You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1795 lines
63KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/ppc/cpu.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. unsigned swscale_version(void)
  52. {
  53. return LIBSWSCALE_VERSION_INT;
  54. }
  55. const char *swscale_configuration(void)
  56. {
  57. return LIBAV_CONFIGURATION;
  58. }
  59. const char *swscale_license(void)
  60. {
  61. #define LICENSE_PREFIX "libswscale license: "
  62. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  63. }
  64. #define RET 0xC3 // near return opcode for x86
  65. typedef struct FormatEntry {
  66. uint8_t is_supported_in :1;
  67. uint8_t is_supported_out :1;
  68. uint8_t is_supported_endianness :1;
  69. } FormatEntry;
  70. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  71. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  72. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  73. [AV_PIX_FMT_RGB24] = { 1, 1 },
  74. [AV_PIX_FMT_BGR24] = { 1, 1 },
  75. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  78. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  79. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  80. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  81. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  82. [AV_PIX_FMT_PAL8] = { 1, 0 },
  83. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  85. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  86. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  87. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  88. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  89. [AV_PIX_FMT_BGR8] = { 1, 1 },
  90. [AV_PIX_FMT_BGR4] = { 0, 1 },
  91. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  92. [AV_PIX_FMT_RGB8] = { 1, 1 },
  93. [AV_PIX_FMT_RGB4] = { 0, 1 },
  94. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  95. [AV_PIX_FMT_NV12] = { 1, 1 },
  96. [AV_PIX_FMT_NV21] = { 1, 1 },
  97. [AV_PIX_FMT_ARGB] = { 1, 1 },
  98. [AV_PIX_FMT_RGBA] = { 1, 1 },
  99. [AV_PIX_FMT_ABGR] = { 1, 1 },
  100. [AV_PIX_FMT_BGRA] = { 1, 1 },
  101. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  102. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  103. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  104. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  105. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  115. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  116. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  126. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  127. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  128. [AV_PIX_FMT_RGBA64BE] = { 0, 0, 1 },
  129. [AV_PIX_FMT_RGBA64LE] = { 0, 0, 1 },
  130. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  131. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  132. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  133. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  134. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  135. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  136. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  137. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  138. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  139. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  140. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  141. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  144. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  145. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  146. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  147. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  148. [AV_PIX_FMT_YA8] = { 1, 0 },
  149. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  150. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  151. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  152. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  153. [AV_PIX_FMT_BGRA64BE] = { 0, 0, 1 },
  154. [AV_PIX_FMT_BGRA64LE] = { 0, 0, 1 },
  155. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  167. [AV_PIX_FMT_GBRP] = { 1, 1 },
  168. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  169. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  170. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  171. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  172. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  173. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  174. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  175. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  176. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  177. [AV_PIX_FMT_XYZ12BE] = { 0, 0, 1 },
  178. [AV_PIX_FMT_XYZ12LE] = { 0, 0, 1 },
  179. };
  180. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  181. {
  182. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  183. format_entries[pix_fmt].is_supported_in : 0;
  184. }
  185. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  186. {
  187. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  188. format_entries[pix_fmt].is_supported_out : 0;
  189. }
  190. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  191. {
  192. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  193. format_entries[pix_fmt].is_supported_endianness : 0;
  194. }
  195. const char *sws_format_name(enum AVPixelFormat format)
  196. {
  197. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  198. if (desc)
  199. return desc->name;
  200. else
  201. return "Unknown format";
  202. }
  203. static double getSplineCoeff(double a, double b, double c, double d,
  204. double dist)
  205. {
  206. if (dist <= 1.0)
  207. return ((d * dist + c) * dist + b) * dist + a;
  208. else
  209. return getSplineCoeff(0.0,
  210. b + 2.0 * c + 3.0 * d,
  211. c + 3.0 * d,
  212. -b - 3.0 * c - 6.0 * d,
  213. dist - 1.0);
  214. }
  215. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  216. int *outFilterSize, int xInc, int srcW,
  217. int dstW, int filterAlign, int one,
  218. int flags, int cpu_flags,
  219. SwsVector *srcFilter, SwsVector *dstFilter,
  220. double param[2], int is_horizontal)
  221. {
  222. int i;
  223. int filterSize;
  224. int filter2Size;
  225. int minFilterSize;
  226. int64_t *filter = NULL;
  227. int64_t *filter2 = NULL;
  228. const int64_t fone = 1LL << 54;
  229. int ret = -1;
  230. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  231. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  232. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  233. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  234. int i;
  235. filterSize = 1;
  236. FF_ALLOCZ_OR_GOTO(NULL, filter,
  237. dstW * sizeof(*filter) * filterSize, fail);
  238. for (i = 0; i < dstW; i++) {
  239. filter[i * filterSize] = fone;
  240. (*filterPos)[i] = i;
  241. }
  242. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  243. int i;
  244. int xDstInSrc;
  245. filterSize = 1;
  246. FF_ALLOC_OR_GOTO(NULL, filter,
  247. dstW * sizeof(*filter) * filterSize, fail);
  248. xDstInSrc = xInc / 2 - 0x8000;
  249. for (i = 0; i < dstW; i++) {
  250. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  251. (*filterPos)[i] = xx;
  252. filter[i] = fone;
