You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2415 lines
87KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _DEFAULT_SOURCE
  22. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  23. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <stdio.h>
  27. #include <string.h>
  28. #if HAVE_SYS_MMAN_H
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "libavutil/attributes.h"
  39. #include "libavutil/avassert.h"
  40. #include "libavutil/avutil.h"
  41. #include "libavutil/bswap.h"
  42. #include "libavutil/cpu.h"
  43. #include "libavutil/imgutils.h"
  44. #include "libavutil/intreadwrite.h"
  45. #include "libavutil/libm.h"
  46. #include "libavutil/mathematics.h"
  47. #include "libavutil/opt.h"
  48. #include "libavutil/pixdesc.h"
  49. #include "libavutil/aarch64/cpu.h"
  50. #include "libavutil/ppc/cpu.h"
  51. #include "libavutil/x86/asm.h"
  52. #include "libavutil/x86/cpu.h"
  53. #include "rgb2rgb.h"
  54. #include "swscale.h"
  55. #include "swscale_internal.h"
  56. static void handle_formats(SwsContext *c);
  57. unsigned swscale_version(void)
  58. {
  59. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  60. return LIBSWSCALE_VERSION_INT;
  61. }
  62. const char *swscale_configuration(void)
  63. {
  64. return FFMPEG_CONFIGURATION;
  65. }
  66. const char *swscale_license(void)
  67. {
  68. #define LICENSE_PREFIX "libswscale license: "
  69. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  70. }
  71. typedef struct FormatEntry {
  72. uint8_t is_supported_in :1;
  73. uint8_t is_supported_out :1;
  74. uint8_t is_supported_endianness :1;
  75. } FormatEntry;
  76. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  77. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  78. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  79. [AV_PIX_FMT_RGB24] = { 1, 1 },
  80. [AV_PIX_FMT_BGR24] = { 1, 1 },
  81. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  82. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  83. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  84. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  85. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  86. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  87. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  88. [AV_PIX_FMT_PAL8] = { 1, 0 },
  89. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  90. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  91. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  92. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  93. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  94. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  95. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  96. [AV_PIX_FMT_BGR8] = { 1, 1 },
  97. [AV_PIX_FMT_BGR4] = { 0, 1 },
  98. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  99. [AV_PIX_FMT_RGB8] = { 1, 1 },
  100. [AV_PIX_FMT_RGB4] = { 0, 1 },
  101. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  102. [AV_PIX_FMT_NV12] = { 1, 1 },
  103. [AV_PIX_FMT_NV21] = { 1, 1 },
  104. [AV_PIX_FMT_ARGB] = { 1, 1 },
  105. [AV_PIX_FMT_RGBA] = { 1, 1 },
  106. [AV_PIX_FMT_ABGR] = { 1, 1 },
  107. [AV_PIX_FMT_BGRA] = { 1, 1 },
  108. [AV_PIX_FMT_0RGB] = { 1, 1 },
  109. [AV_PIX_FMT_RGB0] = { 1, 1 },
  110. [AV_PIX_FMT_0BGR] = { 1, 1 },
  111. [AV_PIX_FMT_BGR0] = { 1, 1 },
  112. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  113. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  115. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  116. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  117. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  118. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  119. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  121. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  122. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  123. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  124. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  125. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  126. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  127. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  128. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  129. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  132. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  133. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  134. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  135. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  136. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  137. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  138. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  139. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  140. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  141. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  142. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  143. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  144. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  145. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  146. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  147. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  148. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  149. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  150. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  151. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  152. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  159. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  160. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  161. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  162. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  163. [AV_PIX_FMT_YA8] = { 1, 1 },
  164. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  165. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  166. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  167. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  168. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  169. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  170. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  183. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  184. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  185. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  186. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  187. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  188. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  191. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  192. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  193. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  194. [AV_PIX_FMT_GBRP] = { 1, 1 },
  195. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  196. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  197. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  198. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  199. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  200. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  201. [AV_PIX_FMT_GBRAP12LE] = { 1, 0 },
  202. [AV_PIX_FMT_GBRAP12BE] = { 1, 0 },
  203. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  204. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  205. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  206. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  207. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  208. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  209. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  210. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  211. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  212. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  213. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  214. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  215. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  216. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  217. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  218. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  219. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  220. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  221. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  222. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  223. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  224. [AV_PIX_FMT_AYUV64LE] = { 1, 1},
  225. [AV_PIX_FMT_P010LE] = { 1, 0 },
  226. [AV_PIX_FMT_P010BE] = { 1, 0 },
  227. };
  228. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  229. {
  230. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  231. format_entries[pix_fmt].is_supported_in : 0;
  232. }
  233. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  234. {
  235. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  236. format_entries[pix_fmt].is_supported_out : 0;
  237. }
  238. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  239. {
  240. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  241. format_entries[pix_fmt].is_supported_endianness : 0;
  242. }
  243. static double getSplineCoeff(double a, double b, double c, double d,
  244. double dist)
  245. {
  246. if (dist <= 1.0)
  247. return ((d * dist + c) * dist + b) * dist + a;
  248. else
  249. return getSplineCoeff(0.0,
  250. b + 2.0 * c + 3.0 * d,
  251. c + 3.0 * d,
  252. -b - 3.0 * c - 6.0 * d,
  253. dist - 1.0);
  254. }
  255. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  256. {
  257. if (pos == -1 || pos <= -513) {
  258. pos = (128 << chr_subsample) - 128;
  259. }
  260. pos += 128; // relative to ideal left edge
  261. return pos >> chr_subsample;
  262. }
  263. typedef struct {
  264. int flag; ///< flag associated to the algorithm
  265. const char *description; ///< human-readable description
  266. int size_factor; ///< size factor used when initing the filters
  267. } ScaleAlgorithm;
  268. static const ScaleAlgorithm scale_algorithms[] = {
  269. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  270. { SWS_BICUBIC, "bicubic", 4 },
  271. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  272. { SWS_BILINEAR, "bilinear", 2 },
  273. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  274. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  275. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  276. { SWS_POINT, "nearest neighbor / point", -1 },
  277. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  278. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  279. { SWS_X, "experimental", 8 },
