You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

803 lines
23KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudio.c
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "avcodec.h"
  26. #include "bitstream.h"
  27. #include "mpegaudio.h"
  28. /* currently, cannot change these constants (need to modify
  29. quantization stage) */
  30. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  31. #define FIX(a) ((int)((a) * (1 << FRAC_BITS)))
  32. #define SAMPLES_BUF_SIZE 4096
  33. typedef struct MpegAudioContext {
  34. PutBitContext pb;
  35. int nb_channels;
  36. int freq, bit_rate;
  37. int lsf; /* 1 if mpeg2 low bitrate selected */
  38. int bitrate_index; /* bit rate */
  39. int freq_index;
  40. int frame_size; /* frame size, in bits, without padding */
  41. int64_t nb_samples; /* total number of samples encoded */
  42. /* padding computation */
  43. int frame_frac, frame_frac_incr, do_padding;
  44. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  45. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  46. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  47. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  48. /* code to group 3 scale factors */
  49. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  50. int sblimit; /* number of used subbands */
  51. const unsigned char *alloc_table;
  52. } MpegAudioContext;
  53. /* define it to use floats in quantization (I don't like floats !) */
  54. //#define USE_FLOATS
  55. #include "mpegaudiodata.h"
  56. #include "mpegaudiotab.h"
  57. static int MPA_encode_init(AVCodecContext *avctx)
  58. {
  59. MpegAudioContext *s = avctx->priv_data;
  60. int freq = avctx->sample_rate;
  61. int bitrate = avctx->bit_rate;
  62. int channels = avctx->channels;
  63. int i, v, table;
  64. float a;
  65. if (channels <= 0 || channels > 2){
  66. av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
  67. return -1;
  68. }
  69. bitrate = bitrate / 1000;
  70. s->nb_channels = channels;
  71. s->freq = freq;
  72. s->bit_rate = bitrate * 1000;
  73. avctx->frame_size = MPA_FRAME_SIZE;
  74. /* encoding freq */
  75. s->lsf = 0;
  76. for(i=0;i<3;i++) {
  77. if (ff_mpa_freq_tab[i] == freq)
  78. break;
  79. if ((ff_mpa_freq_tab[i] / 2) == freq) {
  80. s->lsf = 1;
  81. break;
  82. }
  83. }
  84. if (i == 3){
  85. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  86. return -1;
  87. }
  88. s->freq_index = i;
  89. /* encoding bitrate & frequency */
  90. for(i=0;i<15;i++) {
  91. if (ff_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  92. break;
  93. }
  94. if (i == 15){
  95. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  96. return -1;
  97. }
  98. s->bitrate_index = i;
  99. /* compute total header size & pad bit */
  100. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  101. s->frame_size = ((int)a) * 8;
  102. /* frame fractional size to compute padding */
  103. s->frame_frac = 0;
  104. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  105. /* select the right allocation table */
  106. table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  107. /* number of used subbands */
  108. s->sblimit = ff_mpa_sblimit_table[table];
  109. s->alloc_table = ff_mpa_alloc_tables[table];
  110. #ifdef DEBUG
  111. av_log(avctx, AV_LOG_DEBUG, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  112. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  113. #endif
  114. for(i=0;i<s->nb_channels;i++)