  253. xDstInSrc += xInc;
  254. }
  255. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  256. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  257. int i;
  258. int xDstInSrc;
  259. filterSize = 2;
  260. FF_ALLOC_OR_GOTO(NULL, filter,
  261. dstW * sizeof(*filter) * filterSize, fail);
  262. xDstInSrc = xInc / 2 - 0x8000;
  263. for (i = 0; i < dstW; i++) {
  264. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  265. int j;
  266. (*filterPos)[i] = xx;
  267. // bilinear upscale / linear interpolate / area averaging
  268. for (j = 0; j < filterSize; j++) {
  269. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  270. (fone >> 16);
  271. if (coeff < 0)
  272. coeff = 0;
  273. filter[i * filterSize + j] = coeff;
  274. xx++;
  275. }
  276. xDstInSrc += xInc;
  277. }
  278. } else {
  279. int64_t xDstInSrc;
  280. int sizeFactor;
  281. if (flags & SWS_BICUBIC)
  282. sizeFactor = 4;
  283. else if (flags & SWS_X)
  284. sizeFactor = 8;
  285. else if (flags & SWS_AREA)
  286. sizeFactor = 1; // downscale only, for upscale it is bilinear
  287. else if (flags & SWS_GAUSS)
  288. sizeFactor = 8; // infinite ;)
  289. else if (flags & SWS_LANCZOS)
  290. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  291. else if (flags & SWS_SINC)
  292. sizeFactor = 20; // infinite ;)
  293. else if (flags & SWS_SPLINE)
  294. sizeFactor = 20; // infinite ;)
  295. else if (flags & SWS_BILINEAR)
  296. sizeFactor = 2;
  297. else {
  298. sizeFactor = 0; // GCC warning killer
  299. assert(0);
  300. }
  301. if (xInc <= 1 << 16)
  302. filterSize = 1 + sizeFactor; // upscale
  303. else
  304. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  305. filterSize = FFMIN(filterSize, srcW - 2);
  306. filterSize = FFMAX(filterSize, 1);
  307. FF_ALLOC_OR_GOTO(NULL, filter,
  308. dstW * sizeof(*filter) * filterSize, fail);
  309. xDstInSrc = xInc - 0x10000;
  310. for (i = 0; i < dstW; i++) {
  311. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  312. int j;
  313. (*filterPos)[i] = xx;
  314. for (j = 0; j < filterSize; j++) {
  315. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  316. double floatd;
  317. int64_t coeff;
  318. if (xInc > 1 << 16)
  319. d = d * dstW / srcW;
  320. floatd = d * (1.0 / (1 << 30));
  321. if (flags & SWS_BICUBIC) {
  322. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  323. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  324. if (d >= 1LL << 31) {
  325. coeff = 0.0;
  326. } else {
  327. int64_t dd = (d * d) >> 30;
  328. int64_t ddd = (dd * d) >> 30;
  329. if (d < 1LL << 30)
  330. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  331. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  332. (6 * (1 << 24) - 2 * B) * (1 << 30);
  333. else
  334. coeff = (-B - 6 * C) * ddd +
  335. (6 * B + 30 * C) * dd +
  336. (-12 * B - 48 * C) * d +
  337. (8 * B + 24 * C) * (1 << 30);
  338. }
  339. coeff *= fone >> (30 + 24);
  340. }
  341. #if 0
  342. else if (flags & SWS_X) {
  343. double p = param ? param * 0.01 : 0.3;
  344. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  345. coeff *= pow(2.0, -p * d * d);
  346. }
  347. #endif
  348. else if (flags & SWS_X) {
  349. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  350. double c;
  351. if (floatd < 1.0)
  352. c = cos(floatd * M_PI);
  353. else
  354. c = -1.0;
  355. if (c < 0.0)
  356. c = -pow(-c, A);
  357. else
  358. c = pow(c, A);
  359. coeff = (c * 0.5 + 0.5) * fone;
  360. } else if (flags & SWS_AREA) {
  361. int64_t d2 = d - (1 << 29);
  362. if (d2 * xInc < -(1LL << (29 + 16)))
  363. coeff = 1.0 * (1LL << (30 + 16));
  364. else if (d2 * xInc < (1LL << (29 + 16)))
  365. coeff = -d2 * xInc + (1LL << (29 + 16));
  366. else
  367. coeff = 0.0;
  368. coeff *= fone >> (30 + 16);
  369. } else if (flags & SWS_GAUSS) {
  370. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  371. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  372. } else if (flags & SWS_SINC) {
  373. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  374. } else if (flags & SWS_LANCZOS) {
  375. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  376. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  377. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  378. if (floatd > p)
  379. coeff = 0;
  380. } else if (flags & SWS_BILINEAR) {
  381. coeff = (1 << 30) - d;
  382. if (coeff < 0)
  383. coeff = 0;
  384. coeff *= fone >> 30;
  385. } else if (flags & SWS_SPLINE) {
  386. double p = -2.196152422706632;
  387. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  388. } else {
  389. coeff = 0.0; // GCC warning killer
  390. assert(0);
  391. }
  392. filter[i * filterSize + j] = coeff;
  393. xx++;
  394. }
  395. xDstInSrc += 2 * xInc;
  396. }
  397. }
  398. /* apply src & dst Filter to filter -> filter2
  399. * av_free(filter);
  400. */
  401. assert(filterSize > 0);
  402. filter2Size = filterSize;
  403. if (srcFilter)
  404. filter2Size += srcFilter->length - 1;
  405. if (dstFilter)
  406. filter2Size += dstFilter->length - 1;
  407. assert(filter2Size > 0);
  408. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  409. for (i = 0; i < dstW; i++) {
  410. int j, k;
  411. if (srcFilter) {
  412. for (k = 0; k < srcFilter->length; k++) {
  413. for (j = 0; j < filterSize; j++)
  414. filter2[i * filter2Size + k + j] +=
  415. srcFilter->coeff[k] * filter[i * filterSize + j];
  416. }
  417. } else {
  418. for (j = 0; j < filterSize; j++)
  419. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  420. }
  421. // FIXME dstFilter
  422. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  423. }
  424. av_freep(&filter);
  425. /* try to reduce the filter-size (step1 find size and shift left) */
  426. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  427. minFilterSize = 0;
  428. for (i = dstW - 1; i >= 0; i--) {
  429. int min = filter2Size;
  430. int j;
  431. int64_t cutOff = 0.0;
  432. /* get rid of near zero elements on the left by shifting left */
  433. for (j = 0; j < filter2Size; j++) {
  434. int k;
  435. cutOff += FFABS(filter2[i * filter2Size]);
  436. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  437. break;
  438. /* preserve monotonicity because the core can't handle the
  439. * filter otherwise */
  440. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  441. break;
  442. // move filter coefficients left
  443. for (k = 1; k < filter2Size; k++)
  444. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  445. filter2[i * filter2Size + k - 1] = 0;
  446. (*filterPos)[i]++;
  447. }
  448. cutOff = 0;
  449. /* count near zeros on the right */
  450. for (j = filter2Size - 1; j > 0; j--) {
  451. cutOff += FFABS(filter2[i * filter2Size + j]);
  452. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  453. break;
  454. min--;
  455. }
  456. if (min > minFilterSize)
  457. minFilterSize = min;
  458. }
  459. if (PPC_ALTIVEC(cpu_flags)) {
  460. // we can handle the special case 4, so we don't want to go the full 8
  461. if (minFilterSize < 5)
  462. filterAlign = 4;
  463. /* We really don't want to waste our time doing useless computation, so
  464. * fall back on the scalar C code for very small filters.