  280. };
  281. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  282. int *outFilterSize, int xInc, int srcW,
  283. int dstW, int filterAlign, int one,
  284. int flags, int cpu_flags,
  285. SwsVector *srcFilter, SwsVector *dstFilter,
  286. double param[2], int srcPos, int dstPos)
  287. {
  288. int i;
  289. int filterSize;
  290. int filter2Size;
  291. int minFilterSize;
  292. int64_t *filter = NULL;
  293. int64_t *filter2 = NULL;
  294. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  295. int ret = -1;
  296. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  297. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  298. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  299. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  300. int i;
  301. filterSize = 1;
  302. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  303. dstW, sizeof(*filter) * filterSize, fail);
  304. for (i = 0; i < dstW; i++) {
  305. filter[i * filterSize] = fone;
  306. (*filterPos)[i] = i;
  307. }
  308. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  309. int i;
  310. int64_t xDstInSrc;
  311. filterSize = 1;
  312. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  313. dstW, sizeof(*filter) * filterSize, fail);
  314. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  315. for (i = 0; i < dstW; i++) {
  316. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  317. (*filterPos)[i] = xx;
  318. filter[i] = fone;
  319. xDstInSrc += xInc;
  320. }
  321. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  322. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  323. int i;
  324. int64_t xDstInSrc;
  325. filterSize = 2;
  326. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  327. dstW, sizeof(*filter) * filterSize, fail);
  328. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  329. for (i = 0; i < dstW; i++) {
  330. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  331. int j;
  332. (*filterPos)[i] = xx;
  333. // bilinear upscale / linear interpolate / area averaging
  334. for (j = 0; j < filterSize; j++) {
  335. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  336. if (coeff < 0)
  337. coeff = 0;
  338. filter[i * filterSize + j] = coeff;
  339. xx++;
  340. }
  341. xDstInSrc += xInc;
  342. }
  343. } else {
  344. int64_t xDstInSrc;
  345. int sizeFactor = -1;
  346. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  347. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  348. sizeFactor = scale_algorithms[i].size_factor;
  349. break;
  350. }
  351. }
  352. if (flags & SWS_LANCZOS)
  353. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  354. av_assert0(sizeFactor > 0);
  355. if (xInc <= 1 << 16)
  356. filterSize = 1 + sizeFactor; // upscale
  357. else
  358. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  359. filterSize = FFMIN(filterSize, srcW - 2);
  360. filterSize = FFMAX(filterSize, 1);
  361. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  362. dstW, sizeof(*filter) * filterSize, fail);
  363. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  364. for (i = 0; i < dstW; i++) {
  365. int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
  366. int j;
  367. (*filterPos)[i] = xx;
  368. for (j = 0; j < filterSize; j++) {
  369. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  370. double floatd;
  371. int64_t coeff;
  372. if (xInc > 1 << 16)
  373. d = d * dstW / srcW;
  374. floatd = d * (1.0 / (1 << 30));
  375. if (flags & SWS_BICUBIC) {
  376. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  377. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  378. if (d >= 1LL << 31) {
  379. coeff = 0.0;
  380. } else {
  381. int64_t dd = (d * d) >> 30;
  382. int64_t ddd = (dd * d) >> 30;
  383. if (d < 1LL << 30)
  384. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  385. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  386. (6 * (1 << 24) - 2 * B) * (1 << 30);
  387. else
  388. coeff = (-B - 6 * C) * ddd +
  389. (6 * B + 30 * C) * dd +
  390. (-12 * B - 48 * C) * d +
  391. (8 * B + 24 * C) * (1 << 30);
  392. }
  393. coeff /= (1LL<<54)/fone;
  394. }
  395. #if 0
  396. else if (flags & SWS_X) {
  397. double p = param ? param * 0.01 : 0.3;
  398. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  399. coeff *= pow(2.0, -p * d * d);
  400. }
  401. #endif
  402. else if (flags & SWS_X) {
  403. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  404. double c;
  405. if (floatd < 1.0)
  406. c = cos(floatd * M_PI);
  407. else
  408. c = -1.0;
  409. if (c < 0.0)
  410. c = -pow(-c, A);
  411. else
  412. c = pow(c, A);
  413. coeff = (c * 0.5 + 0.5) * fone;
  414. } else if (flags & SWS_AREA) {
  415. int64_t d2 = d - (1 << 29);
  416. if (d2 * xInc < -(1LL << (29 + 16)))
  417. coeff = 1.0 * (1LL << (30 + 16));
  418. else if (d2 * xInc < (1LL << (29 + 16)))
  419. coeff = -d2 * xInc + (1LL << (29 + 16));
  420. else
  421. coeff = 0.0;
  422. coeff *= fone >> (30 + 16);
  423. } else if (flags & SWS_GAUSS) {
  424. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  425. coeff = exp2(-p * floatd * floatd) * fone;
  426. } else if (flags & SWS_SINC) {
  427. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  428. } else if (flags & SWS_LANCZOS) {
  429. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  430. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  431. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  432. if (floatd > p)
  433. coeff = 0;
  434. } else if (flags & SWS_BILINEAR) {
  435. coeff = (1 << 30) - d;
  436. if (coeff < 0)
  437. coeff = 0;
  438. coeff *= fone >> 30;
  439. } else if (flags & SWS_SPLINE) {
  440. double p = -2.196152422706632;
  441. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  442. } else {
  443. av_assert0(0);
  444. }
  445. filter[i * filterSize + j] = coeff;
  446. xx++;
  447. }
  448. xDstInSrc += 2 * xInc;
  449. }
  450. }
  451. /* apply src & dst Filter to filter -> filter2
  452. * av_free(filter);
  453. */
  454. av_assert0(filterSize > 0);
  455. filter2Size = filterSize;
  456. if (srcFilter)
  457. filter2Size += srcFilter->length - 1;
  458. if (dstFilter)
  459. filter2Size += dstFilter->length - 1;
  460. av_assert0(filter2Size > 0);
  461. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  462. for (i = 0; i < dstW; i++) {
  463. int j, k;
  464. if (srcFilter) {
  465. for (k = 0; k < srcFilter->length; k++) {
  466. for (j = 0; j < filterSize; j++)
  467. filter2[i * filter2Size + k + j] +=
  468. srcFilter->coeff[k] * filter[i * filterSize + j];
  469. }
  470. } else {
  471. for (j = 0; j < filterSize; j++)
  472. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  473. }
  474. // FIXME dstFilter
  475. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  476. }
  477. av_freep(&filter);
  478. /* try to reduce the filter-size (step1 find size and shift left) */
  479. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  480. minFilterSize = 0;
  481. for (i = dstW - 1; i >= 0; i--) {
  482. int min = filter2Size;
  483. int j;
  484. int64_t cutOff = 0.0;
  485. /* get rid of near zero elements on the left by shifting left */
  486. for (j = 0; j < filter2Size; j++) {
  487. int k;
  488. cutOff += FFABS(filter2[i * filter2Size]);
  489. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  490. break;
  491. /* preserve monotonicity because the core can't handle the
  492. * filter otherwise */
  493. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  494. break;
  495. // move filter coefficients left
  496. for (k = 1; k < filter2Size; k++)
  497. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  498. filter2[i * filter2Size + k - 1] = 0;
  499. (*filterPos)[i]++;
  500. }
  501. cutOff = 0;
  502. /* count near zeros on the right */
  503. for (j = filter2Size - 1; j > 0; j--) {
  504. cutOff += FFABS(filter2[i * filter2Size + j]);
  505. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  506. break;
  507. min--;
  508. }
  509. if (min > minFilterSize)
  510. minFilterSize = min;
  511. }
  512. if (PPC_ALTIVEC(cpu_flags)) {
  513. // we can handle the special case 4, so we don't want to go the full 8
  514. if (minFilterSize < 5)
  515. filterAlign = 4;
  516. /* We really don't want to waste our time doing useless computation, so
  517. * fall back on the scalar C code for very small filters.
  518. * Vectorizing is worth it only if you have a decent-sized vector. */
  519. if (minFilterSize < 3)
  520. filterAlign = 1;
  521. }
  522. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  523. // special case for unscaled vertical filtering
  524. if (minFilterSize == 1 && filterAlign == 2)
  525. filterAlign = 1;
  526. }
  527. av_assert0(minFilterSize > 0);
  528. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  529. av_assert0(filterSize > 0);
  530. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  531. if (!filter)
  532. goto fail;
  533. if (filterSize >= MAX_FILTER_SIZE * 16 /
  534. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  535. ret = RETCODE_USE_CASCADE;
  536. goto fail;
  537. }
  538. *outFilterSize = filterSize;
  539. if (flags & SWS_PRINT_INFO)
  540. av_log(NULL, AV_LOG_VERBOSE,
  541. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  542. filter2Size, filterSize);
  543. /* try to reduce the filter-size (step2 reduce it) */
  544. for (i = 0; i < dstW; i++) {
  545. int j;
  546. for (j = 0; j < filterSize; j++) {
  547. if (j >= filter2Size)
  548. filter[i * filterSize + j] = 0;
  549. else
  550. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  551. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  552. filter[i * filterSize + j] = 0;
  553. }
  554. }
  555. // FIXME try to align filterPos if possible
  556. // fix borders
  557. for (i = 0; i < dstW; i++) {
  558. int j;
  559. if ((*filterPos)[i] < 0) {
  560. // move filter coefficients left to compensate for filterPos
  561. for (j = 1; j < filterSize; j++) {
  562. int left = FFMAX(j + (*filterPos)[i], 0);
  563. filter[i * filterSize + left] += filter[i * filterSize + j];
  564. filter[i * filterSize + j] = 0;
  565. }
  566. (*filterPos)[i]= 0;
  567. }
  568. if ((*filterPos)[i] + filterSize > srcW) {
  569. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  570. int64_t acc = 0;
  571. for (j = filterSize - 1; j >= 0; j--) {
  572. if ((*filterPos)[i] + j >= srcW) {
  573. acc += filter[i * filterSize + j];
  574. filter[i * filterSize + j] = 0;
  575. }
  576. }
  577. for (j = filterSize - 1; j >= 0; j--) {
  578. if (j < shift) {
  579. filter[i * filterSize + j] = 0;