  115. s->samples_offset[i] = 0;
  116. for(i=0;i<257;i++) {
  117. int v;
  118. v = ff_mpa_enwindow[i];
  119. #if WFRAC_BITS != 16
  120. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  121. #endif
  122. filter_bank[i] = v;
  123. if ((i & 63) != 0)
  124. v = -v;
  125. if (i != 0)
  126. filter_bank[512 - i] = v;
  127. }
  128. for(i=0;i<64;i++) {
  129. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  130. if (v <= 0)
  131. v = 1;
  132. scale_factor_table[i] = v;
  133. #ifdef USE_FLOATS
  134. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  135. #else
  136. #define P 15
  137. scale_factor_shift[i] = 21 - P - (i / 3);
  138. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  139. #endif
  140. }
  141. for(i=0;i<128;i++) {
  142. v = i - 64;
  143. if (v <= -3)
  144. v = 0;
  145. else if (v < 0)
  146. v = 1;
  147. else if (v == 0)
  148. v = 2;
  149. else if (v < 3)
  150. v = 3;
  151. else
  152. v = 4;
  153. scale_diff_table[i] = v;
  154. }
  155. for(i=0;i<17;i++) {
  156. v = ff_mpa_quant_bits[i];
  157. if (v < 0)
  158. v = -v;
  159. else
  160. v = v * 3;
  161. total_quant_bits[i] = 12 * v;
  162. }
  163. avctx->coded_frame= avcodec_alloc_frame();
  164. avctx->coded_frame->key_frame= 1;
  165. return 0;
  166. }
  167. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  168. static void idct32(int *out, int *tab)
  169. {
  170. int i, j;
  171. int *t, *t1, xr;
  172. const int *xp = costab32;
  173. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  174. t = tab + 30;
  175. t1 = tab + 2;
  176. do {
  177. t[0] += t[-4];
  178. t[1] += t[1 - 4];
  179. t -= 4;
  180. } while (t != t1);
  181. t = tab + 28;
  182. t1 = tab + 4;
  183. do {
  184. t[0] += t[-8];
  185. t[1] += t[1-8];
  186. t[2] += t[2-8];
  187. t[3] += t[3-8];
  188. t -= 8;
  189. } while (t != t1);
  190. t = tab;
  191. t1 = tab + 32;
  192. do {
  193. t[ 3] = -t[ 3];
  194. t[ 6] = -t[ 6];
  195. t[11] = -t[11];
  196. t[12] = -t[12];
  197. t[13] = -t[13];
  198. t[15] = -t[15];
  199. t += 16;
  200. } while (t != t1);
  201. t = tab;
  202. t1 = tab + 8;
  203. do {
  204. int x1, x2, x3, x4;
  205. x3 = MUL(t[16], FIX(SQRT2*0.5));
  206. x4 = t[0] - x3;
  207. x3 = t[0] + x3;
  208. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  209. x1 = MUL((t[8] - x2), xp[0]);
  210. x2 = MUL((t[8] + x2), xp[1]);
  211. t[ 0] = x3 + x1;
  212. t[ 8] = x4 - x2;
  213. t[16] = x4 + x2;
  214. t[24] = x3 - x1;
  215. t++;
  216. } while (t != t1);
  217. xp += 2;
  218. t = tab;
  219. t1 = tab + 4;
  220. do {
  221. xr = MUL(t[28],xp[0]);
  222. t[28] = (t[0] - xr);
  223. t[0] = (t[0] + xr);
  224. xr = MUL(t[4],xp[1]);
  225. t[ 4] = (t[24] - xr);
  226. t[24] = (t[24] + xr);
  227. xr = MUL(t[20],xp[2]);
  228. t[20] = (t[8] - xr);
  229. t[ 8] = (t[8] + xr);
  230. xr = MUL(t[12],xp[3]);
  231. t[12] = (t[16] - xr);
  232. t[16] = (t[16] + xr);
  233. t++;
  234. } while (t != t1);
  235. xp += 4;
  236. for (i = 0; i < 4; i++) {
  237. xr = MUL(tab[30-i*4],xp[0]);
  238. tab[30-i*4] = (tab[i*4] - xr);
  239. tab[ i*4] = (tab[i*4] + xr);
  240. xr = MUL(tab[ 2+i*4],xp[1]);
  241. tab[ 2+i*4] = (tab[28-i*4] - xr);
  242. tab[28-i*4] = (tab[28-i*4] + xr);
  243. xr = MUL(tab[31-i*4],xp[0]);
  244. tab[31-i*4] = (tab[1+i*4] - xr);
  245. tab[ 1+i*4] = (tab[1+i*4] + xr);
  246. xr = MUL(tab[ 3+i*4],xp[1]);
  247. tab[ 3+i*4] = (tab[29-i*4] - xr);
  248. tab[29-i*4] = (tab[29-i*4] + xr);