  465. * Vectorizing is worth it only if you have a decent-sized vector. */
  466. if (minFilterSize < 3)
  467. filterAlign = 1;
  468. }
  469. if (INLINE_MMX(cpu_flags)) {
  470. // special case for unscaled vertical filtering
  471. if (minFilterSize == 1 && filterAlign == 2)
  472. filterAlign = 1;
  473. }
  474. assert(minFilterSize > 0);
  475. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  476. assert(filterSize > 0);
  477. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  478. if (filterSize >= MAX_FILTER_SIZE * 16 /
  479. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  480. goto fail;
  481. *outFilterSize = filterSize;
  482. if (flags & SWS_PRINT_INFO)
  483. av_log(NULL, AV_LOG_VERBOSE,
  484. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  485. filter2Size, filterSize);
  486. /* try to reduce the filter-size (step2 reduce it) */
  487. for (i = 0; i < dstW; i++) {
  488. int j;
  489. for (j = 0; j < filterSize; j++) {
  490. if (j >= filter2Size)
  491. filter[i * filterSize + j] = 0;
  492. else
  493. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  494. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  495. filter[i * filterSize + j] = 0;
  496. }
  497. }
  498. // FIXME try to align filterPos if possible
  499. // fix borders
  500. if (is_horizontal) {
  501. for (i = 0; i < dstW; i++) {
  502. int j;
  503. if ((*filterPos)[i] < 0) {
  504. // move filter coefficients left to compensate for filterPos
  505. for (j = 1; j < filterSize; j++) {
  506. int left = FFMAX(j + (*filterPos)[i], 0);
  507. filter[i * filterSize + left] += filter[i * filterSize + j];
  508. filter[i * filterSize + j] = 0;
  509. }
  510. (*filterPos)[i] = 0;
  511. }
  512. if ((*filterPos)[i] + filterSize > srcW) {
  513. int shift = (*filterPos)[i] + filterSize - srcW;
  514. // move filter coefficients right to compensate for filterPos
  515. for (j = filterSize - 2; j >= 0; j--) {
  516. int right = FFMIN(j + shift, filterSize - 1);
  517. filter[i * filterSize + right] += filter[i * filterSize + j];
  518. filter[i * filterSize + j] = 0;
  519. }
  520. (*filterPos)[i] = srcW - filterSize;
  521. }
  522. }
  523. }
  524. // Note the +1 is for the MMX scaler which reads over the end
  525. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  526. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  527. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  528. /* normalize & store in outFilter */
  529. for (i = 0; i < dstW; i++) {
  530. int j;
  531. int64_t error = 0;
  532. int64_t sum = 0;
  533. for (j = 0; j < filterSize; j++) {
  534. sum += filter[i * filterSize + j];
  535. }
  536. sum = (sum + one / 2) / one;
  537. for (j = 0; j < *outFilterSize; j++) {
  538. int64_t v = filter[i * filterSize + j] + error;
  539. int intV = ROUNDED_DIV(v, sum);
  540. (*outFilter)[i * (*outFilterSize) + j] = intV;
  541. error = v - intV * sum;
  542. }
  543. }
  544. (*filterPos)[dstW + 0] =
  545. (*filterPos)[dstW + 1] =
  546. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  547. * read over the end */
  548. for (i = 0; i < *outFilterSize; i++) {
  549. int k = (dstW - 1) * (*outFilterSize) + i;
  550. (*outFilter)[k + 1 * (*outFilterSize)] =
  551. (*outFilter)[k + 2 * (*outFilterSize)] =
  552. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  553. }
  554. ret = 0;
  555. fail:
  556. av_free(filter);
  557. av_free(filter2);
  558. return ret;
  559. }
  560. #if HAVE_MMXEXT_INLINE
  561. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  562. int16_t *filter, int32_t *filterPos,
  563. int numSplits)
  564. {
  565. uint8_t *fragmentA;
  566. x86_reg imm8OfPShufW1A;
  567. x86_reg imm8OfPShufW2A;
  568. x86_reg fragmentLengthA;
  569. uint8_t *fragmentB;
  570. x86_reg imm8OfPShufW1B;
  571. x86_reg imm8OfPShufW2B;
  572. x86_reg fragmentLengthB;
  573. int fragmentPos;
  574. int xpos, i;
  575. // create an optimized horizontal scaling routine
  576. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  577. * pshufw instructions. For every four output pixels, if four input pixels
  578. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  579. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  580. */
  581. // code fragment
  582. __asm__ volatile (
  583. "jmp 9f \n\t"
  584. // Begin
  585. "0: \n\t"
  586. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  587. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  588. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  589. "punpcklbw %%mm7, %%mm1 \n\t"
  590. "punpcklbw %%mm7, %%mm0 \n\t"
  591. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  592. "1: \n\t"
  593. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  594. "2: \n\t"
  595. "psubw %%mm1, %%mm0 \n\t"
  596. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  597. "pmullw %%mm3, %%mm0 \n\t"
  598. "psllw $7, %%mm1 \n\t"
  599. "paddw %%mm1, %%mm0 \n\t"
  600. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  601. "add $8, %%"REG_a" \n\t"
  602. // End
  603. "9: \n\t"
  604. // "int $3 \n\t"
  605. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  606. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  607. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  608. "dec %1 \n\t"
  609. "dec %2 \n\t"
  610. "sub %0, %1 \n\t"
  611. "sub %0, %2 \n\t"
  612. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  613. "sub %0, %3 \n\t"
  614. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  615. "=r" (fragmentLengthA)
  616. );
  617. __asm__ volatile (
  618. "jmp 9f \n\t"
  619. // Begin
  620. "0: \n\t"
  621. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  622. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  623. "punpcklbw %%mm7, %%mm0 \n\t"
  624. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  625. "1: \n\t"
  626. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  627. "2: \n\t"
  628. "psubw %%mm1, %%mm0 \n\t"
  629. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  630. "pmullw %%mm3, %%mm0 \n\t"
  631. "psllw $7, %%mm1 \n\t"
  632. "paddw %%mm1, %%mm0 \n\t"
  633. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  634. "add $8, %%"REG_a" \n\t"
  635. // End
  636. "9: \n\t"
  637. // "int $3 \n\t"