  580. } else {
  581. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  582. }
  583. }
  584. (*filterPos)[i]-= shift;
  585. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  586. }
  587. av_assert0((*filterPos)[i] >= 0);
  588. av_assert0((*filterPos)[i] < srcW);
  589. if ((*filterPos)[i] + filterSize > srcW) {
  590. for (j = 0; j < filterSize; j++) {
  591. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  592. }
  593. }
  594. }
  595. // Note the +1 is for the MMX scaler which reads over the end
  596. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  597. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  598. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  599. /* normalize & store in outFilter */
  600. for (i = 0; i < dstW; i++) {
  601. int j;
  602. int64_t error = 0;
  603. int64_t sum = 0;
  604. for (j = 0; j < filterSize; j++) {
  605. sum += filter[i * filterSize + j];
  606. }
  607. sum = (sum + one / 2) / one;
  608. if (!sum) {
  609. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  610. sum = 1;
  611. }
  612. for (j = 0; j < *outFilterSize; j++) {
  613. int64_t v = filter[i * filterSize + j] + error;
  614. int intV = ROUNDED_DIV(v, sum);
  615. (*outFilter)[i * (*outFilterSize) + j] = intV;
  616. error = v - intV * sum;
  617. }
  618. }
  619. (*filterPos)[dstW + 0] =
  620. (*filterPos)[dstW + 1] =
  621. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  622. * read over the end */
  623. for (i = 0; i < *outFilterSize; i++) {
  624. int k = (dstW - 1) * (*outFilterSize) + i;
  625. (*outFilter)[k + 1 * (*outFilterSize)] =
  626. (*outFilter)[k + 2 * (*outFilterSize)] =
  627. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  628. }
  629. ret = 0;
  630. fail:
  631. if(ret < 0)
  632. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  633. av_free(filter);
  634. av_free(filter2);
  635. return ret;
  636. }
  637. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  638. {
  639. int64_t W, V, Z, Cy, Cu, Cv;
  640. int64_t vr = table[0];
  641. int64_t ub = table[1];
  642. int64_t ug = -table[2];
  643. int64_t vg = -table[3];
  644. int64_t ONE = 65536;
  645. int64_t cy = ONE;
  646. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  647. int i;
  648. static const int8_t map[] = {
  649. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  650. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  651. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  652. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  653. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  654. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  655. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  656. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  657. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  658. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  659. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  660. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  661. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  662. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  663. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  664. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  665. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  666. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  667. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  668. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  669. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  670. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  671. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  672. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  673. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  674. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  675. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  676. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  677. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  678. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  679. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  680. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  681. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  682. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  683. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  684. };
  685. dstRange = 0; //FIXME range = 1 is handled elsewhere
  686. if (!dstRange) {
  687. cy = cy * 255 / 219;
  688. } else {
  689. vr = vr * 224 / 255;
  690. ub = ub * 224 / 255;
  691. ug = ug * 224 / 255;
  692. vg = vg * 224 / 255;
  693. }
  694. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  695. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  696. Z = ONE*ONE-W-V;
  697. Cy = ROUNDED_DIV(cy*Z, ONE);
  698. Cu = ROUNDED_DIV(ub*Z, ONE);
  699. Cv = ROUNDED_DIV(vr*Z, ONE);
  700. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  701. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  702. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  703. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  704. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  705. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  706. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  707. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  708. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  709. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  710. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  711. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  712. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  713. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  714. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  715. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  716. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  717. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  718. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  719. }
  720. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  721. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  722. }
  723. static void fill_xyztables(struct SwsContext *c)
  724. {
  725. int i;
  726. double xyzgamma = XYZ_GAMMA;
  727. double rgbgamma = 1.0 / RGB_GAMMA;
  728. double xyzgammainv = 1.0 / XYZ_GAMMA;
  729. double rgbgammainv = RGB_GAMMA;
  730. static const int16_t xyz2rgb_matrix[3][4] = {
  731. {13270, -6295, -2041},
  732. {-3969, 7682, 170},
  733. { 228, -835, 4329} };
  734. static const int16_t rgb2xyz_matrix[3][4] = {
  735. {1689, 1464, 739},
  736. { 871, 2929, 296},
  737. { 79, 488, 3891} };
  738. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  739. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  740. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  741. c->xyzgamma = xyzgamma_tab;
  742. c->rgbgamma = rgbgamma_tab;
  743. c->xyzgammainv = xyzgammainv_tab;
  744. c->rgbgammainv = rgbgammainv_tab;
  745. if (rgbgamma_tab[4095])
  746. return;
  747. /* set gamma vectors */
  748. for (i = 0; i < 4096; i++) {
  749. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  750. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  751. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  752. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  753. }
  754. }
  755. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  756. int srcRange, const int table[4], int dstRange,
  757. int brightness, int contrast, int saturation)
  758. {
  759. const AVPixFmtDescriptor *desc_dst;
  760. const AVPixFmtDescriptor *desc_src;
  761. int need_reinit = 0;
  762. handle_formats(c);
  763. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  764. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  765. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  766. dstRange = 0;
  767. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  768. srcRange = 0;
  769. if (c->srcRange != srcRange ||
  770. c->dstRange != dstRange ||
  771. c->brightness != brightness ||
  772. c->contrast != contrast ||
  773. c->saturation != saturation ||
  774. memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
  775. memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
  776. )
  777. need_reinit = 1;
  778. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  779. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  780. c->brightness = brightness;
  781. c->contrast = contrast;
  782. c->saturation = saturation;
  783. c->srcRange = srcRange;
  784. c->dstRange = dstRange;
  785. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  786. //and what we have in ticket 2939 looks better with this check
  787. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  788. ff_sws_init_range_convert(c);
  789. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  790. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  791. if (c->cascaded_context[c->cascaded_mainindex])
  792. return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
  793. if (!need_reinit)
  794. return 0;
  795. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
  796. if (!c->cascaded_context[0] &&
  797. memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
  798. c->srcW && c->srcH && c->dstW && c->dstH) {
  799. enum AVPixelFormat tmp_format;
  800. int tmp_width, tmp_height;
  801. int srcW = c->srcW;
  802. int srcH = c->srcH;
  803. int dstW = c->dstW;
  804. int dstH = c->dstH;
  805. int ret;
  806. av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
  807. if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
  808. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  809. tmp_format = AV_PIX_FMT_BGRA64;
  810. } else {
  811. tmp_format = AV_PIX_FMT_BGR48;
  812. }
  813. } else {
  814. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  815. tmp_format = AV_PIX_FMT_BGRA;
  816. } else {
  817. tmp_format = AV_PIX_FMT_BGR24;
  818. }
  819. }
  820. if (srcW*srcH > dstW*dstH) {
  821. tmp_width = dstW;
  822. tmp_height = dstH;
  823. } else {
  824. tmp_width = srcW;
  825. tmp_height = srcH;
  826. }
  827. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  828. tmp_width, tmp_height, tmp_format, 64);
  829. if (ret < 0)
  830. return ret;
  831. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
  832. tmp_width, tmp_height, tmp_format,
  833. c->flags, c->param);
  834. if (!c->cascaded_context[0])
  835. return -1;
  836. c->cascaded_context[0]->alphablend = c->alphablend;
  837. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  838. if (ret < 0)
  839. return ret;