  249. xp += 2;
  250. }
  251. t = tab + 30;
  252. t1 = tab + 1;
  253. do {
  254. xr = MUL(t1[0], *xp);
  255. t1[0] = (t[0] - xr);
  256. t[0] = (t[0] + xr);
  257. t -= 2;
  258. t1 += 2;
  259. xp++;
  260. } while (t >= tab);
  261. for(i=0;i<32;i++) {
  262. out[i] = tab[bitinv32[i]];
  263. }
  264. }
  265. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  266. static void filter(MpegAudioContext *s, int ch, short *samples, int incr)
  267. {
  268. short *p, *q;
  269. int sum, offset, i, j;
  270. int tmp[64];
  271. int tmp1[32];
  272. int *out;
  273. // print_pow1(samples, 1152);
  274. offset = s->samples_offset[ch];
  275. out = &s->sb_samples[ch][0][0][0];
  276. for(j=0;j<36;j++) {
  277. /* 32 samples at once */
  278. for(i=0;i<32;i++) {
  279. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  280. samples += incr;
  281. }
  282. /* filter */
  283. p = s->samples_buf[ch] + offset;
  284. q = filter_bank;
  285. /* maxsum = 23169 */
  286. for(i=0;i<64;i++) {
  287. sum = p[0*64] * q[0*64];
  288. sum += p[1*64] * q[1*64];
  289. sum += p[2*64] * q[2*64];
  290. sum += p[3*64] * q[3*64];
  291. sum += p[4*64] * q[4*64];
  292. sum += p[5*64] * q[5*64];
  293. sum += p[6*64] * q[6*64];
  294. sum += p[7*64] * q[7*64];
  295. tmp[i] = sum;
  296. p++;
  297. q++;
  298. }
  299. tmp1[0] = tmp[16] >> WSHIFT;
  300. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  301. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  302. idct32(out, tmp1);
  303. /* advance of 32 samples */
  304. offset -= 32;
  305. out += 32;
  306. /* handle the wrap around */
  307. if (offset < 0) {
  308. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  309. s->samples_buf[ch], (512 - 32) * 2);
  310. offset = SAMPLES_BUF_SIZE - 512;
  311. }
  312. }
  313. s->samples_offset[ch] = offset;
  314. // print_pow(s->sb_samples, 1152);
  315. }
  316. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  317. unsigned char scale_factors[SBLIMIT][3],
  318. int sb_samples[3][12][SBLIMIT],
  319. int sblimit)
  320. {
  321. int *p, vmax, v, n, i, j, k, code;
  322. int index, d1, d2;
  323. unsigned char *sf = &scale_factors[0][0];
  324. for(j=0;j<sblimit;j++) {
  325. for(i=0;i<3;i++) {
  326. /* find the max absolute value */
  327. p = &sb_samples[i][0][j];
  328. vmax = abs(*p);
  329. for(k=1;k<12;k++) {
  330. p += SBLIMIT;
  331. v = abs(*p);
  332. if (v > vmax)
  333. vmax = v;
  334. }
  335. /* compute the scale factor index using log 2 computations */
  336. if (vmax > 0) {
  337. n = av_log2(vmax);
  338. /* n is the position of the MSB of vmax. now
  339. use at most 2 compares to find the index */
  340. index = (21 - n) * 3 - 3;
  341. if (index >= 0) {
  342. while (vmax <= scale_factor_table[index+1])
  343. index++;
  344. } else {
  345. index = 0; /* very unlikely case of overflow */
  346. }
  347. } else {
  348. index = 62; /* value 63 is not allowed */
  349. }
  350. #if 0
  351. printf("%2d:%d in=%x %x %d\n",
  352. j, i, vmax, scale_factor_table[index], index);
  353. #endif
  354. /* store the scale factor */
  355. assert(index >=0 && index <= 63);
  356. sf[i] = index;
  357. }
  358. /* compute the transmission factor : look if the scale factors
  359. are close enough to each other */
  360. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  361. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  362. /* handle the 25 cases */
  363. switch(d1 * 5 + d2) {