  638. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  639. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  640. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  641. "dec %1 \n\t"
  642. "dec %2 \n\t"
  643. "sub %0, %1 \n\t"
  644. "sub %0, %2 \n\t"
  645. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  646. "sub %0, %3 \n\t"
  647. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  648. "=r" (fragmentLengthB)
  649. );
  650. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  651. fragmentPos = 0;
  652. for (i = 0; i < dstW / numSplits; i++) {
  653. int xx = xpos >> 16;
  654. if ((i & 3) == 0) {
  655. int a = 0;
  656. int b = ((xpos + xInc) >> 16) - xx;
  657. int c = ((xpos + xInc * 2) >> 16) - xx;
  658. int d = ((xpos + xInc * 3) >> 16) - xx;
  659. int inc = (d + 1 < 4);
  660. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  661. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  662. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  663. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  664. int maxShift = 3 - (d + inc);
  665. int shift = 0;
  666. if (filterCode) {
  667. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  668. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  669. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  670. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  671. filterPos[i / 2] = xx;
  672. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  673. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  674. ((b + inc) << 2) |
  675. ((c + inc) << 4) |
  676. ((d + inc) << 6);
  677. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  678. (c << 4) |
  679. (d << 6);
  680. if (i + 4 - inc >= dstW)
  681. shift = maxShift; // avoid overread
  682. else if ((filterPos[i / 2] & 3) <= maxShift)
  683. shift = filterPos[i / 2] & 3; // align
  684. if (shift && i >= shift) {
  685. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  686. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  687. filterPos[i / 2] -= shift;
  688. }
  689. }
  690. fragmentPos += fragmentLength;
  691. if (filterCode)
  692. filterCode[fragmentPos] = RET;
  693. }
  694. xpos += xInc;
  695. }
  696. if (filterCode)
  697. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  698. return fragmentPos + 1;
  699. }
  700. #endif /* HAVE_MMXEXT_INLINE */
  701. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  702. {
  703. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  704. *h = desc->log2_chroma_w;
  705. *v = desc->log2_chroma_h;
  706. }
  707. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  708. int srcRange, const int table[4], int dstRange,
  709. int brightness, int contrast, int saturation)
  710. {
  711. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  712. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  713. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  714. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  715. c->brightness = brightness;
  716. c->contrast = contrast;
  717. c->saturation = saturation;
  718. c->srcRange = srcRange;
  719. c->dstRange = dstRange;
  720. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  721. return -1;
  722. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  723. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  724. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  725. contrast, saturation);
  726. // FIXME factorize
  727. if (ARCH_PPC)
  728. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  729. contrast, saturation);
  730. return 0;
  731. }
  732. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  733. int *srcRange, int **table, int *dstRange,
  734. int *brightness, int *contrast, int *saturation)
  735. {
  736. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  737. return -1;
  738. *inv_table = c->srcColorspaceTable;
  739. *table = c->dstColorspaceTable;
  740. *srcRange = c->srcRange;
  741. *dstRange = c->dstRange;
  742. *brightness = c->brightness;
  743. *contrast = c->contrast;
  744. *saturation = c->saturation;
  745. return 0;
  746. }
  747. static int handle_jpeg(enum AVPixelFormat *format)
  748. {
  749. switch (*format) {
  750. case AV_PIX_FMT_YUVJ420P:
  751. *format = AV_PIX_FMT_YUV420P;
  752. return 1;
  753. case AV_PIX_FMT_YUVJ422P:
  754. *format = AV_PIX_FMT_YUV422P;
  755. return 1;
  756. case AV_PIX_FMT_YUVJ444P:
  757. *format = AV_PIX_FMT_YUV444P;
  758. return 1;
  759. case AV_PIX_FMT_YUVJ440P:
  760. *format = AV_PIX_FMT_YUV440P;
  761. return 1;
  762. default:
  763. return 0;
  764. }
  765. }
  766. SwsContext *sws_alloc_context(void)
  767. {
  768. SwsContext *c = av_mallocz(sizeof(SwsContext));
  769. if (c) {
  770. c->av_class = &sws_context_class;
  771. av_opt_set_defaults(c);
  772. }
  773. return c;
  774. }
  775. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  776. SwsFilter *dstFilter)
  777. {
  778. int i;
  779. int usesVFilter, usesHFilter;
  780. int unscaled;
  781. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  782. int srcW = c->srcW;
  783. int srcH = c->srcH;
  784. int dstW = c->dstW;
  785. int dstH = c->dstH;
  786. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  787. int dst_stride_px = dst_stride >> 1;
  788. int flags, cpu_flags;
  789. enum AVPixelFormat srcFormat = c->srcFormat;
  790. enum AVPixelFormat dstFormat = c->dstFormat;
  791. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  792. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  793. cpu_flags = av_get_cpu_flags();
  794. flags = c->flags;
  795. emms_c();
  796. if (!rgb15to16)
  797. sws_rgb2rgb_init();
  798. unscaled = (srcW == dstW && srcH == dstH);
  799. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  800. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  801. if (!sws_isSupportedInput(srcFormat)) {
  802. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  803. sws_format_name(srcFormat));
  804. return AVERROR(EINVAL);
  805. }
  806. if (!sws_isSupportedOutput(dstFormat)) {
  807. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  808. sws_format_name(dstFormat));
  809. return AVERROR(EINVAL);
  810. }
  811. }
  812. i = flags & (SWS_POINT |
  813. SWS_AREA |
  814. SWS_BILINEAR |
  815. SWS_FAST_BILINEAR |
  816. SWS_BICUBIC |
  817. SWS_X |
  818. SWS_GAUSS |
  819. SWS_LANCZOS |
  820. SWS_SINC |
  821. SWS_SPLINE |
  822. SWS_BICUBLIN);