  840. //we set both src and dst depending on that the RGB side will be ignored
  841. sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
  842. srcRange, table, dstRange,
  843. brightness, contrast, saturation);
  844. c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
  845. dstW, dstH, c->dstFormat,
  846. c->flags, NULL, NULL, c->param);
  847. if (!c->cascaded_context[1])
  848. return -1;
  849. sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
  850. srcRange, table, dstRange,
  851. 0, 1 << 16, 1 << 16);
  852. return 0;
  853. }
  854. return -1;
  855. }
  856. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  857. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  858. contrast, saturation);
  859. // FIXME factorize
  860. if (ARCH_PPC)
  861. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  862. contrast, saturation);
  863. }
  864. fill_rgb2yuv_table(c, table, dstRange);
  865. return 0;
  866. }
  867. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  868. int *srcRange, int **table, int *dstRange,
  869. int *brightness, int *contrast, int *saturation)
  870. {
  871. if (!c )
  872. return -1;
  873. *inv_table = c->srcColorspaceTable;
  874. *table = c->dstColorspaceTable;
  875. *srcRange = c->srcRange;
  876. *dstRange = c->dstRange;
  877. *brightness = c->brightness;
  878. *contrast = c->contrast;
  879. *saturation = c->saturation;
  880. return 0;
  881. }
  882. static int handle_jpeg(enum AVPixelFormat *format)
  883. {
  884. switch (*format) {
  885. case AV_PIX_FMT_YUVJ420P:
  886. *format = AV_PIX_FMT_YUV420P;
  887. return 1;
  888. case AV_PIX_FMT_YUVJ411P:
  889. *format = AV_PIX_FMT_YUV411P;
  890. return 1;
  891. case AV_PIX_FMT_YUVJ422P:
  892. *format = AV_PIX_FMT_YUV422P;
  893. return 1;
  894. case AV_PIX_FMT_YUVJ444P:
  895. *format = AV_PIX_FMT_YUV444P;
  896. return 1;
  897. case AV_PIX_FMT_YUVJ440P:
  898. *format = AV_PIX_FMT_YUV440P;
  899. return 1;
  900. case AV_PIX_FMT_GRAY8:
  901. case AV_PIX_FMT_YA8:
  902. case AV_PIX_FMT_GRAY16LE:
  903. case AV_PIX_FMT_GRAY16BE:
  904. case AV_PIX_FMT_YA16BE:
  905. case AV_PIX_FMT_YA16LE:
  906. return 1;
  907. default:
  908. return 0;
  909. }
  910. }
  911. static int handle_0alpha(enum AVPixelFormat *format)
  912. {
  913. switch (*format) {
  914. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  915. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  916. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  917. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  918. default: return 0;
  919. }
  920. }
  921. static int handle_xyz(enum AVPixelFormat *format)
  922. {
  923. switch (*format) {
  924. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  925. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  926. default: return 0;
  927. }
  928. }
  929. static void handle_formats(SwsContext *c)
  930. {
  931. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  932. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  933. c->srcXYZ |= handle_xyz(&c->srcFormat);
  934. c->dstXYZ |= handle_xyz(&c->dstFormat);
  935. if (c->srcXYZ || c->dstXYZ)
  936. fill_xyztables(c);
  937. }
  938. SwsContext *sws_alloc_context(void)
  939. {
  940. SwsContext *c = av_mallocz(sizeof(SwsContext));
  941. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  942. if (c) {
  943. c->av_class = &ff_sws_context_class;
  944. av_opt_set_defaults(c);
  945. }
  946. return c;
  947. }
  948. static uint16_t * alloc_gamma_tbl(double e)
  949. {
  950. int i = 0;
  951. uint16_t * tbl;
  952. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  953. if (!tbl)
  954. return NULL;
  955. for (i = 0; i < 65536; ++i) {
  956. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  957. }
  958. return tbl;
  959. }
  960. static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
  961. {
  962. switch(fmt) {
  963. case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
  964. case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
  965. case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
  966. case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
  967. case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
  968. case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
  969. case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
  970. case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
  971. case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
  972. case AV_PIX_FMT_GBRAP12LE: return AV_PIX_FMT_GBRP12;
  973. case AV_PIX_FMT_GBRAP12BE: return AV_PIX_FMT_GBRP12;
  974. case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
  975. case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
  976. case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
  977. case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
  978. case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
  979. case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
  980. case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
  981. case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
  982. case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
  983. case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
  984. case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
  985. case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
  986. case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
  987. case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
  988. case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
  989. case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
  990. case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
  991. case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
  992. case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
  993. case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
  994. case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
  995. case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
  996. case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
  997. case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
  998. case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
  999. case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
  1000. // case AV_PIX_FMT_AYUV64LE:
  1001. // case AV_PIX_FMT_AYUV64BE:
  1002. // case AV_PIX_FMT_PAL8:
  1003. default: return AV_PIX_FMT_NONE;
  1004. }
  1005. }
  1006. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  1007. SwsFilter *dstFilter)
  1008. {
  1009. int i, j;
  1010. int usesVFilter, usesHFilter;
  1011. int unscaled;
  1012. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  1013. int srcW = c->srcW;
  1014. int srcH = c->srcH;
  1015. int dstW = c->dstW;
  1016. int dstH = c->dstH;
  1017. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  1018. int flags, cpu_flags;
  1019. enum AVPixelFormat srcFormat = c->srcFormat;
  1020. enum AVPixelFormat dstFormat = c->dstFormat;
  1021. const AVPixFmtDescriptor *desc_src;
  1022. const AVPixFmtDescriptor *desc_dst;
  1023. int ret = 0;
  1024. enum AVPixelFormat tmpFmt;
  1025. cpu_flags = av_get_cpu_flags();
  1026. flags = c->flags;
  1027. emms_c();
  1028. if (!rgb15to16)
  1029. ff_sws_rgb2rgb_init();
  1030. unscaled = (srcW == dstW && srcH == dstH);
  1031. c->srcRange |= handle_jpeg(&c->srcFormat);
  1032. c->dstRange |= handle_jpeg(&c->dstFormat);
  1033. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  1034. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  1035. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  1036. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1037. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1038. c->dstRange, 0, 1 << 16, 1 << 16);
  1039. handle_formats(c);
  1040. srcFormat = c->srcFormat;
  1041. dstFormat = c->dstFormat;
  1042. desc_src = av_pix_fmt_desc_get(srcFormat);
  1043. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1044. // If the source has no alpha then disable alpha blendaway
  1045. if (c->src0Alpha)
  1046. c->alphablend = SWS_ALPHA_BLEND_NONE;
  1047. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1048. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1049. if (!sws_isSupportedInput(srcFormat)) {
  1050. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1051. av_get_pix_fmt_name(srcFormat));
  1052. return AVERROR(EINVAL);
  1053. }
  1054. if (!sws_isSupportedOutput(dstFormat)) {
  1055. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1056. av_get_pix_fmt_name(dstFormat));
  1057. return AVERROR(EINVAL);
  1058. }
  1059. }
  1060. av_assert2(desc_src && desc_dst);
  1061. i = flags & (SWS_POINT |
  1062. SWS_AREA |
  1063. SWS_BILINEAR |
  1064. SWS_FAST_BILINEAR |
  1065. SWS_BICUBIC |
  1066. SWS_X |
  1067. SWS_GAUSS |
  1068. SWS_LANCZOS |
  1069. SWS_SINC |
  1070. SWS_SPLINE |
  1071. SWS_BICUBLIN);
  1072. /* provide a default scaler if not set by caller */
  1073. if (!i) {
  1074. if (dstW < srcW && dstH < srcH)
  1075. flags |= SWS_BICUBIC;
  1076. else if (dstW > srcW && dstH > srcH)
  1077. flags |= SWS_BICUBIC;
  1078. else
  1079. flags |= SWS_BICUBIC;
  1080. c->flags = flags;
  1081. } else if (i & (i - 1)) {
  1082. av_log(c, AV_LOG_ERROR,
  1083. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1084. return AVERROR(EINVAL);
  1085. }
  1086. /* sanity check */
  1087. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1088. /* FIXME check if these are enough and try to lower them after
  1089. * fixing the relevant parts of the code */
  1090. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1091. srcW, srcH, dstW, dstH);
  1092. return AVERROR(EINVAL);
  1093. }
  1094. if (flags & SWS_FAST_BILINEAR) {
  1095. if (srcW < 8 || dstW < 8) {
  1096. flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
  1097. c->flags = flags;
  1098. }
  1099. }
  1100. if (!dstFilter)
  1101. dstFilter = &dummyFilter;
  1102. if (!srcFilter)
  1103. srcFilter = &dummyFilter;
  1104. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1105. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1106. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1107. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1108. c->vRounder = 4 * 0x0001000100010001ULL;
  1109. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1110. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1111. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1112. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1113. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1114. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1115. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1116. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1117. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1118. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1119. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1120. if (dstW&1) {