  364. case 0*5+0:
  365. case 0*5+4:
  366. case 3*5+4:
  367. case 4*5+0:
  368. case 4*5+4:
  369. code = 0;
  370. break;
  371. case 0*5+1:
  372. case 0*5+2:
  373. case 4*5+1:
  374. case 4*5+2:
  375. code = 3;
  376. sf[2] = sf[1];
  377. break;
  378. case 0*5+3:
  379. case 4*5+3:
  380. code = 3;
  381. sf[1] = sf[2];
  382. break;
  383. case 1*5+0:
  384. case 1*5+4:
  385. case 2*5+4:
  386. code = 1;
  387. sf[1] = sf[0];
  388. break;
  389. case 1*5+1:
  390. case 1*5+2:
  391. case 2*5+0:
  392. case 2*5+1:
  393. case 2*5+2:
  394. code = 2;
  395. sf[1] = sf[2] = sf[0];
  396. break;
  397. case 2*5+3:
  398. case 3*5+3:
  399. code = 2;
  400. sf[0] = sf[1] = sf[2];
  401. break;
  402. case 3*5+0:
  403. case 3*5+1:
  404. case 3*5+2:
  405. code = 2;
  406. sf[0] = sf[2] = sf[1];
  407. break;
  408. case 1*5+3:
  409. code = 2;
  410. if (sf[0] > sf[2])
  411. sf[0] = sf[2];
  412. sf[1] = sf[2] = sf[0];
  413. break;
  414. default:
  415. assert(0); //cant happen
  416. code = 0; /* kill warning */
  417. }
  418. #if 0
  419. printf("%d: %2d %2d %2d %d %d -> %d\n", j,
  420. sf[0], sf[1], sf[2], d1, d2, code);
  421. #endif
  422. scale_code[j] = code;
  423. sf += 3;
  424. }
  425. }
  426. /* The most important function : psycho acoustic module. In this
  427. encoder there is basically none, so this is the worst you can do,
  428. but also this is the simpler. */
  429. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  430. {
  431. int i;
  432. for(i=0;i<s->sblimit;i++) {
  433. smr[i] = (int)(fixed_smr[i] * 10);
  434. }
  435. }
  436. #define SB_NOTALLOCATED 0
  437. #define SB_ALLOCATED 1
  438. #define SB_NOMORE 2
  439. /* Try to maximize the smr while using a number of bits inferior to
  440. the frame size. I tried to make the code simpler, faster and
  441. smaller than other encoders :-) */
  442. static void compute_bit_allocation(MpegAudioContext *s,
  443. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  444. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  445. int *padding)
  446. {
  447. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  448. int incr;
  449. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  450. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  451. const unsigned char *alloc;
  452. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  453. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  454. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  455. /* compute frame size and padding */
  456. max_frame_size = s->frame_size;
  457. s->frame_frac += s->frame_frac_incr;
  458. if (s->frame_frac >= 65536) {
  459. s->frame_frac -= 65536;
  460. s->do_padding = 1;
  461. max_frame_size += 8;
  462. } else {
  463. s->do_padding = 0;
  464. }
  465. /* compute the header + bit alloc size */
  466. current_frame_size = 32;
  467. alloc = s->alloc_table;
  468. for(i=0;i<s->sblimit;i++) {
  469. incr = alloc[0];
  470. current_frame_size += incr * s->nb_channels;
  471. alloc += 1 << incr;
  472. }
  473. for(;;) {
  474. /* look for the subband with the largest signal to mask ratio */
  475. max_sb = -1;
  476. max_ch = -1;
  477. max_smr = 0x80000000;
  478. for(ch=0;ch<s->nb_channels;ch++) {
  479. for(i=0;i<s->sblimit;i++) {
  480. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  481. max_smr = smr[ch][i];
  482. max_sb = i;
  483. max_ch = ch;
  484. }
  485. }
  486. }
  487. #if 0