  823. /* provide a default scaler if not set by caller */
  824. if (!i) {
  825. if (dstW < srcW && dstH < srcH)
  826. flags |= SWS_GAUSS;
  827. else if (dstW > srcW && dstH > srcH)
  828. flags |= SWS_SINC;
  829. else
  830. flags |= SWS_LANCZOS;
  831. c->flags = flags;
  832. } else if (i & (i - 1)) {
  833. av_log(c, AV_LOG_ERROR,
  834. "Exactly one scaler algorithm must be chosen\n");
  835. return AVERROR(EINVAL);
  836. }
  837. /* sanity check */
  838. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  839. /* FIXME check if these are enough and try to lower them after
  840. * fixing the relevant parts of the code */
  841. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  842. srcW, srcH, dstW, dstH);
  843. return AVERROR(EINVAL);
  844. }
  845. if (!dstFilter)
  846. dstFilter = &dummyFilter;
  847. if (!srcFilter)
  848. srcFilter = &dummyFilter;
  849. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  850. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  851. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  852. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  853. c->vRounder = 4 * 0x0001000100010001ULL;
  854. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  855. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  856. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  857. (dstFilter->chrV && dstFilter->chrV->length > 1);
  858. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  859. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  860. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  861. (dstFilter->chrH && dstFilter->chrH->length > 1);
  862. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  863. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  864. if (isPlanarRGB(dstFormat)) {
  865. if (!(flags & SWS_FULL_CHR_H_INT)) {
  866. av_log(c, AV_LOG_DEBUG,
  867. "%s output is not supported with half chroma resolution, switching to full\n",
  868. av_get_pix_fmt_name(dstFormat));
  869. flags |= SWS_FULL_CHR_H_INT;
  870. c->flags = flags;
  871. }
  872. }
  873. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  874. * chroma interpolation */
  875. if (flags & SWS_FULL_CHR_H_INT &&
  876. isAnyRGB(dstFormat) &&
  877. !isPlanarRGB(dstFormat) &&
  878. dstFormat != AV_PIX_FMT_RGBA &&
  879. dstFormat != AV_PIX_FMT_ARGB &&
  880. dstFormat != AV_PIX_FMT_BGRA &&
  881. dstFormat != AV_PIX_FMT_ABGR &&
  882. dstFormat != AV_PIX_FMT_RGB24 &&
  883. dstFormat != AV_PIX_FMT_BGR24) {
  884. av_log(c, AV_LOG_ERROR,
  885. "full chroma interpolation for destination format '%s' not yet implemented\n",
  886. sws_format_name(dstFormat));
  887. flags &= ~SWS_FULL_CHR_H_INT;
  888. c->flags = flags;
  889. }
  890. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  891. c->chrDstHSubSample = 1;
  892. // drop some chroma lines if the user wants it
  893. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  894. SWS_SRC_V_CHR_DROP_SHIFT;
  895. c->chrSrcVSubSample += c->vChrDrop;
  896. /* drop every other pixel for chroma calculation unless user
  897. * wants full chroma */
  898. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  899. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  900. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  901. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  902. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  903. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  904. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  905. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  906. (flags & SWS_FAST_BILINEAR)))
  907. c->chrSrcHSubSample = 1;
  908. // Note the -((-x)>>y) is so that we always round toward +inf.
  909. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  910. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  911. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  912. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  913. /* unscaled special cases */
  914. if (unscaled && !usesHFilter && !usesVFilter &&
  915. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  916. ff_get_unscaled_swscale(c);
  917. if (c->swscale) {
  918. if (flags & SWS_PRINT_INFO)
  919. av_log(c, AV_LOG_INFO,
  920. "using unscaled %s -> %s special converter\n",
  921. sws_format_name(srcFormat), sws_format_name(dstFormat));
  922. return 0;
  923. }
  924. }
  925. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  926. if (c->srcBpc < 8)
  927. c->srcBpc = 8;
  928. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  929. if (c->dstBpc < 8)
  930. c->dstBpc = 8;
  931. if (c->dstBpc == 16)
  932. dst_stride <<= 1;
  933. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  934. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  935. fail);
  936. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
  937. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  938. (srcW & 15) == 0) ? 1 : 0;
  939. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  940. && (flags & SWS_FAST_BILINEAR)) {
  941. if (flags & SWS_PRINT_INFO)
  942. av_log(c, AV_LOG_INFO,
  943. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  944. }
  945. if (usesHFilter)
  946. c->canMMXEXTBeUsed = 0;
  947. } else
  948. c->canMMXEXTBeUsed = 0;
  949. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  950. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  951. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  952. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  953. * correct scaling.
  954. * n-2 is the last chrominance sample available.
  955. * This is not perfect, but no one should notice the difference, the more
  956. * correct variant would be like the vertical one, but that would require
  957. * some special code for the first and last pixel */
  958. if (flags & SWS_FAST_BILINEAR) {
  959. if (c->canMMXEXTBeUsed) {
  960. c->lumXInc += 20;
  961. c->chrXInc += 20;
  962. }
  963. // we don't use the x86 asm scaler if MMX is available
  964. else if (INLINE_MMX(cpu_flags)) {
  965. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  966. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  967. }
  968. }
  969. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  970. /* precalculate horizontal scaler filter coefficients */
  971. {
  972. #if HAVE_MMXEXT_INLINE
  973. // can't downscale !!!