  1121. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1122. flags |= SWS_FULL_CHR_H_INT;
  1123. c->flags = flags;
  1124. }
  1125. if ( c->chrSrcHSubSample == 0
  1126. && c->chrSrcVSubSample == 0
  1127. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1128. && !(c->flags & SWS_FAST_BILINEAR)
  1129. ) {
  1130. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1131. flags |= SWS_FULL_CHR_H_INT;
  1132. c->flags = flags;
  1133. }
  1134. }
  1135. if (c->dither == SWS_DITHER_AUTO) {
  1136. if (flags & SWS_ERROR_DIFFUSION)
  1137. c->dither = SWS_DITHER_ED;
  1138. }
  1139. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1140. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1141. dstFormat == AV_PIX_FMT_BGR8 ||
  1142. dstFormat == AV_PIX_FMT_RGB8) {
  1143. if (c->dither == SWS_DITHER_AUTO)
  1144. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1145. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1146. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1147. av_log(c, AV_LOG_DEBUG,
  1148. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1149. av_get_pix_fmt_name(dstFormat));
  1150. flags |= SWS_FULL_CHR_H_INT;
  1151. c->flags = flags;
  1152. }
  1153. }
  1154. if (flags & SWS_FULL_CHR_H_INT) {
  1155. if (c->dither == SWS_DITHER_BAYER) {
  1156. av_log(c, AV_LOG_DEBUG,
  1157. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1158. av_get_pix_fmt_name(dstFormat));
  1159. c->dither = SWS_DITHER_ED;
  1160. }
  1161. }
  1162. }
  1163. if (isPlanarRGB(dstFormat)) {
  1164. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1165. av_log(c, AV_LOG_DEBUG,
  1166. "%s output is not supported with half chroma resolution, switching to full\n",
  1167. av_get_pix_fmt_name(dstFormat));
  1168. flags |= SWS_FULL_CHR_H_INT;
  1169. c->flags = flags;
  1170. }
  1171. }
  1172. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1173. * chroma interpolation */
  1174. if (flags & SWS_FULL_CHR_H_INT &&
  1175. isAnyRGB(dstFormat) &&
  1176. !isPlanarRGB(dstFormat) &&
  1177. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1178. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1179. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1180. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1181. dstFormat != AV_PIX_FMT_RGB48LE &&
  1182. dstFormat != AV_PIX_FMT_RGB48BE &&
  1183. dstFormat != AV_PIX_FMT_BGR48LE &&
  1184. dstFormat != AV_PIX_FMT_BGR48BE &&
  1185. dstFormat != AV_PIX_FMT_RGBA &&
  1186. dstFormat != AV_PIX_FMT_ARGB &&
  1187. dstFormat != AV_PIX_FMT_BGRA &&
  1188. dstFormat != AV_PIX_FMT_ABGR &&
  1189. dstFormat != AV_PIX_FMT_RGB24 &&
  1190. dstFormat != AV_PIX_FMT_BGR24 &&
  1191. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1192. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1193. dstFormat != AV_PIX_FMT_BGR8 &&
  1194. dstFormat != AV_PIX_FMT_RGB8
  1195. ) {
  1196. av_log(c, AV_LOG_WARNING,
  1197. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1198. av_get_pix_fmt_name(dstFormat));
  1199. flags &= ~SWS_FULL_CHR_H_INT;
  1200. c->flags = flags;
  1201. }
  1202. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1203. c->chrDstHSubSample = 1;
  1204. // drop some chroma lines if the user wants it
  1205. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1206. SWS_SRC_V_CHR_DROP_SHIFT;
  1207. c->chrSrcVSubSample += c->vChrDrop;
  1208. /* drop every other pixel for chroma calculation unless user
  1209. * wants full chroma */
  1210. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1211. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1212. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1213. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1214. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1215. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1216. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1217. srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
  1218. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1219. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1220. srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
  1221. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1222. (flags & SWS_FAST_BILINEAR)))
  1223. c->chrSrcHSubSample = 1;
  1224. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  1225. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1226. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1227. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1228. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1229. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1230. c->srcBpc = desc_src->comp[0].depth;
  1231. if (c->srcBpc < 8)
  1232. c->srcBpc = 8;
  1233. c->dstBpc = desc_dst->comp[0].depth;
  1234. if (c->dstBpc < 8)
  1235. c->dstBpc = 8;
  1236. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1237. c->srcBpc = 16;
  1238. if (c->dstBpc == 16)
  1239. dst_stride <<= 1;
  1240. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1241. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1242. c->chrDstW >= c->chrSrcW &&
  1243. (srcW & 15) == 0;
  1244. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1245. && (flags & SWS_FAST_BILINEAR)) {
  1246. if (flags & SWS_PRINT_INFO)
  1247. av_log(c, AV_LOG_INFO,
  1248. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1249. }
  1250. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1251. c->canMMXEXTBeUsed = 0;
  1252. } else
  1253. c->canMMXEXTBeUsed = 0;
  1254. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1255. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1256. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1257. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1258. * correct scaling.
  1259. * n-2 is the last chrominance sample available.
  1260. * This is not perfect, but no one should notice the difference, the more
  1261. * correct variant would be like the vertical one, but that would require
  1262. * some special code for the first and last pixel */
  1263. if (flags & SWS_FAST_BILINEAR) {
  1264. if (c->canMMXEXTBeUsed) {
  1265. c->lumXInc += 20;
  1266. c->chrXInc += 20;
  1267. }
  1268. // we don't use the x86 asm scaler if MMX is available
  1269. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1270. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1271. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1272. }
  1273. }
  1274. // hardcoded for now
  1275. c->gamma_value = 2.2;
  1276. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1277. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1278. SwsContext *c2;
  1279. c->cascaded_context[0] = NULL;
  1280. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1281. srcW, srcH, tmpFmt, 64);
  1282. if (ret < 0)
  1283. return ret;
  1284. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1285. srcW, srcH, tmpFmt,
  1286. flags, NULL, NULL, c->param);
  1287. if (!c->cascaded_context[0]) {
  1288. return -1;
  1289. }
  1290. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1291. dstW, dstH, tmpFmt,
  1292. flags, srcFilter, dstFilter, c->param);
  1293. if (!c->cascaded_context[1])
  1294. return -1;
  1295. c2 = c->cascaded_context[1];
  1296. c2->is_internal_gamma = 1;
  1297. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1298. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1299. if (!c2->gamma || !c2->inv_gamma)
  1300. return AVERROR(ENOMEM);
  1301. // is_internal_flag is set after creating the context
  1302. // to properly create the gamma convert FilterDescriptor
  1303. // we have to re-initialize it
  1304. ff_free_filters(c2);
  1305. if (ff_init_filters(c2) < 0) {
  1306. sws_freeContext(c2);
  1307. return -1;
  1308. }
  1309. c->cascaded_context[2] = NULL;
  1310. if (dstFormat != tmpFmt) {
  1311. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1312. dstW, dstH, tmpFmt, 64);
  1313. if (ret < 0)
  1314. return ret;
  1315. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1316. dstW, dstH, dstFormat,
  1317. flags, NULL, NULL, c->param);
  1318. if (!c->cascaded_context[2])
  1319. return -1;
  1320. }
  1321. return 0;
  1322. }
  1323. if (isBayer(srcFormat)) {
  1324. if (!unscaled ||
  1325. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1326. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1327. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1328. srcW, srcH, tmpFormat, 64);
  1329. if (ret < 0)
  1330. return ret;
  1331. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1332. srcW, srcH, tmpFormat,
  1333. flags, srcFilter, NULL, c->param);
  1334. if (!c->cascaded_context[0])
  1335. return -1;
  1336. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1337. dstW, dstH, dstFormat,
  1338. flags, NULL, dstFilter, c->param);
  1339. if (!c->cascaded_context[1])
  1340. return -1;
  1341. return 0;
  1342. }
  1343. }
  1344. if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
  1345. enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
  1346. if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
  1347. if (!unscaled ||
  1348. dstFormat != tmpFormat ||
  1349. usesHFilter || usesVFilter ||
  1350. c->srcRange != c->dstRange
  1351. ) {
  1352. c->cascaded_mainindex = 1;
  1353. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1354. srcW, srcH, tmpFormat, 64);
  1355. if (ret < 0)
  1356. return ret;
  1357. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1358. srcW, srcH, tmpFormat,
  1359. flags, c->param);
  1360. if (!c->cascaded_context[0])
  1361. return -1;
  1362. c->cascaded_context[0]->alphablend = c->alphablend;
  1363. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  1364. if (ret < 0)
  1365. return ret;
  1366. c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
  1367. dstW, dstH, dstFormat,
  1368. flags, c->param);
  1369. if (!c->cascaded_context[1])
  1370. return -1;
  1371. c->cascaded_context[1]->srcRange = c->srcRange;
  1372. c->cascaded_context[1]->dstRange = c->dstRange;
  1373. ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
  1374. if (ret < 0)
  1375. return ret;
  1376. return 0;
  1377. }
  1378. }
  1379. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1380. /* precalculate horizontal scaler filter coefficients */
  1381. {
  1382. #if HAVE_MMXEXT_INLINE
  1383. // can't downscale !!!