  488. printf("current=%d max=%d max_sb=%d alloc=%d\n",
  489. current_frame_size, max_frame_size, max_sb,
  490. bit_alloc[max_sb]);
  491. #endif
  492. if (max_sb < 0)
  493. break;
  494. /* find alloc table entry (XXX: not optimal, should use
  495. pointer table) */
  496. alloc = s->alloc_table;
  497. for(i=0;i<max_sb;i++) {
  498. alloc += 1 << alloc[0];
  499. }
  500. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  501. /* nothing was coded for this band: add the necessary bits */
  502. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  503. incr += total_quant_bits[alloc[1]];
  504. } else {
  505. /* increments bit allocation */
  506. b = bit_alloc[max_ch][max_sb];
  507. incr = total_quant_bits[alloc[b + 1]] -
  508. total_quant_bits[alloc[b]];
  509. }
  510. if (current_frame_size + incr <= max_frame_size) {
  511. /* can increase size */
  512. b = ++bit_alloc[max_ch][max_sb];
  513. current_frame_size += incr;
  514. /* decrease smr by the resolution we added */
  515. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  516. /* max allocation size reached ? */
  517. if (b == ((1 << alloc[0]) - 1))
  518. subband_status[max_ch][max_sb] = SB_NOMORE;
  519. else
  520. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  521. } else {
  522. /* cannot increase the size of this subband */
  523. subband_status[max_ch][max_sb] = SB_NOMORE;
  524. }
  525. }
  526. *padding = max_frame_size - current_frame_size;
  527. assert(*padding >= 0);
  528. #if 0
  529. for(i=0;i<s->sblimit;i++) {
  530. printf("%d ", bit_alloc[i]);
  531. }
  532. printf("\n");
  533. #endif
  534. }
  535. /*
  536. * Output the mpeg audio layer 2 frame. Note how the code is small
  537. * compared to other encoders :-)
  538. */
  539. static void encode_frame(MpegAudioContext *s,
  540. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  541. int padding)
  542. {
  543. int i, j, k, l, bit_alloc_bits, b, ch;
  544. unsigned char *sf;
  545. int q[3];
  546. PutBitContext *p = &s->pb;
  547. /* header */
  548. put_bits(p, 12, 0xfff);
  549. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  550. put_bits(p, 2, 4-2); /* layer 2 */
  551. put_bits(p, 1, 1); /* no error protection */
  552. put_bits(p, 4, s->bitrate_index);
  553. put_bits(p, 2, s->freq_index);
  554. put_bits(p, 1, s->do_padding); /* use padding */
  555. put_bits(p, 1, 0); /* private_bit */
  556. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  557. put_bits(p, 2, 0); /* mode_ext */
  558. put_bits(p, 1, 0); /* no copyright */
  559. put_bits(p, 1, 1); /* original */
  560. put_bits(p, 2, 0); /* no emphasis */
  561. /* bit allocation */
  562. j = 0;
  563. for(i=0;i<s->sblimit;i++) {
  564. bit_alloc_bits = s->alloc_table[j];
  565. for(ch=0;ch<s->nb_channels;ch++) {
  566. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  567. }
  568. j += 1 << bit_alloc_bits;
  569. }
  570. /* scale codes */
  571. for(i=0;i<s->sblimit;i++) {
  572. for(ch=0;ch<s->nb_channels;ch++) {
  573. if (bit_alloc[ch][i])
  574. put_bits(p, 2, s->scale_code[ch][i]);
  575. }
  576. }
  577. /* scale factors */
  578. for(i=0;i<s->sblimit;i++) {
  579. for(ch=0;ch<s->nb_channels;ch++) {
  580. if (bit_alloc[ch][i]) {
  581. sf = &s->scale_factors[ch][i][0];
  582. switch(s->scale_code[ch][i]) {
  583. case 0:
  584. put_bits(p, 6, sf[0]);
  585. put_bits(p, 6, sf[1]);
  586. put_bits(p, 6, sf[2]);
  587. break;
  588. case 3:
  589. case 1:
  590. put_bits(p, 6, sf[0]);