  974. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  975. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  976. NULL, NULL, 8);
  977. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  978. NULL, NULL, NULL, 4);
  979. #if USE_MMAP
  980. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  981. PROT_READ | PROT_WRITE,
  982. MAP_PRIVATE | MAP_ANONYMOUS,
  983. -1, 0);
  984. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  985. PROT_READ | PROT_WRITE,
  986. MAP_PRIVATE | MAP_ANONYMOUS,
  987. -1, 0);
  988. #elif HAVE_VIRTUALALLOC
  989. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  990. c->lumMmxextFilterCodeSize,
  991. MEM_COMMIT,
  992. PAGE_EXECUTE_READWRITE);
  993. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  994. c->chrMmxextFilterCodeSize,
  995. MEM_COMMIT,
  996. PAGE_EXECUTE_READWRITE);
  997. #else
  998. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  999. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1000. #endif
  1001. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1002. return AVERROR(ENOMEM);
  1003. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1004. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1005. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1006. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1007. init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
  1008. c->hLumFilter, c->hLumFilterPos, 8);
  1009. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1010. c->hChrFilter, c->hChrFilterPos, 4);
  1011. #if USE_MMAP
  1012. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1013. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1014. #endif
  1015. } else
  1016. #endif /* HAVE_MMXEXT_INLINE */
  1017. {
  1018. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1019. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1020. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1021. &c->hLumFilterSize, c->lumXInc,
  1022. srcW, dstW, filterAlign, 1 << 14,
  1023. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1024. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1025. c->param, 1) < 0)
  1026. goto fail;
  1027. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1028. &c->hChrFilterSize, c->chrXInc,
  1029. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1030. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1031. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1032. c->param, 1) < 0)
  1033. goto fail;
  1034. }
  1035. } // initialize horizontal stuff
  1036. /* precalculate vertical scaler filter coefficients */
  1037. {
  1038. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1039. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1040. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1041. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1042. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1043. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1044. c->param, 0) < 0)
  1045. goto fail;
  1046. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1047. c->chrYInc, c->chrSrcH, c->chrDstH,
  1048. filterAlign, (1 << 12),
  1049. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1050. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1051. c->param, 0) < 0)
  1052. goto fail;
  1053. #if HAVE_ALTIVEC
  1054. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1055. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1056. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1057. int j;
  1058. short *p = (short *)&c->vYCoeffsBank[i];
  1059. for (j = 0; j < 8; j++)
  1060. p[j] = c->vLumFilter[i];
  1061. }
  1062. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1063. int j;
  1064. short *p = (short *)&c->vCCoeffsBank[i];
  1065. for (j = 0; j < 8; j++)
  1066. p[j] = c->vChrFilter[i];
  1067. }
  1068. #endif
  1069. }
  1070. // calculate buffer sizes so that they won't run out while handling these damn slices
  1071. c->vLumBufSize = c->vLumFilterSize;
  1072. c->vChrBufSize = c->vChrFilterSize;
  1073. for (i = 0; i < dstH; i++) {
  1074. int chrI = (int64_t)i * c->chrDstH / dstH;
  1075. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1076. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1077. << c->chrSrcVSubSample));
  1078. nextSlice >>= c->chrSrcVSubSample;
  1079. nextSlice <<= c->chrSrcVSubSample;
  1080. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1081. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1082. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1083. (nextSlice >> c->chrSrcVSubSample))
  1084. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1085. c->vChrFilterPos[chrI];
  1086. }
  1087. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1088. * need to allocate several megabytes to handle all possible cases) */
  1089. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1090. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1091. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1092. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1093. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1094. /* Note we need at least one pixel more at the end because of the MMX code
  1095. * (just in case someone wants to replace the 4000/8000). */
  1096. /* align at 16 bytes for AltiVec */
  1097. for (i = 0; i < c->vLumBufSize; i++) {
  1098. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1099. dst_stride + 16, fail);
  1100. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1101. }
  1102. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1103. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1104. c->uv_off_byte = dst_stride + 16;
  1105. for (i = 0; i < c->vChrBufSize; i++) {
  1106. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1107. dst_stride * 2 + 32, fail);
  1108. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1109. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1110. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1111. }
  1112. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1113. for (i = 0; i < c->vLumBufSize; i++) {
  1114. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1115. dst_stride + 16, fail);
  1116. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1117. }
  1118. // try to avoid drawing green stuff between the right end and the stride end
  1119. for (i = 0; i < c->vChrBufSize; i++)
  1120. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1121. assert(c->chrDstH <= dstH);
  1122. if (flags & SWS_PRINT_INFO) {
  1123. if (flags & SWS_FAST_BILINEAR)
  1124. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1125. else if (flags & SWS_BILINEAR)
  1126. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1127. else if (flags & SWS_BICUBIC)
  1128. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1129. else if (flags & SWS_X)
  1130. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1131. else if (flags & SWS_POINT)
  1132. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1133. else if (flags & SWS_AREA)
  1134. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1135. else if (flags & SWS_BICUBLIN)
  1136. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1137. else if (flags & SWS_GAUSS)