  1384. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1385. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1386. NULL, NULL, 8);
  1387. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1388. NULL, NULL, NULL, 4);
  1389. #if USE_MMAP
  1390. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1391. PROT_READ | PROT_WRITE,
  1392. MAP_PRIVATE | MAP_ANONYMOUS,
  1393. -1, 0);
  1394. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1395. PROT_READ | PROT_WRITE,
  1396. MAP_PRIVATE | MAP_ANONYMOUS,
  1397. -1, 0);
  1398. #elif HAVE_VIRTUALALLOC
  1399. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1400. c->lumMmxextFilterCodeSize,
  1401. MEM_COMMIT,
  1402. PAGE_EXECUTE_READWRITE);
  1403. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1404. c->chrMmxextFilterCodeSize,
  1405. MEM_COMMIT,
  1406. PAGE_EXECUTE_READWRITE);
  1407. #else
  1408. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1409. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1410. #endif
  1411. #ifdef MAP_ANONYMOUS
  1412. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1413. #else
  1414. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1415. #endif
  1416. {
  1417. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1418. return AVERROR(ENOMEM);
  1419. }
  1420. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1421. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1422. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1423. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1424. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1425. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1426. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1427. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1428. #if USE_MMAP
  1429. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1430. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1431. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1432. goto fail;
  1433. }
  1434. #endif
  1435. } else
  1436. #endif /* HAVE_MMXEXT_INLINE */
  1437. {
  1438. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1439. PPC_ALTIVEC(cpu_flags) ? 8 :
  1440. have_neon(cpu_flags) ? 4 : 1;
  1441. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1442. &c->hLumFilterSize, c->lumXInc,
  1443. srcW, dstW, filterAlign, 1 << 14,
  1444. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1445. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1446. c->param,
  1447. get_local_pos(c, 0, 0, 0),
  1448. get_local_pos(c, 0, 0, 0))) < 0)
  1449. goto fail;
  1450. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1451. &c->hChrFilterSize, c->chrXInc,
  1452. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1453. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1454. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1455. c->param,
  1456. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1457. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1458. goto fail;
  1459. }
  1460. } // initialize horizontal stuff
  1461. /* precalculate vertical scaler filter coefficients */
  1462. {
  1463. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1464. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1465. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1466. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1467. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1468. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1469. c->param,
  1470. get_local_pos(c, 0, 0, 1),
  1471. get_local_pos(c, 0, 0, 1))) < 0)
  1472. goto fail;
  1473. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1474. c->chrYInc, c->chrSrcH, c->chrDstH,
  1475. filterAlign, (1 << 12),
  1476. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1477. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1478. c->param,
  1479. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1480. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1481. goto fail;
  1482. #if HAVE_ALTIVEC
  1483. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1484. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1485. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1486. int j;
  1487. short *p = (short *)&c->vYCoeffsBank[i];
  1488. for (j = 0; j < 8; j++)
  1489. p[j] = c->vLumFilter[i];
  1490. }
  1491. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1492. int j;
  1493. short *p = (short *)&c->vCCoeffsBank[i];
  1494. for (j = 0; j < 8; j++)
  1495. p[j] = c->vChrFilter[i];
  1496. }
  1497. #endif
  1498. }
  1499. // calculate buffer sizes so that they won't run out while handling these damn slices
  1500. c->vLumBufSize = c->vLumFilterSize;
  1501. c->vChrBufSize = c->vChrFilterSize;
  1502. for (i = 0; i < dstH; i++) {
  1503. int chrI = (int64_t)i * c->chrDstH / dstH;
  1504. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1505. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1506. << c->chrSrcVSubSample));
  1507. nextSlice >>= c->chrSrcVSubSample;
  1508. nextSlice <<= c->chrSrcVSubSample;
  1509. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1510. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1511. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1512. (nextSlice >> c->chrSrcVSubSample))
  1513. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1514. c->vChrFilterPos[chrI];
  1515. }
  1516. for (i = 0; i < 4; i++)
  1517. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1518. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1519. * need to allocate several megabytes to handle all possible cases) */
  1520. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1521. FF_ALLOCZ_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1522. FF_ALLOCZ_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1523. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1524. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1525. /* Note we need at least one pixel more at the end because of the MMX code
  1526. * (just in case someone wants to replace the 4000/8000). */
  1527. /* align at 16 bytes for AltiVec */
  1528. for (i = 0; i < c->vLumBufSize; i++) {
  1529. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1530. dst_stride + 16, fail);
  1531. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1532. }
  1533. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1534. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1535. c->uv_offx2 = dst_stride + 16;
  1536. for (i = 0; i < c->vChrBufSize; i++) {
  1537. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1538. dst_stride * 2 + 32, fail);
  1539. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1540. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1541. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1542. }
  1543. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1544. for (i = 0; i < c->vLumBufSize; i++) {
  1545. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1546. dst_stride + 16, fail);
  1547. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1548. }
  1549. // try to avoid drawing green stuff between the right end and the stride end
  1550. for (i = 0; i < c->vChrBufSize; i++)
  1551. if(desc_dst->comp[0].depth == 16){
  1552. av_assert0(c->dstBpc > 14);
  1553. for(j=0; j<dst_stride/2+1; j++)
  1554. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1555. } else
  1556. for(j=0; j<dst_stride+1; j++)
  1557. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1558. av_assert0(c->chrDstH <= dstH);
  1559. if (flags & SWS_PRINT_INFO) {
  1560. const char *scaler = NULL, *cpucaps;
  1561. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1562. if (flags & scale_algorithms[i].flag) {
  1563. scaler = scale_algorithms[i].description;
  1564. break;
  1565. }
  1566. }
  1567. if (!scaler)
  1568. scaler = "ehh flags invalid?!";
  1569. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1570. scaler,
  1571. av_get_pix_fmt_name(srcFormat),
  1572. #ifdef DITHER1XBPP
  1573. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1574. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1575. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1576. "dithered " : "",
  1577. #else
  1578. "",
  1579. #endif
  1580. av_get_pix_fmt_name(dstFormat));
  1581. if (INLINE_MMXEXT(cpu_flags))
  1582. cpucaps = "MMXEXT";
  1583. else if (INLINE_AMD3DNOW(cpu_flags))
  1584. cpucaps = "3DNOW";
  1585. else if (INLINE_MMX(cpu_flags))
  1586. cpucaps = "MMX";
  1587. else if (PPC_ALTIVEC(cpu_flags))
