *= avctx->bit_rate * 1024.0f / avctx->sample_rate / frame_bits;
  549. } while (1);
  550. put_bits(&s->pb, 3, TYPE_END);
  551. flush_put_bits(&s->pb);
  552. avctx->frame_bits = put_bits_count(&s->pb);
  553. // rate control stuff
  554. if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
  555. float ratio = avctx->bit_rate * 1024.0f / avctx->sample_rate / avctx->frame_bits;
  556. s->lambda *= ratio;
  557. s->lambda = FFMIN(s->lambda, 65536.f);
  558. }
  559. if (!data)
  560. s->last_frame = 1;
  561. memcpy(s->samples, s->samples + 1024 * avctx->channels,
  562. 1024 * avctx->channels * sizeof(s->samples[0]));
  563. return put_bits_count(&s->pb)>>3;
  564. }
  565. static av_cold int aac_encode_end(AVCodecContext *avctx)
  566. {
  567. AACEncContext *s = avctx->priv_data;
  568. ff_mdct_end(&s->mdct1024);
  569. ff_mdct_end(&s->mdct128);
  570. ff_psy_end(&s->psy);
  571. ff_psy_preprocess_end(s->psypp);
  572. av_freep(&s->samples);
  573. av_freep(&s->cpe);
  574. return 0;
  575. }
  576. AVCodec ff_aac_encoder = {
  577. "aac",
  578. AVMEDIA_TYPE_AUDIO,
  579. CODEC_ID_AAC,
  580. sizeof(AACEncContext),
  581. aac_encode_init,
  582. aac_encode_frame,
  583. aac_encode_end,
  584. .capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY | CODEC_CAP_EXPERIMENTAL,
  585. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
  586. .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
  587. };