  1138. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1139. else if (flags & SWS_SINC)
  1140. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1141. else if (flags & SWS_LANCZOS)
  1142. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1143. else if (flags & SWS_SPLINE)
  1144. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1145. else
  1146. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1147. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1148. sws_format_name(srcFormat),
  1149. #ifdef DITHER1XBPP
  1150. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1151. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1152. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1153. "dithered " : "",
  1154. #else
  1155. "",
  1156. #endif
  1157. sws_format_name(dstFormat));
  1158. if (INLINE_MMXEXT(cpu_flags))
  1159. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1160. else if (INLINE_AMD3DNOW(cpu_flags))
  1161. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1162. else if (INLINE_MMX(cpu_flags))
  1163. av_log(c, AV_LOG_INFO, "using MMX\n");
  1164. else if (PPC_ALTIVEC(cpu_flags))
  1165. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1166. else
  1167. av_log(c, AV_LOG_INFO, "using C\n");
  1168. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1169. av_log(c, AV_LOG_DEBUG,
  1170. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1171. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1172. av_log(c, AV_LOG_DEBUG,
  1173. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1174. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1175. c->chrXInc, c->chrYInc);
  1176. }
  1177. c->swscale = ff_getSwsFunc(c);
  1178. return 0;
  1179. fail: // FIXME replace things by appropriate error codes
  1180. return -1;
  1181. }
  1182. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1183. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1184. int flags, SwsFilter *srcFilter,
  1185. SwsFilter *dstFilter, const double *param)
  1186. {
  1187. SwsContext *c;
  1188. if (!(c = sws_alloc_context()))
  1189. return NULL;
  1190. c->flags = flags;
  1191. c->srcW = srcW;
  1192. c->srcH = srcH;
  1193. c->dstW = dstW;
  1194. c->dstH = dstH;
  1195. c->srcRange = handle_jpeg(&srcFormat);
  1196. c->dstRange = handle_jpeg(&dstFormat);
  1197. c->srcFormat = srcFormat;
  1198. c->dstFormat = dstFormat;
  1199. if (param) {
  1200. c->param[0] = param[0];
  1201. c->param[1] = param[1];
  1202. }
  1203. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1204. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1205. c->dstRange, 0, 1 << 16, 1 << 16);
  1206. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1207. sws_freeContext(c);
  1208. return NULL;
  1209. }
  1210. return c;
  1211. }
  1212. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1213. float lumaSharpen, float chromaSharpen,
  1214. float chromaHShift, float chromaVShift,
  1215. int verbose)
  1216. {
  1217. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1218. if (!filter)
  1219. return NULL;
  1220. if (lumaGBlur != 0.0) {
  1221. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1222. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1223. } else {
  1224. filter->lumH = sws_getIdentityVec();
  1225. filter->lumV = sws_getIdentityVec();
  1226. }
  1227. if (chromaGBlur != 0.0) {
  1228. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1229. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1230. } else {
  1231. filter->chrH = sws_getIdentityVec();
  1232. filter->chrV = sws_getIdentityVec();
  1233. }
  1234. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV) {
  1235. sws_freeVec(filter->lumH);
  1236. sws_freeVec(filter->lumV);
  1237. sws_freeVec(filter->chrH);
  1238. sws_freeVec(filter->chrV);
  1239. av_freep(&filter);
  1240. return NULL;
  1241. }
  1242. if (chromaSharpen != 0.0) {
  1243. SwsVector *id = sws_getIdentityVec();
  1244. sws_scaleVec(filter->chrH, -chromaSharpen);
  1245. sws_scaleVec(filter->chrV, -chromaSharpen);
  1246. sws_addVec(filter->chrH, id);
  1247. sws_addVec(filter->chrV, id);
  1248. sws_freeVec(id);
  1249. }
  1250. if (lumaSharpen != 0.0) {
  1251. SwsVector *id = sws_getIdentityVec();
  1252. sws_scaleVec(filter->lumH, -lumaSharpen);
  1253. sws_scaleVec(filter->lumV, -lumaSharpen);
  1254. sws_addVec(filter->lumH, id);
  1255. sws_addVec(filter->lumV, id);
  1256. sws_freeVec(id);
  1257. }
  1258. if (chromaHShift != 0.0)
  1259. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1260. if (chromaVShift != 0.0)
  1261. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1262. sws_normalizeVec(filter->chrH, 1.0);
  1263. sws_normalizeVec(filter->chrV, 1.0);
  1264. sws_normalizeVec(filter->lumH, 1.0);
  1265. sws_normalizeVec(filter->lumV, 1.0);
  1266. if (verbose)
  1267. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1268. if (verbose)
  1269. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1270. return filter;
  1271. }
  1272. SwsVector *sws_allocVec(int length)
  1273. {
  1274. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1275. if (!vec)
  1276. return NULL;
  1277. vec->length = length;
  1278. vec->coeff = av_malloc(sizeof(double) * length);
  1279. if (!vec->coeff)
  1280. av_freep(&vec);
  1281. return vec;
  1282. }
  1283. SwsVector *sws_getGaussianVec(double variance, double quality)
  1284. {
  1285. const int length = (int)(variance * quality + 0.5) | 1;
  1286. int i;
  1287. double middle = (length - 1) * 0.5;
  1288. SwsVector *vec = sws_allocVec(length);
  1289. if (!vec)
  1290. return NULL;
  1291. for (i = 0; i < length; i++) {
  1292. double dist = i - middle;
  1293. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1294. sqrt(2 * variance * M_PI);
  1295. }
  1296. sws_normalizeVec(vec, 1.0);
  1297. return vec;
  1298. }
  1299. SwsVector *sws_getConstVec(double c, int length)
  1300. {
  1301. int i;
  1302. SwsVector *vec = sws_allocVec(length);
  1303. if (!vec)
  1304. return NULL;
  1305. for (i = 0; i < length; i++)
  1306. vec->coeff[i] = c;
  1307. return vec;
  1308. }
  1309. SwsVector *sws_getIdentityVec(void)
  1310. {
  1311. return sws_getConstVec(1.0, 1);
  1312. }
  1313. static double sws_dcVec(SwsVector *a)
  1314. {
  1315. int i;
  1316. double sum = 0;
  1317. for (i = 0; i < a->length; i++)
  1318. sum += a->coeff[i];
  1319. return sum;
  1320. }
  1321. void sws_scaleVec(SwsVector *a, double scalar)
  1322. {
  1323. int i;
  1324. for (i = 0; i < a->length; i++)
  1325. a->coeff[i] *= scalar;
  1326. }
  1327. void sws_normalizeVec(SwsVector *a, double height)
  1328. {
  1329. sws_scaleVec(a, height / sws_dcVec(a));
  1330. }
  1331. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1332. {
  1333. int length = a->length + b->length - 1;
  1334. int i, j;
  1335. SwsVector *vec = sws_getConstVec(0.0, length);
  1336. if (!vec)
  1337. return NULL;
  1338. for (i = 0; i < a->length; i++) {
  1339. for (j = 0; j < b->length; j++) {
  1340. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1341. }
  1342. }
  1343. return vec;
  1344. }
  1345. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1346. {