  1588. cpucaps = "AltiVec";
  1589. else
  1590. cpucaps = "C";
  1591. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1592. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1593. av_log(c, AV_LOG_DEBUG,
  1594. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1595. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1596. av_log(c, AV_LOG_DEBUG,
  1597. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1598. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1599. c->chrXInc, c->chrYInc);
  1600. }
  1601. /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
  1602. if (unscaled && !usesHFilter && !usesVFilter &&
  1603. c->alphablend != SWS_ALPHA_BLEND_NONE &&
  1604. isALPHA(srcFormat) &&
  1605. (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
  1606. alphaless_fmt(srcFormat) == dstFormat
  1607. ) {
  1608. c->swscale = ff_sws_alphablendaway;
  1609. if (flags & SWS_PRINT_INFO)
  1610. av_log(c, AV_LOG_INFO,
  1611. "using alpha blendaway %s -> %s special converter\n",
  1612. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1613. return 0;
  1614. }
  1615. /* unscaled special cases */
  1616. if (unscaled && !usesHFilter && !usesVFilter &&
  1617. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1618. ff_get_unscaled_swscale(c);
  1619. if (c->swscale) {
  1620. if (flags & SWS_PRINT_INFO)
  1621. av_log(c, AV_LOG_INFO,
  1622. "using unscaled %s -> %s special converter\n",
  1623. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1624. return 0;
  1625. }
  1626. }
  1627. c->swscale = ff_getSwsFunc(c);
  1628. return ff_init_filters(c);
  1629. fail: // FIXME replace things by appropriate error codes
  1630. if (ret == RETCODE_USE_CASCADE) {
  1631. int tmpW = sqrt(srcW * (int64_t)dstW);
  1632. int tmpH = sqrt(srcH * (int64_t)dstH);
  1633. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1634. if (isALPHA(srcFormat))
  1635. tmpFormat = AV_PIX_FMT_YUVA420P;
  1636. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1637. return AVERROR(EINVAL);
  1638. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1639. tmpW, tmpH, tmpFormat, 64);
  1640. if (ret < 0)
  1641. return ret;
  1642. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1643. tmpW, tmpH, tmpFormat,
  1644. flags, srcFilter, NULL, c->param);
  1645. if (!c->cascaded_context[0])
  1646. return -1;
  1647. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1648. dstW, dstH, dstFormat,
  1649. flags, NULL, dstFilter, c->param);
  1650. if (!c->cascaded_context[1])
  1651. return -1;
  1652. return 0;
  1653. }
  1654. return -1;
  1655. }
  1656. SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1657. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1658. int flags, const double *param)
  1659. {
  1660. SwsContext *c;
  1661. if (!(c = sws_alloc_context()))
  1662. return NULL;
  1663. c->flags = flags;
  1664. c->srcW = srcW;
  1665. c->srcH = srcH;
  1666. c->dstW = dstW;
  1667. c->dstH = dstH;
  1668. c->srcFormat = srcFormat;
  1669. c->dstFormat = dstFormat;
  1670. if (param) {
  1671. c->param[0] = param[0];
  1672. c->param[1] = param[1];
  1673. }
  1674. return c;
  1675. }
  1676. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1677. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1678. int flags, SwsFilter *srcFilter,
  1679. SwsFilter *dstFilter, const double *param)
  1680. {
  1681. SwsContext *c;
  1682. c = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1683. dstW, dstH, dstFormat,
  1684. flags, param);
  1685. if (!c)
  1686. return NULL;
  1687. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1688. sws_freeContext(c);
  1689. return NULL;
  1690. }
  1691. return c;
  1692. }
  1693. static int isnan_vec(SwsVector *a)
  1694. {
  1695. int i;
  1696. for (i=0; i<a->length; i++)
  1697. if (isnan(a->coeff[i]))
  1698. return 1;
  1699. return 0;
  1700. }
  1701. static void makenan_vec(SwsVector *a)
  1702. {
  1703. int i;
  1704. for (i=0; i<a->length; i++)
  1705. a->coeff[i] = NAN;
  1706. }
  1707. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1708. float lumaSharpen, float chromaSharpen,
  1709. float chromaHShift, float chromaVShift,
  1710. int verbose)
  1711. {
  1712. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1713. if (!filter)
  1714. return NULL;
  1715. if (lumaGBlur != 0.0) {
  1716. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1717. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1718. } else {
  1719. filter->lumH = sws_getIdentityVec();
  1720. filter->lumV = sws_getIdentityVec();
  1721. }
  1722. if (chromaGBlur != 0.0) {
  1723. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1724. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1725. } else {
  1726. filter->chrH = sws_getIdentityVec();
  1727. filter->chrV = sws_getIdentityVec();
  1728. }
  1729. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1730. goto fail;
  1731. if (chromaSharpen != 0.0) {
  1732. SwsVector *id = sws_getIdentityVec();
  1733. if (!id)
  1734. goto fail;
  1735. sws_scaleVec(filter->chrH, -chromaSharpen);
  1736. sws_scaleVec(filter->chrV, -chromaSharpen);
  1737. sws_addVec(filter->chrH, id);
  1738. sws_addVec(filter->chrV, id);
  1739. sws_freeVec(id);
  1740. }
  1741. if (lumaSharpen != 0.0) {
  1742. SwsVector *id = sws_getIdentityVec();
  1743. if (!id)
  1744. goto fail;
  1745. sws_scaleVec(filter->lumH, -lumaSharpen);
  1746. sws_scaleVec(filter->lumV, -lumaSharpen);
  1747. sws_addVec(filter->lumH, id);
  1748. sws_addVec(filter->lumV, id);
  1749. sws_freeVec(id);
  1750. }
  1751. if (chromaHShift != 0.0)
  1752. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1753. if (chromaVShift != 0.0)
  1754. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1755. sws_normalizeVec(filter->chrH, 1.0);
  1756. sws_normalizeVec(filter->chrV, 1.0);
  1757. sws_normalizeVec(filter->lumH, 1.0);
  1758. sws_normalizeVec(filter->lumV, 1.0);
  1759. if (isnan_vec(filter->chrH) ||
  1760. isnan_vec(filter->chrV) ||
  1761. isnan_vec(filter->lumH) ||
  1762. isnan_vec(filter->lumV))
  1763. goto fail;
  1764. if (verbose)
  1765. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1766. if (verbose)
  1767. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1768. return filter;
  1769. fail:
  1770. sws_freeVec(filter->lumH);
  1771. sws_freeVec(filter->lumV);
  1772. sws_freeVec(filter->chrH);
  1773. sws_freeVec(filter->chrV);
  1774. av_freep(&filter);
  1775. return NULL;
  1776. }
  1777. SwsVector *sws_allocVec(int length)
  1778. {
  1779. SwsVector *vec;
  1780. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1781. return NULL;
  1782. vec = av_malloc(sizeof(SwsVector));
  1783. if (!vec)
  1784. return NULL;
  1785. vec->length = length;
  1786. vec->coeff = av_malloc(sizeof(double) * length);
  1787. if (!vec->coeff)
  1788. av_freep(&vec);
  1789. return vec;
  1790. }
  1791. SwsVector *sws_getGaussianVec(double variance, double quality)
  1792. {
  1793. const int length = (int)(variance * quality + 0.5) | 1;
  1794. int i;
  1795. double middle = (length - 1) * 0.5;
  1796. SwsVector *vec;
  1797. if(variance < 0 || quality < 0)
  1798. return NULL;
  1799. vec = sws_allocVec(length);
  1800. if (!vec)
  1801. return NULL;
  1802. for (i = 0; i < length; i++) {
  1803. double dist = i - middle;
  1804. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1805. sqrt(2 * variance * M_PI);
  1806. }
  1807. sws_normalizeVec(vec, 1.0);
  1808. return vec;
  1809. }
  1810. SwsVector *sws_getConstVec(double c, int length)
  1811. {
  1812. int i;
  1813. SwsVector *vec = sws_allocVec(length);
  1814. if (!vec)
  1815. return NULL;
  1816. for (i = 0; i < length; i++)
  1817. vec->coeff[i] = c;
  1818. return vec;
  1819. }
  1820. SwsVector *sws_getIdentityVec(void)
  1821. {
  1822. return sws_getConstVec(1.0, 1);
  1823. }
  1824. static double sws_dcVec(SwsVector *a)
  1825. {
  1826. int i;
  1827. double sum = 0;
  1828. for (i = 0; i < a->length; i++)
  1829. sum += a->coeff[i];
  1830. return sum;
  1831. }
  1832. void sws_scaleVec(SwsVector *a, double scalar)
  1833. {
  1834. int i;
  1835. for (i = 0; i < a->length; i++)
  1836. a->coeff[i] *= scalar;
  1837. }
  1838. void sws_normalizeVec(SwsVector *a, double height)
  1839. {
  1840. sws_scaleVec(a, height / sws_dcVec(a));
  1841. }
  1842. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1843. {
  1844. int length = a->length + b->length - 1;
  1845. int i, j;