  591. put_bits(p, 6, sf[2]);
  592. break;
  593. case 2:
  594. put_bits(p, 6, sf[0]);
  595. break;
  596. }
  597. }
  598. }
  599. }
  600. /* quantization & write sub band samples */
  601. for(k=0;k<3;k++) {
  602. for(l=0;l<12;l+=3) {
  603. j = 0;
  604. for(i=0;i<s->sblimit;i++) {
  605. bit_alloc_bits = s->alloc_table[j];
  606. for(ch=0;ch<s->nb_channels;ch++) {
  607. b = bit_alloc[ch][i];
  608. if (b) {
  609. int qindex, steps, m, sample, bits;
  610. /* we encode 3 sub band samples of the same sub band at a time */
  611. qindex = s->alloc_table[j+b];
  612. steps = ff_mpa_quant_steps[qindex];
  613. for(m=0;m<3;m++) {
  614. sample = s->sb_samples[ch][k][l + m][i];
  615. /* divide by scale factor */
  616. #ifdef USE_FLOATS
  617. {
  618. float a;
  619. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  620. q[m] = (int)((a + 1.0) * steps * 0.5);
  621. }
  622. #else
  623. {
  624. int q1, e, shift, mult;
  625. e = s->scale_factors[ch][i][k];
  626. shift = scale_factor_shift[e];
  627. mult = scale_factor_mult[e];
  628. /* normalize to P bits */
  629. if (shift < 0)
  630. q1 = sample << (-shift);
  631. else
  632. q1 = sample >> shift;
  633. q1 = (q1 * mult) >> P;
  634. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  635. }
  636. #endif
  637. if (q[m] >= steps)
  638. q[m] = steps - 1;
  639. assert(q[m] >= 0 && q[m] < steps);
  640. }
  641. bits = ff_mpa_quant_bits[qindex];
  642. if (bits < 0) {
  643. /* group the 3 values to save bits */
  644. put_bits(p, -bits,
  645. q[0] + steps * (q[1] + steps * q[2]));
  646. #if 0
  647. printf("%d: gr1 %d\n",
  648. i, q[0] + steps * (q[1] + steps * q[2]));
  649. #endif
  650. } else {
  651. #if 0
  652. printf("%d: gr3 %d %d %d\n",
  653. i, q[0], q[1], q[2]);
  654. #endif
  655. put_bits(p, bits, q[0]);
  656. put_bits(p, bits, q[1]);
  657. put_bits(p, bits, q[2]);
  658. }
  659. }
  660. }
  661. /* next subband in alloc table */
  662. j += 1 << bit_alloc_bits;
  663. }
  664. }
  665. }
  666. /* padding */
  667. for(i=0;i<padding;i++)
  668. put_bits(p, 1, 0);
  669. /* flush */
  670. flush_put_bits(p);
  671. }
  672. static int MPA_encode_frame(AVCodecContext *avctx,
  673. unsigned char *frame, int buf_size, void *data)
  674. {
  675. MpegAudioContext *s = avctx->priv_data;
  676. short *samples = data;
  677. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  678. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  679. int padding, i;
  680. for(i=0;i<s->nb_channels;i++) {
  681. filter(s, i, samples + i, s->nb_channels);
  682. }
  683. for(i=0;i<s->nb_channels;i++) {
  684. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  685. s->sb_samples[i], s->sblimit);
  686. }
  687. for(i=0;i<s->nb_channels;i++) {
  688. psycho_acoustic_model(s, smr[i]);
  689. }
  690. compute_bit_allocation(s, smr, bit_alloc, &padding);
  691. init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE);
  692. encode_frame(s, bit_alloc, padding);
  693. s->nb_samples += MPA_FRAME_SIZE;
  694. return pbBufPtr(&s->pb) - s->pb.buf;
  695. }
  696. static int MPA_encode_close(AVCodecContext *avctx)
  697. {
  698. av_freep(&avctx->coded_frame);
  699. return 0;
  700. }
  701. AVCodec mp2_encoder = {
  702. "mp2",
  703. CODEC_TYPE_AUDIO,
  704. CODEC_ID_MP2,
  705. sizeof(MpegAudioContext),
  706. MPA_encode_init,
  707. MPA_encode_frame,
  708. MPA_encode_close,
  709. NULL,
  710. };
  711. #undef FIX