  1347. int length = FFMAX(a->length, b->length);
  1348. int i;
  1349. SwsVector *vec = sws_getConstVec(0.0, length);
  1350. if (!vec)
  1351. return NULL;
  1352. for (i = 0; i < a->length; i++)
  1353. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1354. for (i = 0; i < b->length; i++)
  1355. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1356. return vec;
  1357. }
  1358. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1359. {
  1360. int length = FFMAX(a->length, b->length);
  1361. int i;
  1362. SwsVector *vec = sws_getConstVec(0.0, length);
  1363. if (!vec)
  1364. return NULL;
  1365. for (i = 0; i < a->length; i++)
  1366. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1367. for (i = 0; i < b->length; i++)
  1368. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1369. return vec;
  1370. }
  1371. /* shift left / or right if "shift" is negative */
  1372. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1373. {
  1374. int length = a->length + FFABS(shift) * 2;
  1375. int i;
  1376. SwsVector *vec = sws_getConstVec(0.0, length);
  1377. if (!vec)
  1378. return NULL;
  1379. for (i = 0; i < a->length; i++) {
  1380. vec->coeff[i + (length - 1) / 2 -
  1381. (a->length - 1) / 2 - shift] = a->coeff[i];
  1382. }
  1383. return vec;
  1384. }
  1385. void sws_shiftVec(SwsVector *a, int shift)
  1386. {
  1387. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1388. av_free(a->coeff);
  1389. a->coeff = shifted->coeff;
  1390. a->length = shifted->length;
  1391. av_free(shifted);
  1392. }
  1393. void sws_addVec(SwsVector *a, SwsVector *b)
  1394. {
  1395. SwsVector *sum = sws_sumVec(a, b);
  1396. av_free(a->coeff);
  1397. a->coeff = sum->coeff;
  1398. a->length = sum->length;
  1399. av_free(sum);
  1400. }
  1401. void sws_subVec(SwsVector *a, SwsVector *b)
  1402. {
  1403. SwsVector *diff = sws_diffVec(a, b);
  1404. av_free(a->coeff);
  1405. a->coeff = diff->coeff;
  1406. a->length = diff->length;
  1407. av_free(diff);
  1408. }
  1409. void sws_convVec(SwsVector *a, SwsVector *b)
  1410. {
  1411. SwsVector *conv = sws_getConvVec(a, b);
  1412. av_free(a->coeff);
  1413. a->coeff = conv->coeff;
  1414. a->length = conv->length;
  1415. av_free(conv);
  1416. }
  1417. SwsVector *sws_cloneVec(SwsVector *a)
  1418. {
  1419. int i;
  1420. SwsVector *vec = sws_allocVec(a->length);
  1421. if (!vec)
  1422. return NULL;
  1423. for (i = 0; i < a->length; i++)
  1424. vec->coeff[i] = a->coeff[i];
  1425. return vec;
  1426. }
  1427. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1428. {
  1429. int i;
  1430. double max = 0;
  1431. double min = 0;
  1432. double range;
  1433. for (i = 0; i < a->length; i++)
  1434. if (a->coeff[i] > max)
  1435. max = a->coeff[i];
  1436. for (i = 0; i < a->length; i++)
  1437. if (a->coeff[i] < min)
  1438. min = a->coeff[i];
  1439. range = max - min;
  1440. for (i = 0; i < a->length; i++) {
  1441. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1442. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1443. for (; x > 0; x--)
  1444. av_log(log_ctx, log_level, " ");
  1445. av_log(log_ctx, log_level, "|\n");
  1446. }
  1447. }
  1448. void sws_freeVec(SwsVector *a)
  1449. {
  1450. if (!a)
  1451. return;
  1452. av_freep(&a->coeff);
  1453. a->length = 0;
  1454. av_free(a);
  1455. }
  1456. void sws_freeFilter(SwsFilter *filter)
  1457. {
  1458. if (!filter)
  1459. return;
  1460. if (filter->lumH)
  1461. sws_freeVec(filter->lumH);
  1462. if (filter->lumV)
  1463. sws_freeVec(filter->lumV);
  1464. if (filter->chrH)
  1465. sws_freeVec(filter->chrH);
  1466. if (filter->chrV)
  1467. sws_freeVec(filter->chrV);
  1468. av_free(filter);
  1469. }
  1470. void sws_freeContext(SwsContext *c)
  1471. {
  1472. int i;
  1473. if (!c)
  1474. return;
  1475. if (c->lumPixBuf) {
  1476. for (i = 0; i < c->vLumBufSize; i++)
  1477. av_freep(&c->lumPixBuf[i]);
  1478. av_freep(&c->lumPixBuf);
  1479. }
  1480. if (c->chrUPixBuf) {
  1481. for (i = 0; i < c->vChrBufSize; i++)
  1482. av_freep(&c->chrUPixBuf[i]);
  1483. av_freep(&c->chrUPixBuf);
  1484. av_freep(&c->chrVPixBuf);
  1485. }
  1486. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1487. for (i = 0; i < c->vLumBufSize; i++)
  1488. av_freep(&c->alpPixBuf[i]);
  1489. av_freep(&c->alpPixBuf);
  1490. }
  1491. av_freep(&c->vLumFilter);
  1492. av_freep(&c->vChrFilter);
  1493. av_freep(&c->hLumFilter);
  1494. av_freep(&c->hChrFilter);
  1495. #if HAVE_ALTIVEC
  1496. av_freep(&c->vYCoeffsBank);
  1497. av_freep(&c->vCCoeffsBank);
  1498. #endif
  1499. av_freep(&c->vLumFilterPos);
  1500. av_freep(&c->vChrFilterPos);
  1501. av_freep(&c->hLumFilterPos);
  1502. av_freep(&c->hChrFilterPos);
  1503. #if HAVE_MMX_INLINE
  1504. #if USE_MMAP
  1505. if (c->lumMmxextFilterCode)
  1506. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1507. if (c->chrMmxextFilterCode)
  1508. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1509. #elif HAVE_VIRTUALALLOC
  1510. if (c->lumMmxextFilterCode)
  1511. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1512. if (c->chrMmxextFilterCode)
  1513. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1514. #else
  1515. av_free(c->lumMmxextFilterCode);
  1516. av_free(c->chrMmxextFilterCode);
  1517. #endif
  1518. c->lumMmxextFilterCode = NULL;
  1519. c->chrMmxextFilterCode = NULL;
  1520. #endif /* HAVE_MMX_INLINE */
  1521. av_freep(&c->yuvTable);
  1522. av_free(c->formatConvBuffer);
  1523. av_free(c);
  1524. }
  1525. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1526. int srcH, enum AVPixelFormat srcFormat,
  1527. int dstW, int dstH,
  1528. enum AVPixelFormat dstFormat, int flags,
  1529. SwsFilter *srcFilter,
  1530. SwsFilter *dstFilter,
  1531. const double *param)
  1532. {
  1533. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1534. SWS_PARAM_DEFAULT };
  1535. if (!param)
  1536. param = default_param;
  1537. if (context &&
  1538. (context->srcW != srcW ||
  1539. context->srcH != srcH ||
  1540. context->srcFormat != srcFormat ||
  1541. context->dstW != dstW ||
  1542. context->dstH != dstH ||
  1543. context->dstFormat != dstFormat ||
  1544. context->flags != flags ||
  1545. context->param[0] != param[0] ||
  1546. context->param[1] != param[1])) {
  1547. sws_freeContext(context);
  1548. context = NULL;
  1549. }
  1550. if (!context) {
  1551. if (!(context = sws_alloc_context()))
  1552. return NULL;
  1553. context->srcW = srcW;
  1554. context->srcH = srcH;
  1555. context->srcRange = handle_jpeg(&srcFormat);
  1556. context->srcFormat = srcFormat;
  1557. context->dstW = dstW;
  1558. context->dstH = dstH;
  1559. context->dstRange = handle_jpeg(&dstFormat);
  1560. context->dstFormat = dstFormat;
  1561. context->flags = flags;
  1562. context->param[0] = param[0];
  1563. context->param[1] = param[1];
  1564. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1565. context->srcRange,
  1566. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1567. context->dstRange, 0, 1 << 16, 1 << 16);
  1568. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1569. sws_freeContext(context);
  1570. return NULL;
  1571. }
  1572. }
  1573. return context;
  1574. }