  1846. SwsVector *vec = sws_getConstVec(0.0, length);
  1847. if (!vec)
  1848. return NULL;
  1849. for (i = 0; i < a->length; i++) {
  1850. for (j = 0; j < b->length; j++) {
  1851. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1852. }
  1853. }
  1854. return vec;
  1855. }
  1856. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1857. {
  1858. int length = FFMAX(a->length, b->length);
  1859. int i;
  1860. SwsVector *vec = sws_getConstVec(0.0, length);
  1861. if (!vec)
  1862. return NULL;
  1863. for (i = 0; i < a->length; i++)
  1864. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1865. for (i = 0; i < b->length; i++)
  1866. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1867. return vec;
  1868. }
  1869. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1870. {
  1871. int length = FFMAX(a->length, b->length);
  1872. int i;
  1873. SwsVector *vec = sws_getConstVec(0.0, length);
  1874. if (!vec)
  1875. return NULL;
  1876. for (i = 0; i < a->length; i++)
  1877. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1878. for (i = 0; i < b->length; i++)
  1879. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1880. return vec;
  1881. }
  1882. /* shift left / or right if "shift" is negative */
  1883. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1884. {
  1885. int length = a->length + FFABS(shift) * 2;
  1886. int i;
  1887. SwsVector *vec = sws_getConstVec(0.0, length);
  1888. if (!vec)
  1889. return NULL;
  1890. for (i = 0; i < a->length; i++) {
  1891. vec->coeff[i + (length - 1) / 2 -
  1892. (a->length - 1) / 2 - shift] = a->coeff[i];
  1893. }
  1894. return vec;
  1895. }
  1896. void sws_shiftVec(SwsVector *a, int shift)
  1897. {
  1898. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1899. if (!shifted) {
  1900. makenan_vec(a);
  1901. return;
  1902. }
  1903. av_free(a->coeff);
  1904. a->coeff = shifted->coeff;
  1905. a->length = shifted->length;
  1906. av_free(shifted);
  1907. }
  1908. void sws_addVec(SwsVector *a, SwsVector *b)
  1909. {
  1910. SwsVector *sum = sws_sumVec(a, b);
  1911. if (!sum) {
  1912. makenan_vec(a);
  1913. return;
  1914. }
  1915. av_free(a->coeff);
  1916. a->coeff = sum->coeff;
  1917. a->length = sum->length;
  1918. av_free(sum);
  1919. }
  1920. void sws_subVec(SwsVector *a, SwsVector *b)
  1921. {
  1922. SwsVector *diff = sws_diffVec(a, b);
  1923. if (!diff) {
  1924. makenan_vec(a);
  1925. return;
  1926. }
  1927. av_free(a->coeff);
  1928. a->coeff = diff->coeff;
  1929. a->length = diff->length;
  1930. av_free(diff);
  1931. }
  1932. void sws_convVec(SwsVector *a, SwsVector *b)
  1933. {
  1934. SwsVector *conv = sws_getConvVec(a, b);
  1935. if (!conv) {
  1936. makenan_vec(a);
  1937. return;
  1938. }
  1939. av_free(a->coeff);
  1940. a->coeff = conv->coeff;
  1941. a->length = conv->length;
  1942. av_free(conv);
  1943. }
  1944. SwsVector *sws_cloneVec(SwsVector *a)
  1945. {
  1946. SwsVector *vec = sws_allocVec(a->length);
  1947. if (!vec)
  1948. return NULL;
  1949. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1950. return vec;
  1951. }
  1952. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1953. {
  1954. int i;
  1955. double max = 0;
  1956. double min = 0;
  1957. double range;
  1958. for (i = 0; i < a->length; i++)
  1959. if (a->coeff[i] > max)
  1960. max = a->coeff[i];
  1961. for (i = 0; i < a->length; i++)
  1962. if (a->coeff[i] < min)
  1963. min = a->coeff[i];
  1964. range = max - min;
  1965. for (i = 0; i < a->length; i++) {
  1966. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1967. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1968. for (; x > 0; x--)
  1969. av_log(log_ctx, log_level, " ");
  1970. av_log(log_ctx, log_level, "|\n");
  1971. }
  1972. }
  1973. void sws_freeVec(SwsVector *a)
  1974. {
  1975. if (!a)
  1976. return;
  1977. av_freep(&a->coeff);
  1978. a->length = 0;
  1979. av_free(a);
  1980. }
  1981. void sws_freeFilter(SwsFilter *filter)
  1982. {
  1983. if (!filter)
  1984. return;
  1985. sws_freeVec(filter->lumH);
  1986. sws_freeVec(filter->lumV);
  1987. sws_freeVec(filter->chrH);
  1988. sws_freeVec(filter->chrV);
  1989. av_free(filter);
  1990. }
  1991. void sws_freeContext(SwsContext *c)
  1992. {
  1993. int i;
  1994. if (!c)
  1995. return;
  1996. if (c->lumPixBuf) {
  1997. for (i = 0; i < c->vLumBufSize; i++)
  1998. av_freep(&c->lumPixBuf[i]);
  1999. av_freep(&c->lumPixBuf);
  2000. }
  2001. if (c->chrUPixBuf) {
  2002. for (i = 0; i < c->vChrBufSize; i++)
  2003. av_freep(&c->chrUPixBuf[i]);
  2004. av_freep(&c->chrUPixBuf);
  2005. av_freep(&c->chrVPixBuf);
  2006. }
  2007. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  2008. for (i = 0; i < c->vLumBufSize; i++)
  2009. av_freep(&c->alpPixBuf[i]);
  2010. av_freep(&c->alpPixBuf);
  2011. }
  2012. for (i = 0; i < 4; i++)
  2013. av_freep(&c->dither_error[i]);
  2014. av_freep(&c->vLumFilter);
  2015. av_freep(&c->vChrFilter);
  2016. av_freep(&c->hLumFilter);
  2017. av_freep(&c->hChrFilter);
  2018. #if HAVE_ALTIVEC
  2019. av_freep(&c->vYCoeffsBank);
  2020. av_freep(&c->vCCoeffsBank);
  2021. #endif
  2022. av_freep(&c->vLumFilterPos);
  2023. av_freep(&c->vChrFilterPos);
  2024. av_freep(&c->hLumFilterPos);
  2025. av_freep(&c->hChrFilterPos);
  2026. #if HAVE_MMX_INLINE
  2027. #if USE_MMAP
  2028. if (c->lumMmxextFilterCode)
  2029. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  2030. if (c->chrMmxextFilterCode)
  2031. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  2032. #elif HAVE_VIRTUALALLOC
  2033. if (c->lumMmxextFilterCode)
  2034. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  2035. if (c->chrMmxextFilterCode)
  2036. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  2037. #else
  2038. av_free(c->lumMmxextFilterCode);
  2039. av_free(c->chrMmxextFilterCode);
  2040. #endif
  2041. c->lumMmxextFilterCode = NULL;
  2042. c->chrMmxextFilterCode = NULL;
  2043. #endif /* HAVE_MMX_INLINE */
  2044. av_freep(&c->yuvTable);
  2045. av_freep(&c->formatConvBuffer);
  2046. sws_freeContext(c->cascaded_context[0]);
  2047. sws_freeContext(c->cascaded_context[1]);
  2048. sws_freeContext(c->cascaded_context[2]);
  2049. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  2050. av_freep(&c->cascaded_tmp[0]);
  2051. av_freep(&c->cascaded1_tmp[0]);
  2052. av_freep(&c->gamma);
  2053. av_freep(&c->inv_gamma);
  2054. ff_free_filters(c);
  2055. av_free(c);
  2056. }
  2057. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  2058. int srcH, enum AVPixelFormat srcFormat,
  2059. int dstW, int dstH,
  2060. enum AVPixelFormat dstFormat, int flags,
  2061. SwsFilter *srcFilter,
  2062. SwsFilter *dstFilter,
  2063. const double *param)
  2064. {
  2065. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  2066. SWS_PARAM_DEFAULT };
  2067. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  2068. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  2069. if (!param)
  2070. param = default_param;
  2071. if (context &&
  2072. (context->srcW != srcW ||
  2073. context->srcH != srcH ||
  2074. context->srcFormat != srcFormat ||
  2075. context->dstW != dstW ||
  2076. context->dstH != dstH ||
  2077. context->dstFormat != dstFormat ||
  2078. context->flags != flags ||
  2079. context->param[0] != param[0] ||
  2080. context->param[1] != param[1])) {
  2081. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  2082. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  2083. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  2084. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  2085. sws_freeContext(context);
  2086. context = NULL;
  2087. }
  2088. if (!context) {
  2089. if (!(context = sws_alloc_context()))
  2090. return NULL;
  2091. context->srcW = srcW;
  2092. context->srcH = srcH;
  2093. context->srcFormat = srcFormat;
  2094. context->dstW = dstW;
  2095. context->dstH = dstH;
  2096. context->dstFormat = dstFormat;
  2097. context->flags = flags;
  2098. context->param[0] = param[0];
  2099. context->param[1] = param[1];
  2100. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  2101. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  2102. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  2103. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  2104. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  2105. sws_freeContext(context);
  2106. return NULL;
  2107. }
  2108. }
  2109. return context;
  2110. }